Estudio de perovskitas tipo NaxBi(1-x)FeO(3-δ) (x = 0.00; 0.02; 0.04; 0.06; 0.08 y 0.10) para aplicaciones fotovoltaicas
Durante el presente siglo, la investigación en tecnologías para la producción de energía limpia y sostenible ha aumentado, centrándose en el desarrollo de la energía solar fotovoltaica. Esta tecnología, descubierta por Alexandre Edmond Becquerel en 1839, ha evolucionado desde las primeras celdas de...
- Autores:
-
Bautista Morantes, Adán de Jesús
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad Pedagógica y Tecnológica de Colombia
- Repositorio:
- RiUPTC: Repositorio Institucional UPTC
- Idioma:
- OAI Identifier:
- oai:repositorio.uptc.edu.co:001/17194
- Acceso en línea:
- https://repositorio.uptc.edu.co/handle/001/17194
- Palabra clave:
- Perovskitas
Conductores eléctricos
Celdas de combustible
- Rights
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
REPOUPTC2_127fd7379dd8fee90f7eb22d10a093e5 |
---|---|
oai_identifier_str |
oai:repositorio.uptc.edu.co:001/17194 |
network_acronym_str |
REPOUPTC2 |
network_name_str |
RiUPTC: Repositorio Institucional UPTC |
repository_id_str |
|
dc.title.none.fl_str_mv |
Estudio de perovskitas tipo NaxBi(1-x)FeO(3-δ) (x = 0.00; 0.02; 0.04; 0.06; 0.08 y 0.10) para aplicaciones fotovoltaicas |
title |
Estudio de perovskitas tipo NaxBi(1-x)FeO(3-δ) (x = 0.00; 0.02; 0.04; 0.06; 0.08 y 0.10) para aplicaciones fotovoltaicas |
spellingShingle |
Estudio de perovskitas tipo NaxBi(1-x)FeO(3-δ) (x = 0.00; 0.02; 0.04; 0.06; 0.08 y 0.10) para aplicaciones fotovoltaicas Perovskitas Conductores eléctricos Celdas de combustible |
title_short |
Estudio de perovskitas tipo NaxBi(1-x)FeO(3-δ) (x = 0.00; 0.02; 0.04; 0.06; 0.08 y 0.10) para aplicaciones fotovoltaicas |
title_full |
Estudio de perovskitas tipo NaxBi(1-x)FeO(3-δ) (x = 0.00; 0.02; 0.04; 0.06; 0.08 y 0.10) para aplicaciones fotovoltaicas |
title_fullStr |
Estudio de perovskitas tipo NaxBi(1-x)FeO(3-δ) (x = 0.00; 0.02; 0.04; 0.06; 0.08 y 0.10) para aplicaciones fotovoltaicas |
title_full_unstemmed |
Estudio de perovskitas tipo NaxBi(1-x)FeO(3-δ) (x = 0.00; 0.02; 0.04; 0.06; 0.08 y 0.10) para aplicaciones fotovoltaicas |
title_sort |
Estudio de perovskitas tipo NaxBi(1-x)FeO(3-δ) (x = 0.00; 0.02; 0.04; 0.06; 0.08 y 0.10) para aplicaciones fotovoltaicas |
dc.creator.fl_str_mv |
Bautista Morantes, Adán de Jesús |
dc.contributor.advisor.none.fl_str_mv |
Vera López, Enrique Gómez Cuaspud, Jairo |
dc.contributor.author.none.fl_str_mv |
Bautista Morantes, Adán de Jesús |
dc.subject.armarc.none.fl_str_mv |
Perovskitas Conductores eléctricos Celdas de combustible |
topic |
Perovskitas Conductores eléctricos Celdas de combustible |
description |
Durante el presente siglo, la investigación en tecnologías para la producción de energía limpia y sostenible ha aumentado, centrándose en el desarrollo de la energía solar fotovoltaica. Esta tecnología, descubierta por Alexandre Edmond Becquerel en 1839, ha evolucionado desde las primeras celdas de silicio hacia materiales más eficientes y económicos. En años recientes, la búsqueda de alternativas al silicio ha llevado al uso de materiales como el telurato de cadmio (CdTe), celdas orgánicas (OPC) y películas de cobre, zinc, estaño y azufre (CZTS), aunque estos presentan problemas de toxicidad y disponibilidad. Investigaciones recientes se han enfocado en óxidos mixtos y compuestos como la ferrita de bismuto (BiFeO3 o BFO), que ofrecen mejores propiedades estructurales al ser dopados con cationes alcalinos y alcalinotérreos (Li+, Na+, Ca2+, Sr2+, Ba2+). El dopaje con estos cationes optimiza las propiedades ferroeléctricas y ferromagnéticas del BFO a temperatura ambiente, mejorando también su eficiencia fotovoltaica. La inserción de sodio (Na+) en la estructura de BFO ha mostrado ser favorable, produciendo materiales con propiedades ópticas mejoradas y la capacidad de generar excitones bajo irradiación, lo que los hace adecuados para celdas solares de película delgada. Este estudio se centró en la síntesis y caracterización de perovskitas tipo NaxBi(1-x)FeO(3-δ), variando las concentraciones de Na y Bi. Los resultados demostraron mejoras significativas en las propiedades ferromagnéticas, ferroeléctricas y fotovoltaicas de los materiales dopados con Na, haciéndolos una excelente opción para la fabricación de celdas solares debido a su facilidad de síntesis, propiedades fotoeléctricas y costo reducido. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-07-24T20:51:35Z |
dc.date.available.none.fl_str_mv |
2024-07-24T20:51:35Z |
dc.type.none.fl_str_mv |
http://purl.org/redcol/resource_type/TMPD |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_db06 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.uptc.edu.co/handle/001/17194 |
url |
https://repositorio.uptc.edu.co/handle/001/17194 |
dc.relation.references.none.fl_str_mv |
J. Gebhardt and A. M. Rappe, “Doping of BiFeO3: A comprehensive study on substitutional doping,” Phys Rev B, vol. 98, No. 12, p. 125202, Sep. 2018, doi: https://doi.org/10.1103/PhysRevB.98.125202. A. K. Selva K, Y. Zhang, D. Li, R. G. Compton, “A mini-review: How reliable is the drop casting technique?”, Electrochemistry communications, vol. 121, Dec. 2020. https://doi.org/10.1016/j.elecom.2020.106867 R. A. Parra-Huertas, C. O. Calderón-Carvajal, J. A. Gómez-Cuaspud, and E. Vera-López, “Synthesis and characterization of Faujasite-Na from fly ash by the fusion-hydrothermal method,” Boletín de la Sociedad Española de Cerámica y Vidrio, Feb. 2023, doi: https://doi.org/10.1016/J.BSECV.2023.01.004. N. O. Laschuk, E. B. Easton, and O. V. Zenkina, “Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry,” RSC Advances, vol. 11, No. 45. Royal Society of Chemistry, pp. 27925–27936, Aug. 08, 2021. doi: https://doi.org/10.1039/D1RA03785D. M. Green, A. Ho-Baillie & H. Snaith, “The emergence of perovskite solar cells”, Nature Photon 8, 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134 A. Haruna, I. Abdulkadir, and S. O. Idris, “Photocatalytic activity and doping effects of BiFeO3 nanoparticles in model organic dyes,” Heliyon, vol. 6, No. 1. Elsevier Ltd, Jan. 01, 2020. doi: https://doi.org/10.1016/j.heliyon.2020.e03237 S. Ameer, K. Jindal, M. Tomar, P. K. Jha, and V. Gupta, “Effect of Li doping on the electronic and magnetic properties of BiFeO3 by first principles,” Integrated Ferroelectrics, vol. 193, No. 1, pp. 123–128, Oct. 2018, doi: https://doi.org/10.1080/10584587.2018.1514875 P. Tang, M. Cao, J. Yu, L. Wang, and D. Zhang, “Influence of Ba–Cr substitution on structural, optical and magnetic properties of nanocrystalline BiFeO3,” Journal of Materials Science: Materials in Electronics, vol. 32, No. 8, pp. 11028–11042, 2021, doi: https://doi.org/10.1007/s10854-021-05762-4. S. Si, H. Deng, T. Wang, P. Yang, and J. Chu, “Structural phase transition, optical bandgap, interband electronic transition, and improved magnetism in bivalent Ca-, Sr-, Pb-, and Ba-doped BiFeO3 ceramics,” Journal of Materials Science: Materials in Electronics, vol. 31, No. 11, pp. 8464–8471, 2020, doi: https://doi.org/10.1007/s10854-020-03381-z. A. Ghosh, D. P. Trujillo, H. Choi, S. M. Nakhmanson, S. P. Alpay, and J.-X. Zhu, “Electronic and Magnetic Properties of Lanthanum and Strontium Doped Bismuth Ferrite: A First-Principles Study,” Sci Rep, vol. 9, no. 1, p. 194, 2019, doi: https://doi.org/10.1038/s41598-018-37339-3. H. Zhang et al., “Novel behaviors of multiferroic properties in Na-Doped BiFeO3 nanoparticles,” Nanoscale, vol. 6, no. 18, pp. 10831–10838, 2014, doi: https://doi.org/10.1039/C4NR02557A. W. Mao et al., “Effect of Ca doping on photovoltaic effect of BiFeO3,” Applied Physics A, vol. 127, no. 7, p. 508, 2021, doi: https://doi.org/10.1007/s00339-021-04651-1. C. Shetty, V. Veena Devi Shastrimath, and R. Bairy, “Tuning the structural, morphological and optical properties of Sr-doped BFO thin films,” Phase Transitions, vol. 95, No. 3, pp. 202–211, Mar. 2022, doi: https://doi.org/10.1080/01411594.2022.2032056. Y. Zhang et al., “Enhanced photocatalytic activity of Ba doped BiFeO3 by turning morphologies and band gap,” Journal of Materials Science: Materials in Electronics, vol. 31, No. 18, pp. 15007–15012, 2020, doi: https://doi.org/10.1007/s10854-020-04064-5 E. Taryana, B. Soegijono, H. Notonegoro, and D. Mada, “The Influence of Li-doping on the Microwave Absorption Properties of BiFeO3 Nanoparticles,” e-Journal of Surface Science and Nanotechnology, vol. 19, pp. 55–60, May 2021, doi: https://doi.org/10.1380/ejssnt.2021.55. Q. Luo, “8 - Applications in photovoltaics” in Solution Processed Metal Oxide Thin Films for Electronic Applications, Z. Cui and G. Korotcenkov, Eds., Elsevier, 2020, pp. 109–140. doi: https://doi.org/10.1016/B978-0-12-814930-0.00008-6. F. Gunkel, D. V Christensen, Y. Z. Chen, and N. Pryds, “Oxygen vacancies: The (in)visible friend of oxide electronics,” Appl Phys Lett, vol. 116, No. 12, p. 120505, Mar. 2020, doi: https://doi.org/10.1063/1.5143309. S. Chauhan et al., “Influence of Na substitution on structural, magnetic, optical and photocatalytic properties of bismuth ferrite nanoparticles,” Journal of Materials Science: Materials in Electronics, vol. 31, No. 22, pp. 20191–20209, 2020, doi: https://doi.org/10.1007/s10854-020-04540-y. X. Wu, Z. Wan, J. Qi, and M. Wang, “Ferroelectric photovoltaic properties of perovskite Na0.5Bi0.5FeO3-based solution-processed solar cells”, J Alloys Compd, vol. 750, pp. 959–964, Jun. 2018, doi: https://doi.org/10.1016/j.jallcom.2018.04.076. S. Chauhan, M. Kumar, A. Yousuf, P. Rathi, M. Sahni, and S. Singh, “Effect of Na/Co co-substituted on structural, magnetic, optical and photocatalytic properties of BiFeO3 nanoparticles,” Mater Chem Phys, vol. 263, p. 124402, 2021, doi: https://doi.org/10.1016/j.matchemphys.2021.124402. X. Xu et al., “The abnormal electrical and optical properties in Na and Ni codoped BiFeO3 nanoparticles,” J Appl Phys, vol. 117, No. 17, p. 174106, May 2015, doi: https://doi.org/10.1063/1.4919822. X. Wu, Z. Wan, J. Qi, and M. Wang, “Ferroelectric photovoltaic properties of perovskite Na0.5Bi0.5FeO3-based solution-processed solar cells”, J Alloys Compd, vol. 750, pp. 959–964, Jun. 2018, doi: https://doi.org/10.1016/j.jallcom.2018.04.076. S. Chauhan, M. Kumar, A. Yousuf, P. Rathi, M. Sahni, and S. Singh, “Effect of Na/Co co-substituted on structural, magnetic, optical and photocatalytic properties of BiFeO3 nanoparticles,” Mater Chem Phys, vol. 263, p. 124402, 2021, doi: https://doi.org/10.1016/j.matchemphys.2021.124402. X. Xu et al., “The abnormal electrical and optical properties in Na and Ni codoped BiFeO3 nanoparticles,” J Appl Phys, vol. 117, No. 17, p. 174106, May 2015, doi: https://doi.org/10.1063/1.4919822. S. Chang, C. Chen, X. Jiang, C. Zhao, and J. Chen, “Improved chemical defects, domain structure and electrical properties of BiFeO3–BaTiO3 lead-free ceramics by simultaneous Na/Bi codoping and quenching process,” Ceram Int, vol. 49, no. 10, pp. 16191–16198, 2023, doi: https://doi.org/10.1016/j.ceramint.2023.01.217. S. Sharma, H. A. Reshi, J. M. Siqueiros, and O. Raymond Herrera, “Stability of rhombohedral structure and improved dielectric and ferroelectric properties of Ba, Na, Ti doped BiFeO3 solid solutions,” Ceram Int, vol. 48, no. 2, pp. 1805–1813, 2022, doi: https://doi.org/10.1016/j.ceramint.2021.09.261 National Renewable Energy Laboratory – NREL, “Standard solar spectra”. Disponible en: https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html N. Kannan and D. Vakeesan, “Solar energy for future world: - A review,” Renewable and Sustainable Energy Reviews, vol. 62. pp. 1092–1105, 2016. https://doi.org/10.1016/j.rser.2016.05.022 C. E. Marín, “La Energía Solar Fotovoltaica en España”, Ninbus, vol. 13–14, pp. 5–31, 2004, doi: 10.12795/rea.2020.i39.04 D. Barberá, “Introducción a la Energía Fotovoltaica”, Cap. 2, pp. 1-2. Disponible en: https://biblus.us.es/bibing/proyectos/abreproy/70271/fichero/02+INTRODUCCI%C3%93N+A+LA+ENERG%C3%8DA+FOTOVOLTAICA%252FIntroducci%C3%B3n+a+la+Energ%C3%ADa+Fotovoltaica.pdf D. C. Sinde, “Espectroscopía de impedancias aplicada a dispositivos semiconductores”, Universitat Politécnica de Catalunya, Escola Técnica Superior d'Enginyeria de Telecomunicació de Barcelona, Departament d'Enginyeria Electrónica, 2016. Disponible en: https://upcommons.upc.edu/bitstream/handle/2117/91487/Espectroscopia+de+impedancias+aplicada+a+dispositivos+semiconductores.pdf?sequence=1 S. W. Glunz, “High Efficiency crystalline silicon cells”, Advances in optoelectronics. http://dx.doi.org/10.1155/2007/97370, 2007 M. A. Green, K. Emery, Y. Hishikawa, W. Warta y E. D. Dunlop, “Solar cell efficiency tables (version 45)“, Prog. Photovolt.: Res. Appl. https://doi.org/10.1002/pip.2573 S. Ahmadi, S. Mirershadi and A. Nikniaz, “Inorganic–Organic Perovskite Solar Cells”. http://dx.doi.org/10.5772/58970 A. Chilvery, S. Das, P. Guggilla, C. Brantley and A. Sunda-Meya, “A perspective on the recent progress in solution-processed methods for highly efficient perovskite solar cells”. http://dx.doi.org/10.1080/14686996.2016.1226120 S. W. Glunz, A. Batra, B. Yang, et a, “Perovskites: transforming photovoltaics, a mini-review”, J. Photonics Energy, 2015, 5:1–14. https://doi.org/10.1117/1.JPE.5.057402 M. Valdes, M. Modibedi, M. Mathe, T. Hillie, and M. Vazquez, “Electrodeposited Cu2ZnSnS4 thin films”, Electrochem. Acta, vol. 128, pp. 393–399, 2014. https://doi.org/10.1016/j.electacta.2013.10.206 Y. N. Xia., P. D. Yang., Y. G. Sun., Y. Y. Wu., B. Mayers., B. Gates., Y. D. Yin., F. Kim., H. Q. Yan, “Onedimensional nanostructures: synthesis, characterization, and applications”, Adv Mater, 15: 353389, (2003). http://dx.doi.org/10.1002/adma.200390087 A. Luque, S. Hegedus, “Handbook of Photovoltaic Science.”, Instituto de Energía Solar, Universidad Politécnica de Madrid, Spain, Institute of Energy Conversion, University of Delaware, USA, Ed. Wiley & Sons Ltd., England, 2003, p. 569-592. Disponible en: https://onlinelibrary.wiley.com/doi/book/10.1002/0470014008 J. Hedstrom et al., “Proc. 23rd IEEE Photovoltaic Specialist Conf”, pp. 364–371 (1993). https://doi.org/10.1016/0169-4332(95)00303-7 X. Feng and T.B. Metzger, “A Glass Durability Model Based on Understanding Glass Chemistry and Structural Configurations of the Glass Constituents”. https://doi.org/10.1557/PROC-432-27 A. Hamda, Al-Thani, S. H. Falah, M. Young, S. Asher, J. Alleman, M. Al-Jassim, and D. Williamson, “The Effect of Mo Back Contact on Na Out-Diffusion and device performance of Mo/Cu(In, Ga)Se2/CdS/ZnO Solar Cells”, National Renewable Energy Laboratory, Golden, CO 80401, USA, doi: 10.1109/PVSC.2002.1190666 J. H. Scofield, A. Duda, D. Albin, B.L. Ballard, P.K. Predecki, “Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells”. https://doi.org/10.1016/0040-6090(94)06462-8 Photovoltaic Solar Cells. G2V Optics Inc. Disponible en: https://g2voptics.com/ A. Kumar, M. Shkir, H.H. Somaily, K.L. Singh, B.C. Choudhary, S. K. Tripathi, “A simple, low-cost modified drop-casting method to develop high-quality CH3NH3PbI3 perovskite thin films”, Physica B: Physics of Condensed Matter, Vol. 630, Apr. 2022. https://doi.org/10.1016/j.physb.2022.413678 L. Smart,E. Moore, “Solid State Chemistry. An Introduction”, Ed. Taylor & Francis Group. Third Edition, 2005, pp. 52. https://doi.org/10.1201/b12396 A. M. Glazer, R. H. Mitchell, “Perovskites modern and ancient”, Thunder Bay, Ontario: Almaz Press, Acta Crystallogr B, vol. 58, no. 6, pp. 1075–1075, 2002, doi: https://doi.org/10.1107/S0108768102020220. M. Čebela et al., “BiFeO3 perovskites: A multidisciplinary approach to multiferroics”, Ceram Int, vol. 43, No. 1, pp. 1256–1264, Jan. 2017, doi: https://doi.org/10.1016/J.CERAMINT.2016.10.074. P. Ghadage et al., “Pd loaded bismuth ferrite: A versatile perovskite for dual applications as acetone gas sensor and photocatalytic dye degradation of malachite green”, Ceram Int, vol. 49, No. 4, pp. 5738–5747, Feb. 2023, doi: https://doi.org/10.1016/j.ceramint.2022.10.153. A. Tuluk, T. Mahon, S. Van der Zwaag, and P. Groen, “Estimating the true piezoelectric properties of BiFeO3 from measurements on BiFeO3-PVDF terpolymer composites,” J Alloys Compd, vol. 868, p. 159186, Jul. 2021, doi: https://doi.org/10.1016/J.JALLCOM.2021.159186 L. Zhao et al., “Current rectifying and resistive switching in high density BiFeO3 nanocapacitor arrays on Nb-SrTiO3 substrates”, Scientific Reports 2015 5:1, vol. 5, No. 1, pp. 1–6, Apr. 2015, doi: https://doi.org/10.1038/srep09680. K. F. Wang, J. M. Liu, and Z. F. Ren, “Multiferroicity: the coupling between magnetic and polarization orders,” Adv. Phys., vol. 58, no. 4, pp. 321–448, Jul. 2009, doi: https://doi.org/10.1080/00018730902920554. L. F. Zhu, X. W. Lei, L. Zhao, M. I. Hussain, G. Z. Zhao, and B. P. Zhang, “Phase structure and energy storage performance for BiFeO3–BaTiO3 based lead-free ferroelectric ceramics”, Ceram Int, vol. 45, No. 16, pp. 20266–20275, Nov. 2019, doi: https://doi.org/10.1016/J.CERAMINT.2019.06.300. R. Montecillo, C. S. Chen, Y. T. Lee, P. Y. Chen, and C. S. Tu, “Optimized electric-energy storage in BiFeO3–BaTiO3 ceramics via tailoring microstructure and nanocluster”, J. Eur Ceram Soc, vol. 43, No. 5, pp. 1941–1951, May 2023, doi: https://doi.org/10.1016/j.jeurceramsoc.2022.12.064. B. Deka, K. H. Cho, S. Tingry, and Z. Tang, “BiFeO3-Based Relaxor Ferroelectrics for Energy Storage: Progress and Prospects”, Materials 2021, Vol. 14, Page 7188, vol. 14, No. 23, p. 7188, Nov. 2021, doi: https://doi.org/10.3390/MA14237188. Y. Zhao et al., “Ultra-low power consumption and favorable reliability Mn-doped BiFeO3 resistance-switching devices via tunable oxygen vacancy”, Ceram Int, vol. 49, No. 6, pp. 9090–9096, Mar. 2023, doi: https://doi.org/10.1016/j.ceramint.2022.11.066. N. Li, B. Zhang, Y. He, and Y. Luo, “Sub-Picosecond Nanodiodes for Low-Power Ultrafast Electronics”, Advanced Materials, vol. 33, No. 33, p. 2100874, Aug. 2021, doi: https://doi.org/10.1002/ADMA.202100874. A. Wold, O. Muller and R. Roy, “Nonmetallic Crystals: The Major Ternary Structural Families”, Springer-Verlag, New York, 1974, 488 pp., illus. Crystal Chemistry of Non-Metallic Materials, vol. 4.,” Science (1979), vol. 188, No. 4184, pp. 143–143, Apr. 1975, https://doi.org/10.1126/science.188.4184.143.a. F. Pedro, F. Sánchez, A. M. Bolarín, C. A. Cortés, and A. Barba, “Propiedades magnéticas de BiFeO3 obtenido por mecanosíntesis”. Tópicos de Investigación en Ciencias de la Tierra y Materiales, vol. 3, pp. 176–183, Sep. 2016, doi: https://doi.org/10.29057/aactm.v3i3.9628. F. Pedro, A. M. Bolarín, F. Sánchez, C. A. Cortés, Z. Valdez, and G. Torres, “Stabilization of α-BiFeO3 structure by Sr2+ and its effect on multiferroic properties”, Ceram Int, vol. 44, No. 7, pp. 8087–8093, May 2018, doi: https://doi.org/10.1016/J.CERAMINT.2018.01.251. G. Dhir, P. Uniyal, and N. K. Verma, “Tactics of particle size for enhanced multiferroic properties in nanoscale Ca-doped BiFeO3”, Physica Status Solidi (C) Current Topics in Solid State Physics, vol. 14, No. 5, May 2017, doi: https://doi.org/10.1002/PSSC.201600253. J. S. Wang et al., “Evolution of structural distortion in BiFeO3 thin films probed by second-harmonic generation”, Sci Rep, vol. 6, Dec. 2016, doi: https://doi.org/10.1038/SREP38268. S. Almosni et al., “Material challenges for solar cells in the twenty-first century: directions in emerging technologies,” Sci Technol Adv Mater, vol. 19, No. 1, pp. 336–369, Dec. 2018, doi: https://doi.org/10.1080/14686996.2018.1433439. M.C. Blanco, V.C. Fuertes, R.E. Carbonio. Hablemos de perovskitas. Bitácora digital / Facultad de Ciencias Químicas (UNC). http://hdl.handle.net/11336/51128 D.G. Franco, V.C. Fuertes, M. C. Blanco, M.T. Fernández, R.D. Sánchez, R.E. Carbonio, “Synthesis, structure and magnetic properties of La3Co2SbO9: A double perovskite with competing antiferromagnetic and ferromagnetic interactions”, J. Solid State Chem. (2012) 194, 385–391. https://doi.org/10.1016/j.jssc.2012.05.045 M.C. Blanco, S.A. Paz, V.M. Nassif, J.J. Guimpel, R.E. Carbonio, “Synthesis and characterization of the new two dimensional Heisenberg antiferromagnetic double perovskite BaLaCuSbO6”, Dalton Trans., (2015). doi: 10.1039/C4DT03880K S. Vasala, M. Karppinen, “A2B’B’’O6 perovskites: A review, Progress in Solid State”, Chemistry (2015) 43, 1-36. https://doi.org/10.1016/j.progsolidstchem.2014.08.001 S.W. Cheong, M. Mostovoy, “Multiferroics: a magnetic twist for ferroelectricity”, Nat Mater (2007) 6, 13-20, doi: 10.1038/nmat1804 D. Fraga, T. Stoyanova, R. Martí, I. Calvet, E. Barrachina, J.B. Carda, “Effect of alkali doping on CIGS photovoltaic ceramic tiles”. Elsevier. Sol Energy, Vol. 147, 2017, pp. 1-7. https://doi.org/10.1016/j.solener.2017.03.033 X. Chongyang, L. Zhihai, L. Eun-Cheol, “Non-equivalent Tl doping for high performance perovskite solar cells: Crystal quality improvement with enhanced p-type character”. Elsevier. Journal of Power Sources, Vol. 479, 2020. https://doi.org/10.1016/j.jpowsour.2020.228818 Z. Meiling, F. Minghao, L. Liangyu, Z. Yajing, Y. Bozhi, M. Xin, D. Pengpeng, L. Yan'gai, W. Xiaowen, H. Zhaohui, “Effect of Fe dopant on oxygen vacancy variation and enhanced photocatalysis hydrogen production of LaMnO3 perovskite nanofibers”, Elsevier. Material Science in Semiconductor Processing. Vol. 166, 2023. https://doi.org/10.1016/j.mssp.2023.107697 C. JeongHyun, K. Minjae, Y. Inchan, T. Kyung, H. Chang, W. Hai, J. Ji Chul, “Oxygen vacancy engineering for tuning catalytic activity of LaCoO3 perovskite”, Elsevier. Journal of Rare Earths. In press, Journal Pre-proof, 2023. https://doi.org/10.1016/j.jre.2023.01.002 Y. Li-Hui, L. Ze-Qin, L. Man-Ting, Y. Wen-Jian, P. Jian-Xin, L. Wei, Y. Cao, W. Yan-Juan, W. Guang-Zhao, L. Si-Hao, “Engineering oxygen vacancies in perovskite oxides by in-situ electrochemical activation for highly efficient nitrate reduction”, Elsevier. Applied Surface Science. Vol. 639, 2023. https://doi.org/10.1016/j.apsusc.2023.158208 L. Jing, Y. Fan, D. Yunzhu, J. Min, C. Xiyang, H. Qiaodan, Z. Junliang, “The critical role of A, B-site cations and oxygen vacancies on the OER electrocatalytic performances of Bi0.15Sr0.85Co1−xFexO3−δ (0.2 ≤ x ≤ 1) perovskites in alkaline media”, Elsevier. Chemical Engineering Journal, Vol. 451., Part 2, 2023. https://doi.org/10.1016/j.cej.2022.138646 I. Szafraniak, M. Połomska, B. Hilczer, A. Pietraszko, and L. Kepiński, “Characterization of BiFeO3 nanopowder obtained by mechanochemical synthesis”, J Eur Ceram Soc, vol. 27, No. 13–15, pp. 4399–4402, Jan. 2007, doi: https://doi.org/10.1016/J.JEURCERAMSOC.2007.02.163. P. Uniyal and K. L. Yadav, “Observation of the room temperature magnetoelectric effect in Dy doped BiFeO3,” Journal of Physics: Condensed Matter, vol. 21, no. 1, p. 012205, Dec. 2008, doi: https://doi.org/10.1088/0953-8984/21/1/012205. Y. Wang, Z. Guo, Q. Jia, J. Dong, J. Zhang, and D. Chen, “Effect of Nd/Mn substitution on the structure and magnetic properties of nano-BiFeO3,” J Alloys Compd, vol. 786, pp. 385–393, May 2019, doi: https://doi.org/10.1016/J.JALLCOM.2019.01.369 X. Song, S. Du, X. Xing, B. Dong, Z. Feng, and F. Cheng, “Flux-assisted synthesis of tungsten-doped layered perovskite oxychloride with promoted visible-light-responsive O2 evolution performance,” Chem. Commun., p., 2023, doi: https://doi.org/10.1039/D2CC05806E D. Sando, A. Barthélémy, and M. Bibes, “BiFeO3 epitaxial thin films and devices: past, present and future,” Journal of Physics: Condensed Matter, vol. 26, no. 47, p. 473201, Oct. 2014, doi: https://doi.org/10.1088/0953-8984/26/47/473201. D. Carranza-Celis et al., “Control of Multiferroic properties in BiFeO3 nanoparticles,” Scientific Reports 2019 9:1, vol. 9, no. 1, pp. 1–9, Feb. 2019, doi: https://doi.org/10.1038/s41598-019-39517-3. D. Sando, C. Carretero, M. N. Grisolia, A. Barthélémy, V. Nagarajan, and M. Bibes, “Revisiting the Optical Band Gap in Epitaxial BiFeO3 Thin Films,” Adv Opt Mater, vol. 6, no. 2, p. 1700836, 2018, doi: https://doi.org/10.1002/adom.201700836. P. Lopez-Varo et al., “Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion,” Physics Reports, vol. 653. Elsevier B.V., pp. 1–40, Oct. 07, 2016. doi: https://doi.org/10.1016/j.physrep.2016.07.006. A. A. Amirov et al., “Specific features of the thermal, magnetic, and dielectric properties of multiferroics BiFeO3 and Bi0.95La0.05FeO3,” Physics of the Solid State, vol. 51, no. 6, pp. 1189–1192, Jun. 2009, doi: https://doi.org/10.1134/S1063783409060183. B. Kundys, M. Viret, C. Meny, V. da Costa, D. Colson, and B. Doudin, “Wavelength dependence of photoinduced deformation in BiFeO3,” Phys Rev B Condens Matter Mater Phys, vol. 85, no. 9, p. 092301, Mar. 2012, doi: https://doi.org/10.1103/PhysRevB.85.092301. A. Serovaiskii et al., “Synthesis of Perovskite-Type BiScO3 Ceramics and their Dielectric and Infrared Characterization,” J Phys Chem Lett, vol. 13, no. 43, pp. 10114–10119, Nov. 2022, doi: https://doi.org/10.1021/acs.jpclett.2c02898. M. A. Jalaja and S. Dutta, “Switchable photovoltaic properties of multiferroic KBiFe2O5,” Mater Res Bull, vol. 88, pp. 9–13, Apr. 2017, doi: https://doi.org/10.1016/j.materresbull.2016.12.008. M. Zhang, Z. Wang, S. Lin, Y. Wang, and Y. Pan, “Investigation on a new multiferroic compound KBiFe2O5: Structural, optical, electrical and magnetic properties,” J Alloys Compd, vol. 699, pp. 561–566, 2017, doi: https://doi.org/10.1016/j.jallcom.2017.01.041. R. Taylor and P. A. Wood, “A Million Crystal Structures: The Whole Is Greater than the Sum of Its Parts,” Chem Rev, vol. 119, no. 16, pp. 9427–9477, Aug. 2019, doi: https://doi.org/10.1021/acs.chemrev.9b00155. N. A. Sahara and B. Kurniawan, “The effect of partial substitution of monovalent ion on divalent ion of La0.8Ca0.2-xAgxMnO3 (x=0 and x=0.05) compounds in structure, morphology, and purity by sol-gel method,” IOP Conf Ser Mater Sci Eng, vol. 496, no. 1, p. 012004, Mar. 2019, doi: https://doi.org/10.1088/1757-899X/496/1/012004. F. Majid, S. T. Mirza, S. Riaz, and S. Naseem, “Sol-Gel Synthesis of BiFeO3 Nanoparticles,” Mater Today Proc, vol. 2, no. 10, pp. 5293–5297, Jan. 2015, doi: https://doi.org/10.1016/J.MATPR.2015.11.038. R. Y. Zheng, J. Wang, and S. Ramakrishna, “Electrical and magnetic properties of multiferroic BiFeO3/CoFe2O4 heterostructure,” J Appl Phys, vol. 104, no. 3, 2008, doi: https://doi.org/10.1063/1.2966696. Z. Cheng, X. Wang, S. Dou, H. Kimura, and K. Ozawa, “Improved ferroelectric properties in multiferroic BiFeO3 thin films through La and Nb codoping,” Phys Rev B Condens Matter Mater Phys, vol. 77, no. 9, p. 092101, Mar. 2008, doi: https://doi.org/10.1103/PhysRevB.77.092101. G. Catalan and J. F. Scott, “Physics and Applications of Bismuth Ferrite,” Advanced Materials, vol. 21, no. 24, pp. 2463–2485, Jun. 2009, doi: https://doi.org/10.1002/ADMA.200802849. E. A. V. Ferri, I. A. Santos, E. Radovanovic, R. Bonzanini, and E. M. Girotto, “Chemical characterization of BiFeO3 obtained by Pechini method,” J Braz Chem Soc, vol. 19, no. 6, pp. 1153–1157, 2008, doi: https://doi.org/10.1590/S0103-50532008000600015 A. V. Rane, K. Kanny, V. K. Abitha, and S. Thomas, “Chapter 5 - Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites,” in Synthesis of Inorganic Nanomaterials, S. Mohan Bhagyaraj, O. S. Oluwafemi, N. Kalarikkal, and S. Thomas, Eds., in Micro and Nano Technologies. Woodhead Publishing, 2018, pp. 121–139. doi: https://doi.org/10.1016/B978-0-08-101975-7.00005-1. R. I. Walton, “Perovskite Oxides Prepared by Hydrothermal and Solvothermal Synthesis: A Review of Crystallisation, Chemistry, and Compositions,” Chemistry – A European Journal, vol. 26, no. 42, pp. 9041–9069, 2020, doi: https://doi.org/10.1002/chem.202000707. D. P. Dutta, O. D. Jayakumar, A. K. Tyagi, K. G. Girija, C. G. S. Pillai, and G. Sharma, “Effect of doping on the morphology and multiferroic properties of BiFeO3 nanorods,” Nanoscale, vol. 2, no. 7, pp. 1149–1154, Jul. 2010, doi: https://doi.org/10.1039/C0NR00100G. N. Das, R. Majumdar, A. Sen, and H. S. Maiti, “Nanosized bismuth ferrite powder prepared through sonochemical and microemulsion techniques,” Mater Lett, vol. 61, no. 10, pp. 2100–2104, Apr. 2007, doi: https://doi.org/10.1016/J.MATLET.2006.08.026. N. Das, R. Majumdar, A. Sen, and H. S. Maiti, “Nanosized bismuth ferrite powder prepared through sonochemical and microemulsion techniques,” Mater Lett, vol. 61, no. 10, pp. 2100–2104, Apr. 2007, doi: https://doi.org/10.1016/J.MATLET.2006.08.026. A. Moure, J. Tartaj, and C. Moure, “Processing and characterization of Sr doped BiFeO3 multiferroic materials by high energetic milling,” J Alloys Compd, vol. 509, no. 25, pp. 7042–7046, Jun. 2011, doi: https://doi.org/10.1016/J.JALLCOM.2011.03.132. A. A. Cristóbal and P. M. Botta, “Mechanochemically assisted synthesis of nanocrystalline BiFeO3,” Mater Chem Phys, vol. 139, no. 2–3, pp. 931–935, May 2013, doi: https://doi.org/10.1016/J.MATCHEMPHYS.2013.02.058. T. J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, “Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles.,” Nano Lett, vol. 7, no. 3, pp. 766–772, Mar. 2007, doi: https://doi.org/10.1021/NL063039W. F. Sun, D. Chen, X. Gao, and J. M. Liu, “Emergent strain engineering of multiferroic BiFeO3 thin films,” Journal of Materiomics, vol. 7, no. 2, pp. 281–294, Mar. 2021, doi: https://doi.org/10.1016/J.JMAT.2020.08.005. J. S. Wang et al., “Evolution of structural distortion in BiFeO3 thin films probed by second-harmonic generation,” Scientific Reports 2016 6:1, vol. 6, no. 1, pp. 1–9, Dec. 2016, doi: https://doi.org/10.1038/srep38268. Y. Yang, I. C. Infante, B. Dkhil, and L. Bellaiche, “Strain effects on multiferroic BiFeO3 films,” C R Phys, vol. 16, no. 2, pp. 193–203, Mar. 2015, doi: https://doi.org/10.1016/J.CRHY.2015.01.010. C. Zhang, H. Yan, X. Wang, Z. Wang, H. Li, and L. Li, “Structural, electrical and magnetic properties of YFe0.9Mn0.1O3 ceramics,” Ceram Int, vol. 43, no. 18, pp. 17216–17219, Dec. 2017, doi: https://doi.org/10.1016/J.CERAMINT.2017.09.021. S. Zhang, W. Luo, D. Wang, and Y. Ma, “Phase evolution and magnetic property of Bi1−xDyxFeO3 ceramics,” Mater Lett, vol. 63, no. 21, pp. 1820–1822, Aug. 2009, doi: https://doi.org/10.1016/J.MATLET.2009.05.056. M. Peiteado, M.A. de la Rubia, M.J. Velasco, F.J. Valle, A.C. Caballero, “Bi2O3 vaporization from ZnO-based varistors”, Journal of the European Ceramic Society. Vol. 25, Issue 9, June 2005, Pages 1675-1680. https://doi.org/10.1016/j.jeurceramsoc.2004.06.006 Y. Astuti, S. Nurhayati; Arnelli, “Effect of calcination temperature on the morphology and photocatalytic activity of Bismuth oxide”. AIP Conference proceedings, Vol. 2553. Issue 1, November 2022. https://doi.org/10.1063/5.0104124 G. Tammann , “Die Temperatur des Beginns innerer Diffusion in Kristallen”. Wiley Online Library. https://doi.org/10.1002/zaac.19261570123 O. Amiri, M. Reza Mozdianfar, M. Vahid, M. Salavati-Niasari, and S. Gholamrezaei, “Synthesis and Characterization of BiFeO3 Ceramic by Simple and Novel Methods,” vol. 35, no. 6, pp. 551–557, 2016, doi: https://doi.org/10.1515/htmp-2015-0045 T. Degen, M. Sadki, E. Bron, U. König, and G. Nénert, “The High Score suite; Powder diffraction; Volume 29.” pp. S13–S18, Dec. 2014, doi: https://doi.org/10.1017/S0885715614000840. R. T. Downs and M. Hall-Wallace, “The American Mineralogist Crystal Structure Database,” American Mineralogist, vol. 88, pp. 247–250, 2003, link The American Mineralogist crystal structure database | American Mineralogist | GeoScienceWorld. S. Gražulis, A. Merkys, A. Vaitkus, and M. Okulič-Kazarinas, “Computing stoichiometric molecular composition from crystal structures,” J Appl Crystallogr, vol. 48, no. 1, pp. 85–91, Feb. 2015, doi: https://doi.org/10.1107/S1600576714025904. J. R. Deschamps and J. L. Flippen-Anderson, “Crystallography,” R. A. B. T.-E. of P. S. and T. (Third E. Meyers, Ed. New York: Academic Press, 2002, pp. 121–153. DOI: 10.1016/B0-12-227410-5/00160-5. J. S. O. Evans and I. R. Evans, “Structure Analysis from Powder Diffraction Data: Rietveld Refinement in Excel,” J Chem Educ, vol. 98, no. 2, pp. 495–505, Feb. 2021, doi: https://doi.org/10.1021/acs.jchemed.0c01016. J. Rodriguez-Carvajal, “FULLPROF: a program for Rietveld refinement and pattern matching analysis,” in satellite meeting on powder diffraction of the XV congress of the IUCr, 1990, vol. 127, link: (PDF) Introduction to the Program FULLPROF: Refinement of Crystal and Magnetic Structures from Powder and Single Crystal Data (researchgate.net), Last access: 13/05/2023. P. Thompson, D. E. Cox, and J. B. Hastings, “Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3,” urn:issn:0021-8898, vol. 20, no. 2, pp. 79–83, Apr. 1987, doi: https://doi.org/10.1107/S0021889887087090. D. Gema, “Preparación y estudio de óxidos metálicos obtenidos por el procedimiento sol-gel para aplicaciones fotovoltaicas”, Universidad Autónoma de Madrid. Madrid, 2002. pp. 28-29. http://hdl.handle.net/10486/673749 Angstrom Engineering, “Magnetron sputtering: description general”, Disponible en: https://angstromengineering.com/tech/magnetron-sputtering/ X. Liu et al., “The current status and future prospects of kesterite solar cells: a brief review”, Prog. Photovoltaics, vol. 24, No. 6, pp. 879–898, 2016. https://doi.org/10.1002/pip.2741 R. G. Weigel, “Luminotecnia sus principios y aplicaciones”, 2a ed. Barcelona [España], Gustavo Gili. S. Almosni et al., “Material challenges for solar cells in the twenty-first century: directions in emerging technologies,” Sci Technol Adv Mater, vol. 19, no. 1, pp. 336–369, Dec. 2018, doi: https://doi.org/10.1080/14686996.2018.1433439. I. Sosnowska et al., “Crystal and Magnetic Structure in Co-Substituted BiFeO3,” Inorg Chem, vol. 52, no. 22, pp. 13269–13277, Nov. 2013, doi: https://doi.org/10.1021/ic402427q. L. W. Finger and R. M. Hazen, “Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars,” J Appl Phys, vol. 51, pp. 5362–5367, 1980, doi: https://doi.org/10.1063/1.327451. S. F. Radaev, L. A. Muradyan, and V. I. Simonov, “Atomic structure and crystal chemistry of sillenites: Bi12(0.503+ 0.503+)O19.50 and Bi12(0.673+ 0.332+)O19.33,” Acta Crystallographica Section B, vol. 47, no. 1, pp. 1–6, Feb. 1991, doi: https://doi.org/10.1107/S0108768190007492. N. Niizeki and M. Wachi, “The crystal structures of Bi2Mn4O10, Bi2Al4O9 and Bi2Fe4O9,” Z Kristallogr Cryst Mater, vol. 127, no. 1–6, pp. 173–187, Dec. 1968, doi: https://doi.org/10.1524/ZKRI.1968.127.16.173. S. E. Ali, “Influence of preparation method on phase formation, structural and magnetic properties of BiFeO3,” J Electroceram, vol. 48, no. 2, pp. 95–101, Apr. 2022, doi: https://doi.org/10.1007/s10832-021-00276-1. S. Parwin and J. Parui, “Time-temperature-transformation of BiFeO3 phase synthesized by citrate–nitrate route and a synergetic effect for its stabilization,” Journal of Chemical Thermodynamics, vol. 156, May 2021, doi: https://doi.org/10.1016/j.jct.2020.106347. T. Rojac, M. Kosec, B. Budic, N. Setter, and D. Damjanovic, “Strong ferroelectric domain-wall pinning in BiFeO3 ceramics,” J Appl Phys, vol. 108, no. 7, p. 074107, Oct. 2010, doi: https://doi.org/10.1063/1.3490249. L. P. Kozeeva, M. Yu. Kameneva, N. v Podberezskaya, A. I. Smolentsev, and V. E. Fedorov, “Preparation and structural characterization of bismuth ferrite crystals of different morphological types,” Inorganic Materials, vol. 47, no. 1, pp. 68–74, 2011, doi: https://doi.org/10.1134/S0020168510121015. R. A. Parra-Huertas, C. O. Calderón-Carvajal, J. A. Gómez-Cuaspud, and E. Vera-López, “Synthesis and characterization of Faujasite-Na from fly ash by the fusion-hydrothermal method,” Boletín de la Sociedad Española de Cerámica y Vidrio, Feb. 2023, doi: https://doi.org/10.1016/J.BSECV.2023.01.004. B. Li, C. Wang, W. Liu, M. Ye, and N. Wang, “Multiferroic properties of La and Mn co-doped BiFeO3 nanofibers by sol–gel and electrospinning technique,” Mater Lett, vol. 90, pp. 45–48, 2013, doi: https://doi.org/10.1016/j.matlet.2012.09.012. B. Li, C. Wang, W. Liu, M. Ye, and N. Wang, “Multiferroic properties of La and Mn co-doped BiFeO3 nanofibers by sol–gel and electrospinning technique,” Mater Lett, vol. 90, pp. 45–48, 2013, doi: https://doi.org/10.1016/j.matlet.2012.09.012. V. Singh, S. Sharma, M. Kumar, and R. K. Dwivedi, “Synthesis and optical properties of Y3+ doped BiFeO3 multiferroics,” in AIP Conference Proceedings, 2013, pp. 1027–1028. doi: https://doi.org/10.1063/1.4810583. S. G. Nair, J. Satapathy, and N. P. Kumar, “Influence of synthesis, dopants, and structure on electrical properties of bismuth ferrite BiFeO3,” Applied Physics A, vol. 126, no. 11, p. 836, 2020, doi: https://doi.org/10.1007/s00339-020-04027-x Zhou et al., “Structure, electrical properties of Bi(Fe, Co)O3–BaTiO3 piezoelectric ceramics with improved Curie temperature,” Physica B Condens Matter, vol. 410, no. 1, pp. 13–16, Feb. 2013, doi: https://doi.org/10.1016/J.PHYSB.2012.11.003. C. P. F. Perdomo, A. V. Suarez, R. F. K. Gunnewiek, and R. H. G. A. Kiminami, “Low temperature synthesis of high purity nanoscaled BiFeO3 by a fast polymer solution method and their ferromagnetic behavior,” J Alloys Compd, vol. 849, p. 156564, Dec. 2020, doi: https://doi.org/10.1016/J.JALLCOM.2020.156564 Y. Li, M. Cao, D. Wang, and J. Yuan, “High-efficiency and dynamic stable electromagnetic wave attenuation for La doped bismuth ferrite at elevated temperature and gigahertz frequency,” RSC Adv, vol. 5, no. 94, pp. 77184–77191, 2015, doi: https://doi.org/10.1039/C5RA15458H. X. Wang et al., “Novel electrical conductivity properties in Ca-doped BiFeO3 nanoparticles,” Journal of Nanoparticle Research, vol. 17, no. 5, p. 209, 2015, doi: 10.1007/s11051-015-3018-1, doi: https://doi.org/10.1007/s11051-015-3018-1 A. A. Qureshi et al., “Incorporation of Zr-doped TiO2 nanoparticles in electron transport layer for efficient planar perovskite solar cells,” Surfaces and Interfaces, vol. 25, Aug. 2021, doi: https://doi.org/10.1016/j.surfin.2021.101299. S. Frangini, L. della Seta, and C. Paoletti, “Preparation and Electrical Properties of Sr-Doped LaFeO3 Thin-Film Conversion Coatings for Solid Oxide Cell Steel Interconnect Applications,” Energies (Basel), vol. 15, no. 2, Jan. 2022, doi: https://doi.org/10.3390/en15020632. A. P. Souri et al., “Metal titanate (ATiO3, a: Ni, Co, Mg, Zn) nanorods for toluene photooxidation under led illumination,” Applied Sciences (Switzerland), vol. 11, no. 22, Nov. 2021, doi: https://doi.org/10.3390/app112210850. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat Methods, vol. 9, no. 7, pp. 671–675, 2012, doi: https://doi.org/10.1038/nmeth.2089 O. Y. Kurapova, A. G. Glukharev, O. v. Glumov, M. Y. Kurapov, E. v. Boltynjuk, and V. G. Konakov, “Structure and electrical properties of YSZ-RGO composites and YSZ ceramics, obtained from composite powder,” Electrochim Acta, vol. 320, Oct. 2019, doi: https://doi.org/10.1016/j.electacta.2019.134573. S. Farhadi and F. Mahmoudi, “Improving the adsorption ability of perovskite-type LaNiO3 nanomaterial towards organic dyes by hybridizing with phosphotungstic acid,” Polyhedron, vol. 169, pp. 39–50, Sep. 2019, doi: https://doi.org/10.1016/j.poly.2019.05.008. R. Kadari, G. Ravi, P. Venkataswamy, R. Velchuri, N. R. Munirathnam, and M. Vithal, “Effect of ion (Ag+, N3−) doping on the photocatalytic activity of the Ruddlesden–Popper-type layered perovskite K2Nd2Ti3O10,” Comptes Rendus Chimie, vol. 22, no. 9–10, pp. 667–677, Sep. 2019, doi: https://doi.org/10.1016/j.crci.2019.10.004 B. Kurniawan et al., “Effect of Temperature and Time of Sintering to Doping Ag on Microstructure of Perovskite Material (La1-xAgx)0.8Ca0.2MnO3,” in Journal of Physics: Conference Series, Institute of Physics Publishing, May 2018. doi: https://doi.org/10.1088/1742-6596/1011/1/012014. T. Kalybekov, K. Rysbekov, D. Nauryzbayeva, A. Toktarov, and Y. Zhakypbek, “Substantiation of averaging the content of mined ores with account of their readiness for mining,” in E3S Web of Conferences, EDP Sciences, Oct. 2020. doi: https://doi.org/10.1051/e3sconf/202020101039. G. Koch, M. Hävecker, P. Kube, A. Tarasov, R. Schlögl, and A. Trunschke, “The Influence of the Chemical Potential on Defects and Function of Perovskites in Catalysis,” Front Chem, vol. 9, Sep. 2021, doi: https://doi.org/10.3389/fchem.2021.746229. F. Gao et al., “Visible-Light Photocatalytic Properties of Weak Magnetic BiFeO3 Nanoparticles,” Advanced Materials, vol. 19, no. 19, pp. 2889–2892, Oct. 2007, doi: https://doi.org/10.1002/ADMA.200602377. M. Mahesh, V. R. Palkar, K. Srinivas, and S. V. Suryanarayana, “Ferroelectricity in a pure BiFeO3 ceramic,” Appl Phys Lett, vol. 76, no. 19, pp. 2764–2766, May 2000, doi: https://doi.org/10.1063/1.126468. C. Kursun, M. Gogebakan, E. Uludag, M. S. Bozgeyik, and F. S. Uludag, “Structural, electrical and magnetic properties of Nd – A – CoO3 (A = Sr, Ca) Perovskite Powders by Mechanical Alloying,” Sci Rep, vol. 8, no. 1, Dec. 2018, doi: https://doi.org/10.1038/s41598-018-31458-7 Q. Duan et al., “Synthesis and characterization of morphology-controllable BiFeO3 particles with efficient photocatalytic activity,” Mater Res Bull, vol. 112, pp. 104–108, 2019, doi: https://doi.org/10.1016/j.materresbull.2018.12.012. A. Galal, H. K. Hassan, N. F. Atta, A. M. Abdel-Mageed, and T. Jacob, “Synthesis, structural and morphological characterizations of nano-Ru-based perovskites/RGO composites,” Sci Rep, vol. 9, no. 1, Dec. 2019, doi: https://doi.org/10.1038/s41598-019-43726-1. M. Irshad et al., “Evaluation of BaZr0.8X0.2 (X= Y, Gd, Sm) proton conducting electrolytes sintered at low temperature for IT-SOFC synthesized by combustion method,” J Alloys Compd, vol. 815, Jan. 2020, doi: https://doi.org/10.1016/j.jallcom.2019.152389. A. Bedon, M. Rieu, J.-P. Viricelle, and A. Glisenti, “Rational Development of IT-SOFC Electrodes Based on the Nanofunctionalisation of La0.6Sr0.4Ga0.3Fe0.7O3 with Oxides. Part 1: Cathodes by Means of Iron Oxide,” ACS Appl. Energy Mater. pp. 6840-6850, 2018, doi: https://doi.org/10.1021/acsaem.8b01124 W. Xu et al., “Effect of Temperature and Time of Sintering to Doping Ag On Microstructure of Perovskite Material (La1-xAgx)0.8Ca0.2MnO3,” J Phys Conf Ser, vol. 1011, no. 1, p. 012014, Apr. 2018, doi: https://doi.org/10.1088/1742-6596/1011/1/012014. E. Abdelkader, L. Nadjia, B. Naceur, and L. Favier-Teodorescu, “Thermal, structural and optical properties of magnetic BiFeO3 micron-particles synthesized by coprecipitation method: heterogeneous photocatalysis study under white LED irradiation,” Cerámica, vol. 68, no. 385, pp. 84–96, 2022, doi: https://doi.org/10.1590/0366-69132022683853181. N. A. Sahara and B. Kurniawan, “The effect of partial substitution of monovalent ion on divalent ion of La0.8Ca0.2-xAgxMnO3 (x=0 and x=0.05) compounds in structure, morphology, and purity by sol-gel method,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Feb. 2019. doi: https://doi.org/10.1088/1757-899X/496/1/012004 M. K. Singh, H. M. Jang, S. Ryu, and M. H. Jo, “Polarized Raman scattering of multiferroic BiFeO3 epitaxial films with rhombohedral R3c symmetry,” Appl Phys Lett, vol. 88, no. 4, p. 042907, Jan. 2006, doi: https://doi.org/10.1063/1.2168038 H. J. Fecht, “Nanostructured Materials: Synthesis by Mechanical Means,” Dekker Encyclopedia of Nanoscience and Nanotechnology, Third Edition, pp. 3280–3289, Mar. 2014, doi: https://doi.org/10.1081/E-ENN3-120009256. R. Haumont, J. Kreisel, P. Bouvier, and F. Hippert, “Phonon anomalies and the ferroelectric phase transition in multiferroic BiFeO3,” Phys Rev B Condens Matter Mater Phys, vol. 73, no. 13, p. 132101, Apr. 2006, doi: https://doi.org/10.1103/PhysRevB.73.132101. H. Zhong et al., “Idealizing Tauc Plot for Accurate Band gap Determination of Semiconductor with Ultraviolet–Visible Spectroscopy: A Case Study for Cubic Boron Arsenide,” J Phys Chem Lett, vol. 14, no. 29, pp. 6702–6708, Jul. 2023, doi: https://doi.org/10.1021/acs.jpclett.3c01416. J. Li and X. Y. Guan, “Structural and optical properties of Ce doped BiFeO3 nanoparticles via sol–gel method,” Micro Nano Lett, vol. 14, no. 13, pp. 1307–1311, Nov. 2019, doi: https://doi.org/10.1049/mnl.2019.0236. C. Hao et al., “Photocatalytic performances of BiFeO3 particles with the average size in nanometer, submicrometer, and micrometer,” Mater Res Bull, vol. 50, pp. 369–373, 2014, doi: https://doi.org/10.1016/j.materresbull.2013.11.039. J. T. Han et al., “Tunable Synthesis of Bismuth Ferrites with Various Morphologies,” Advanced Materials, vol. 18, No. 16, pp. 2145–2148, Aug. 2006, doi: https://doi.org/10.1002/adma.200600072. J. Zhang, Z. Liu, and Z. Liu, “Novel WO3/Sb2S3 Heterojunction Photocatalyst Based on WO3 of Different Morphologies for Enhanced Efficiency in Photoelectrochemical Water Splitting,” ACS Appl Mater Interfaces, vol. 8, No. 15, pp. 9684–9691, Apr. 2016, doi: https://doi.org/10.1021/acsami.6b00429. G. Dong, H. Fan, H. Tian, J. Fang, and Q. Li, “Gas-sensing and electrical properties of perovskite structure p-type barium-substituted bismuth ferrite,” RSC Adv, vol. 5, No. 38, pp. 29618–29623, 2015, doi: https://doi.org/10.1039/C5RA01869B. X. Yuan, L. Shi, J. Zhao, S. Zhou, and J. Guo, “Tunability of magnetization and band gap in mullite-type Bi2Fe4O9 ceramics through non-magnetic ions,” Scr Mater, vol. 146, pp. 55–59, 2018, doi: https://doi.org/10.1016/j.scriptamat.2017.11.016. Y. Wang et al., “Bi2Fe4O9 thin films as novel visible-light-active photoanodes for solar water splitting,” J Mater Chem A Mater, vol. 7, No. 16, pp. 9537–9541, 2019, doi: https://doi.org/10.1039/C8TA09583C. A. Kirsch, M. M. Murshed, M. Schowalter, A. Rosenauer, and T. M. Gesing, “Nanoparticle Precursor into Polycrystalline Bi2Fe4O9: An Evolutionary Investigation of Structural, Morphological, Optical, and Vibrational Properties,” The Journal of Physical Chemistry C, vol. 120, No. 33, pp. 18831–18840, Aug. 2016, doi: https://doi.org/10.1021/acs.jpcc.6b04773. [167] J. Zhu, M. Ye, and A. Han, “Preparation and microwave absorption properties of BiFeO3 and BiFeO3/PANI composites,” Journal of Materials Science: Materials in Electronics, vol. 28, No. 18, pp. 13350–13359, 2017, doi: https://doi.org/10.1007/s10854-017-7172-3. M. Kumar, S. Shankar, Brijmohan, S. Kumar, O. P. Thakur, and A. K. Ghosh, “Impedance spectroscopy and conductivity analysis of multiferroic BFO–BT solid solutions,” Phys Lett A, vol. 381, No. 4, pp. 379–386, 2017, doi: https://doi.org/10.1016/j.physleta.2016.11.009. A. De Jesús Bautista-Morantes, C. Ordulio Calderón-Carvajal, J. Alberto Gómez-Cuaspud, and E. Vera-López, “Synthesis of Na0.02Bi0.98FeO3-δ through the standardized preparation of BiFeO3,” SSRN, pp. 1–19, Jul. 2023, doi: http://dx.doi.org/10.2139/ssrn.4503740 S. Gates-Rector and T. Blanton, “The Powder Diffraction File: a quality materials characterization database,” Powder Diffr, vol. 34, No. 4, pp. 352–360, 2019, doi: DOI: https://doi.org/10.1017/S0885715619000812. N. Niizekin and M. Wachi, “The crystal structures of Bi2Mn4O10, Bi2Al4O9 and Bi2Fe4O9,” Z Kristallogr Cryst Mater, vol. 127, No. 1–6, pp. 173–187, Feb. 1968, doi: https://doi.org/10.1524/zkri.1968.127.16.173. M. Guennou, M. Viret, and J. Kreisel, “Bismuth-based perovskites as multiferroics,” C R Phys, vol. 16, Feb. 2015, doi: https://doi.org/10.1016/j.crhy.2015.01.008 M. Guennou et al., “Multiple high-pressure phase transitions in BiFeO3,” Phys Rev B, vol. 84, No. 17, p. 174107, Nov. 2011, doi: https://doi.org/10.1103/PhysRevB.84.174107. I. A. Kornev, S. Lisenkov, R. Haumont, B. Dkhil, and L. Bellaiche, “Finite-Temperature Properties of Multiferroic BiFeO3,” Phys Rev Lett, vol. 99, No. 22, p. 227602, Nov. 2007, doi: https://doi.org/10.1103/PhysRevLett.99.227602 H. Liu et al., “Crystalline Phases and Ferroelectric Properties of Sputtered BiFeO3 Thin Films Cooled in Pure O2 and Mixed Ar/O2 Atmospheres,” J Electron Mater, vol. 51, No. 1, pp. 295–303, 2022, doi: https://doi.org/10.1007/s11664-021-09288-7. P. Kumari et al., “Electronic and Magnetic Properties of Chemical Solution Deposited BiFeO3 Thin Film: a Soft X-ray Magnetic Circular Dichroism Study,” J Supercond Nov Magn, vol. 34, No. 4, pp. 1119–1124, 2021, doi: https://doi.org/10.1007/s10948-021-05840-y. J. H. Park et al., “Analysis of oxygen vacancy in Co-doped ZnO using the electron density distribution obtained using MEM,” Nanoscale Res Lett, vol. 10, No. 1, p. 186, 2015, doi: https://doi.org/10.1186/s11671-015-0887-2. G. Orr, A. Goryachev, and P. Ishai, “Complex dielectric behaviours in BiFeO3/Bi2Fe4O9 ceramics,” Applied Physics A, vol. 128, p. 1095, Nov. 2022, doi: https://doi.org/10.1007/s00339-022-06234-0. R. R. Awasthi and B. Das, “Effect of temperature on physical properties of Bi2Fe4O9 polycrystalline materials,” Journal of the Australian Ceramic Society, vol. 56, No. 1, pp. 243–250, 2020, doi: https://doi.org/10.1007/s41779-019-00381-z. K. Akhtar, S. A. Khan, S. B. Khan, and A. M. Asiri, “Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization,” in Handbook of Materials Characterization, S. K. Sharma, Ed., Cham: Springer International Publishing, 2018, pp. 113–145. doi: https://doi.org/10.1007/978-3-319-92955-2_4. R. Schmitt, “Scanning Electron Microscope,” in CIRP Encyclopedia of Production Engineering, L. Laperriére and G. Reinhart, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 1085–1089. doi: https://doi.org/10.1007/978-3-642-20617-7_6595. Z. S. Duma, T. Sihvonen, J. Havukainen, V. Reinikainen, and S.-P. Reinikainen, “Optimizing energy dispersive X-Ray Spectroscopy (EDS) image fusion to Scanning Electron Microscopy (SEM) images,” Micron, vol. 163, p. 103361, 2022, doi: https://doi.org/10.1016/j.micron.2022.103361. D. Saputro, Utari, and B. Purnama, “XRD and FTIR analysis of bismuth substituted cobalt ferrite synthesized by co-precipitation method,” J Phys Conf Ser, vol. 1153, p. 012057, Feb. 2019, doi: 10.1088/1742-6596/1153/1/012057. R. D. Waldron, “Infrared Spectra of Ferrites,” Physical Review, vol. 99, No. 6, pp. 1727–1735, Sep. 1955, doi: https://doi.org/10.1103/PhysRev.99.1727. U. Venkat and P. Seenuvasakumaran, “Effect of synthesis method in magnetic properties of Bismuth iron oxide: A prevoskite type multiferroic materials,” Today Proc, vol. 47, pp. 1000–1005, 2021, doi: https://doi.org/10.1016/j.matpr.2021.05.460 T. Liu, Y. Xu, and C. Zeng, “Synthesis of Bi2Fe4O9 via PVA sol–gel route,” Materials Science and Engineering: B, vol. 176, No. 7, pp. 535–539, 2011, doi: https://doi.org/10.1016/j.mseb.2011.01.009. J. Zhao, T. Liu, Y. Xu, Y. He, and W. Chen, “Synthesis and characterization of Bi2Fe4O9 powders,” Mater Chem Phys, vol. 128, No. 3, pp. 388–391, 2011, doi: https://doi.org/10.1016/j.matchemphys.2011.03.011. N. Daneshmand, H. Shokrollahi, and S. A. N. H. Lavasani, “Enhanced magnetic and dielectric properties in bismuth ferrite (Bi2−xSrxFe4O9) derived by the reverse chemical co-precipitation method,” Journal of Materials Science: Materials in Electronics, vol. 29, No. 4, pp. 3201–3209, 2018, doi: https://doi.org/10.1007/s10854-017-8255 M. Eledath and M. Chandran, “Raman study of BiFeO3 nanostructures using different excitation wavelengths: Effects of crystallite size on vibrational modes,” Journal of Physics and Chemistry of Solids, vol. 172, p. 111060, 2023, doi: https://doi.org/10.1016/j.jpcs.2022.111060. R. Haumont, J. Kreisel, P. Bouvier, and F. Hippert, “Phonon anomalies and the ferroelectric phase transition in multiferroic BiFeO3,” Phys Rev B, vol. 73, No. 13, p. 132101, Apr. 2006, doi: https://doi.org/10.1103/PhysRevB.73.132101. T. W. Napporn et al., “Chapter 9 - Electrochemical Measurement Methods and Characterization on the Cell Level,” in Fuel Cells and Hydrogen, V. Hacker and S. Mitsushima, Eds., Elsevier, 2018, pp. 175–214. doi: https://doi.org/10.1016/B978-0-12-811459-9.00009-8. S. Mohapatra, B. Sahu, T. Badapanda, M. Pattanaik, S. datta Kaushik, and A. Singh, “Optical, dielectric relaxation and conduction study of Bi2Fe4O9 ceramic,” Journal of Materials Science: Materials in Electronics, vol. 27, Apr. 2016, doi: https://doi.org/10.1007/s10854-015-4203-9. S. Chatterjee, A. Bera, and A. J. Pal, “p–i–n Heterojunctions with BiFeO3 Perovskite Nanoparticles and p- and n-Type Oxides: Photovoltaic Properties,” ACS Appl Mater Interfaces, vol. 6, No. 22, pp. 20479–20486, Nov. 2014, doi: https://doi.org/10.1021/am506066m O. Ceballos-Sanchez et al., “Study of BiFeO3 thin film obtained by a simple chemical method for the heterojunction-type solar cell design,” J Alloys Compd, vol. 832, p. 154923, 2020, doi: https://doi.org/10.1016/j.jallcom.2020.154923. Z. Xie et al., “Photovoltaic, photo-impedance, and photo-capacitance effects of the flexible (111) BiFeO3 film,” Appl Phys Lett, vol. 115, No. 11, p. 112902, Sep. 2019, doi: https://doi.org/10.1063/1.5120484. Z. Fan, K. Yao, and J. Wang, “Photovoltaic effect in an indium-tin-oxide/ZnO/BiFeO3/Pt heterostructure,” Appl Phys Lett, vol. 105, No. 16, p. 162903, Oct. 2014, doi: https://doi.org/10.1063/1.4899146. H. Sattarian, T. Tohidi, and Sh. Rahmatallahpur, “Effect of TEA on characteristics of CdS/PbS thin film solar cells prepared by CBD,” Materials Science-Poland, vol. 34, pp. 540–547, 2016, [Online]. Available: https://api.semanticscholar.org/CorpusID:100354693. A. M. Kumar, I. J. Peter, K. Ramachandran, J. Mayandi, and K. Jayakumar, “Influence of Al-Cu doping on the efficiency of BiFeO3 based perovskite solar cell (PSC),” Mater Today Proc, vol. 35, pp. 62–65, 2021, doi: https://doi.org/10.1016/j.matpr.2019.05.454. M. Khan et al., “Improving the efficiency of dye-sensitized solar cells based on rare-earth metal modified bismuth ferrites,” Sci Rep, vol. 13, No. 1, p. 3123, 2023, doi: https://doi.org/10.1038/s41598-023-30000-8. A. Raj et al., “Comparative analysis of ‘La’ modified BiFeO3-based perovskite solar cell devices for high conversion efficiency,” Ceram Int, vol. 49, no. 1, pp. 1317–1327, 2023, doi: https://doi.org/10.1016/j.ceramint.2022.09.112. H. Renuka et al., “Enhanced photovoltaic response in ferroelectric Ti-doped BFO heterojunction through interface engineering for building integrated applications,” Solar Energy, vol. 225, pp. 863–874, 2021, doi: https://doi.org/10.1016/j.solener.2021.08.002. N. O. Laschuk, E. B. Easton, and O. V. Zenkina, “Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry,” RSC Advances, vol. 11, No. 45. Royal Society of Chemistry, pp. 27925–27936, Aug. 08, 2021. doi: https://doi.org/10.1039/D1RA03785D. |
dc.relation.instname.none.fl_str_mv |
Universidad Pedagógica y Tecnológica de Colombia |
dc.relation.reponame.none.fl_str_mv |
Repositorio Universidad Pedagógica y Tecnológica de Colombia |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.creativecommons.en.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 International http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Pedagógica y Tecnológica de Colombia |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.none.fl_str_mv |
Tunja |
dc.publisher.program.none.fl_str_mv |
Doctorado en Ingeniería y Ciencia de los Materiales |
publisher.none.fl_str_mv |
Universidad Pedagógica y Tecnológica de Colombia |
institution |
Universidad Pedagógica y Tecnológica de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.uptc.edu.co/bitstreams/8e6e4205-2a7f-4d50-8a2c-e33d17410799/download https://repositorio.uptc.edu.co/bitstreams/45731761-dba5-416c-b06c-71a4ce3904b0/download https://repositorio.uptc.edu.co/bitstreams/9c6e80bd-78e9-4e4d-9e87-12c8d618c4f7/download https://repositorio.uptc.edu.co/bitstreams/bc2f62e4-23d4-4cca-b512-9de06541f045/download https://repositorio.uptc.edu.co/bitstreams/ed5cdff0-3120-4344-9699-0bf82748af4a/download https://repositorio.uptc.edu.co/bitstreams/b406fa36-1911-49cc-af03-213d2e94c8ff/download https://repositorio.uptc.edu.co/bitstreams/257d5658-e690-4089-9c6b-801125c78bf3/download |
bitstream.checksum.fl_str_mv |
80fa4e9d6caff9a16c3dd4a46df0690c d59e6882a7636a67f281f8b6f30d0853 4460e5956bc1d1639be9ae6146a50347 6a396e4a58d8787b48ead95a352a31f7 ff4c8ff01d544500ea4bfea43e6108c1 23f3af39e096ab83a64c107de980f24c 90e9e1687887412627f00720e9fac57e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UPTC |
repository.mail.fl_str_mv |
repositorio.uptc@uptc.edu.co |
_version_ |
1828146469010407424 |
spelling |
Vera López, EnriqueGómez Cuaspud, JairoBautista Morantes, Adán de Jesús2024-07-24T20:51:35Z2024-07-24T20:51:35Z2023https://repositorio.uptc.edu.co/handle/001/17194Durante el presente siglo, la investigación en tecnologías para la producción de energía limpia y sostenible ha aumentado, centrándose en el desarrollo de la energía solar fotovoltaica. Esta tecnología, descubierta por Alexandre Edmond Becquerel en 1839, ha evolucionado desde las primeras celdas de silicio hacia materiales más eficientes y económicos. En años recientes, la búsqueda de alternativas al silicio ha llevado al uso de materiales como el telurato de cadmio (CdTe), celdas orgánicas (OPC) y películas de cobre, zinc, estaño y azufre (CZTS), aunque estos presentan problemas de toxicidad y disponibilidad. Investigaciones recientes se han enfocado en óxidos mixtos y compuestos como la ferrita de bismuto (BiFeO3 o BFO), que ofrecen mejores propiedades estructurales al ser dopados con cationes alcalinos y alcalinotérreos (Li+, Na+, Ca2+, Sr2+, Ba2+). El dopaje con estos cationes optimiza las propiedades ferroeléctricas y ferromagnéticas del BFO a temperatura ambiente, mejorando también su eficiencia fotovoltaica. La inserción de sodio (Na+) en la estructura de BFO ha mostrado ser favorable, produciendo materiales con propiedades ópticas mejoradas y la capacidad de generar excitones bajo irradiación, lo que los hace adecuados para celdas solares de película delgada. Este estudio se centró en la síntesis y caracterización de perovskitas tipo NaxBi(1-x)FeO(3-δ), variando las concentraciones de Na y Bi. Los resultados demostraron mejoras significativas en las propiedades ferromagnéticas, ferroeléctricas y fotovoltaicas de los materiales dopados con Na, haciéndolos una excelente opción para la fabricación de celdas solares debido a su facilidad de síntesis, propiedades fotoeléctricas y costo reducido.Bibliografía y webgrafía: páginas 97-113.application/pdfapplication/pdfUniversidad Pedagógica y Tecnológica de ColombiaFacultad de IngenieríaTunjaDoctorado en Ingeniería y Ciencia de los Materialeshttp://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Estudio de perovskitas tipo NaxBi(1-x)FeO(3-δ) (x = 0.00; 0.02; 0.04; 0.06; 0.08 y 0.10) para aplicaciones fotovoltaicashttp://purl.org/redcol/resource_type/TMPDhttp://purl.org/coar/resource_type/c_db06http://purl.org/redcol/resource_type/TDhttp://purl.org/coar/version/c_970fb48d4fbd8a85J. Gebhardt and A. M. Rappe, “Doping of BiFeO3: A comprehensive study on substitutional doping,” Phys Rev B, vol. 98, No. 12, p. 125202, Sep. 2018, doi: https://doi.org/10.1103/PhysRevB.98.125202.A. K. Selva K, Y. Zhang, D. Li, R. G. Compton, “A mini-review: How reliable is the drop casting technique?”, Electrochemistry communications, vol. 121, Dec. 2020. https://doi.org/10.1016/j.elecom.2020.106867R. A. Parra-Huertas, C. O. Calderón-Carvajal, J. A. Gómez-Cuaspud, and E. Vera-López, “Synthesis and characterization of Faujasite-Na from fly ash by the fusion-hydrothermal method,” Boletín de la Sociedad Española de Cerámica y Vidrio, Feb. 2023, doi: https://doi.org/10.1016/J.BSECV.2023.01.004.N. O. Laschuk, E. B. Easton, and O. V. Zenkina, “Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry,” RSC Advances, vol. 11, No. 45. Royal Society of Chemistry, pp. 27925–27936, Aug. 08, 2021. doi: https://doi.org/10.1039/D1RA03785D.M. Green, A. Ho-Baillie & H. Snaith, “The emergence of perovskite solar cells”, Nature Photon 8, 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134A. Haruna, I. Abdulkadir, and S. O. Idris, “Photocatalytic activity and doping effects of BiFeO3 nanoparticles in model organic dyes,” Heliyon, vol. 6, No. 1. Elsevier Ltd, Jan. 01, 2020. doi: https://doi.org/10.1016/j.heliyon.2020.e03237S. Ameer, K. Jindal, M. Tomar, P. K. Jha, and V. Gupta, “Effect of Li doping on the electronic and magnetic properties of BiFeO3 by first principles,” Integrated Ferroelectrics, vol. 193, No. 1, pp. 123–128, Oct. 2018, doi: https://doi.org/10.1080/10584587.2018.1514875P. Tang, M. Cao, J. Yu, L. Wang, and D. Zhang, “Influence of Ba–Cr substitution on structural, optical and magnetic properties of nanocrystalline BiFeO3,” Journal of Materials Science: Materials in Electronics, vol. 32, No. 8, pp. 11028–11042, 2021, doi: https://doi.org/10.1007/s10854-021-05762-4.S. Si, H. Deng, T. Wang, P. Yang, and J. Chu, “Structural phase transition, optical bandgap, interband electronic transition, and improved magnetism in bivalent Ca-, Sr-, Pb-, and Ba-doped BiFeO3 ceramics,” Journal of Materials Science: Materials in Electronics, vol. 31, No. 11, pp. 8464–8471, 2020, doi: https://doi.org/10.1007/s10854-020-03381-z.A. Ghosh, D. P. Trujillo, H. Choi, S. M. Nakhmanson, S. P. Alpay, and J.-X. Zhu, “Electronic and Magnetic Properties of Lanthanum and Strontium Doped Bismuth Ferrite: A First-Principles Study,” Sci Rep, vol. 9, no. 1, p. 194, 2019, doi: https://doi.org/10.1038/s41598-018-37339-3.H. Zhang et al., “Novel behaviors of multiferroic properties in Na-Doped BiFeO3 nanoparticles,” Nanoscale, vol. 6, no. 18, pp. 10831–10838, 2014, doi: https://doi.org/10.1039/C4NR02557A.W. Mao et al., “Effect of Ca doping on photovoltaic effect of BiFeO3,” Applied Physics A, vol. 127, no. 7, p. 508, 2021, doi: https://doi.org/10.1007/s00339-021-04651-1.C. Shetty, V. Veena Devi Shastrimath, and R. Bairy, “Tuning the structural, morphological and optical properties of Sr-doped BFO thin films,” Phase Transitions, vol. 95, No. 3, pp. 202–211, Mar. 2022, doi: https://doi.org/10.1080/01411594.2022.2032056.Y. Zhang et al., “Enhanced photocatalytic activity of Ba doped BiFeO3 by turning morphologies and band gap,” Journal of Materials Science: Materials in Electronics, vol. 31, No. 18, pp. 15007–15012, 2020, doi: https://doi.org/10.1007/s10854-020-04064-5E. Taryana, B. Soegijono, H. Notonegoro, and D. Mada, “The Influence of Li-doping on the Microwave Absorption Properties of BiFeO3 Nanoparticles,” e-Journal of Surface Science and Nanotechnology, vol. 19, pp. 55–60, May 2021, doi: https://doi.org/10.1380/ejssnt.2021.55.Q. Luo, “8 - Applications in photovoltaics” in Solution Processed Metal Oxide Thin Films for Electronic Applications, Z. Cui and G. Korotcenkov, Eds., Elsevier, 2020, pp. 109–140. doi: https://doi.org/10.1016/B978-0-12-814930-0.00008-6.F. Gunkel, D. V Christensen, Y. Z. Chen, and N. Pryds, “Oxygen vacancies: The (in)visible friend of oxide electronics,” Appl Phys Lett, vol. 116, No. 12, p. 120505, Mar. 2020, doi: https://doi.org/10.1063/1.5143309.S. Chauhan et al., “Influence of Na substitution on structural, magnetic, optical and photocatalytic properties of bismuth ferrite nanoparticles,” Journal of Materials Science: Materials in Electronics, vol. 31, No. 22, pp. 20191–20209, 2020, doi: https://doi.org/10.1007/s10854-020-04540-y.X. Wu, Z. Wan, J. Qi, and M. Wang, “Ferroelectric photovoltaic properties of perovskite Na0.5Bi0.5FeO3-based solution-processed solar cells”, J Alloys Compd, vol. 750, pp. 959–964, Jun. 2018, doi: https://doi.org/10.1016/j.jallcom.2018.04.076.S. Chauhan, M. Kumar, A. Yousuf, P. Rathi, M. Sahni, and S. Singh, “Effect of Na/Co co-substituted on structural, magnetic, optical and photocatalytic properties of BiFeO3 nanoparticles,” Mater Chem Phys, vol. 263, p. 124402, 2021, doi: https://doi.org/10.1016/j.matchemphys.2021.124402.X. Xu et al., “The abnormal electrical and optical properties in Na and Ni codoped BiFeO3 nanoparticles,” J Appl Phys, vol. 117, No. 17, p. 174106, May 2015, doi: https://doi.org/10.1063/1.4919822.X. Wu, Z. Wan, J. Qi, and M. Wang, “Ferroelectric photovoltaic properties of perovskite Na0.5Bi0.5FeO3-based solution-processed solar cells”, J Alloys Compd, vol. 750, pp. 959–964, Jun. 2018, doi: https://doi.org/10.1016/j.jallcom.2018.04.076.S. Chauhan, M. Kumar, A. Yousuf, P. Rathi, M. Sahni, and S. Singh, “Effect of Na/Co co-substituted on structural, magnetic, optical and photocatalytic properties of BiFeO3 nanoparticles,” Mater Chem Phys, vol. 263, p. 124402, 2021, doi: https://doi.org/10.1016/j.matchemphys.2021.124402.X. Xu et al., “The abnormal electrical and optical properties in Na and Ni codoped BiFeO3 nanoparticles,” J Appl Phys, vol. 117, No. 17, p. 174106, May 2015, doi: https://doi.org/10.1063/1.4919822.S. Chang, C. Chen, X. Jiang, C. Zhao, and J. Chen, “Improved chemical defects, domain structure and electrical properties of BiFeO3–BaTiO3 lead-free ceramics by simultaneous Na/Bi codoping and quenching process,” Ceram Int, vol. 49, no. 10, pp. 16191–16198, 2023, doi: https://doi.org/10.1016/j.ceramint.2023.01.217.S. Sharma, H. A. Reshi, J. M. Siqueiros, and O. Raymond Herrera, “Stability of rhombohedral structure and improved dielectric and ferroelectric properties of Ba, Na, Ti doped BiFeO3 solid solutions,” Ceram Int, vol. 48, no. 2, pp. 1805–1813, 2022, doi: https://doi.org/10.1016/j.ceramint.2021.09.261National Renewable Energy Laboratory – NREL, “Standard solar spectra”. Disponible en: https://www.nrel.gov/grid/solar-resource/spectra-am1.5.htmlN. Kannan and D. Vakeesan, “Solar energy for future world: - A review,” Renewable and Sustainable Energy Reviews, vol. 62. pp. 1092–1105, 2016. https://doi.org/10.1016/j.rser.2016.05.022C. E. Marín, “La Energía Solar Fotovoltaica en España”, Ninbus, vol. 13–14, pp. 5–31, 2004, doi: 10.12795/rea.2020.i39.04D. Barberá, “Introducción a la Energía Fotovoltaica”, Cap. 2, pp. 1-2. Disponible en: https://biblus.us.es/bibing/proyectos/abreproy/70271/fichero/02+INTRODUCCI%C3%93N+A+LA+ENERG%C3%8DA+FOTOVOLTAICA%252FIntroducci%C3%B3n+a+la+Energ%C3%ADa+Fotovoltaica.pdfD. C. Sinde, “Espectroscopía de impedancias aplicada a dispositivos semiconductores”, Universitat Politécnica de Catalunya, Escola Técnica Superior d'Enginyeria de Telecomunicació de Barcelona, Departament d'Enginyeria Electrónica, 2016. Disponible en: https://upcommons.upc.edu/bitstream/handle/2117/91487/Espectroscopia+de+impedancias+aplicada+a+dispositivos+semiconductores.pdf?sequence=1S. W. Glunz, “High Efficiency crystalline silicon cells”, Advances in optoelectronics. http://dx.doi.org/10.1155/2007/97370, 2007M. A. Green, K. Emery, Y. Hishikawa, W. Warta y E. D. Dunlop, “Solar cell efficiency tables (version 45)“, Prog. Photovolt.: Res. Appl. https://doi.org/10.1002/pip.2573S. Ahmadi, S. Mirershadi and A. Nikniaz, “Inorganic–Organic Perovskite Solar Cells”. http://dx.doi.org/10.5772/58970A. Chilvery, S. Das, P. Guggilla, C. Brantley and A. Sunda-Meya, “A perspective on the recent progress in solution-processed methods for highly efficient perovskite solar cells”. http://dx.doi.org/10.1080/14686996.2016.1226120S. W. Glunz, A. Batra, B. Yang, et a, “Perovskites: transforming photovoltaics, a mini-review”, J. Photonics Energy, 2015, 5:1–14. https://doi.org/10.1117/1.JPE.5.057402M. Valdes, M. Modibedi, M. Mathe, T. Hillie, and M. Vazquez, “Electrodeposited Cu2ZnSnS4 thin films”, Electrochem. Acta, vol. 128, pp. 393–399, 2014. https://doi.org/10.1016/j.electacta.2013.10.206Y. N. Xia., P. D. Yang., Y. G. Sun., Y. Y. Wu., B. Mayers., B. Gates., Y. D. Yin., F. Kim., H. Q. Yan, “Onedimensional nanostructures: synthesis, characterization, and applications”, Adv Mater, 15: 353389, (2003). http://dx.doi.org/10.1002/adma.200390087A. Luque, S. Hegedus, “Handbook of Photovoltaic Science.”, Instituto de Energía Solar, Universidad Politécnica de Madrid, Spain, Institute of Energy Conversion, University of Delaware, USA, Ed. Wiley & Sons Ltd., England, 2003, p. 569-592. Disponible en: https://onlinelibrary.wiley.com/doi/book/10.1002/0470014008J. Hedstrom et al., “Proc. 23rd IEEE Photovoltaic Specialist Conf”, pp. 364–371 (1993). https://doi.org/10.1016/0169-4332(95)00303-7X. Feng and T.B. Metzger, “A Glass Durability Model Based on Understanding Glass Chemistry and Structural Configurations of the Glass Constituents”. https://doi.org/10.1557/PROC-432-27A. Hamda, Al-Thani, S. H. Falah, M. Young, S. Asher, J. Alleman, M. Al-Jassim, and D. Williamson, “The Effect of Mo Back Contact on Na Out-Diffusion and device performance of Mo/Cu(In, Ga)Se2/CdS/ZnO Solar Cells”, National Renewable Energy Laboratory, Golden, CO 80401, USA, doi: 10.1109/PVSC.2002.1190666J. H. Scofield, A. Duda, D. Albin, B.L. Ballard, P.K. Predecki, “Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells”. https://doi.org/10.1016/0040-6090(94)06462-8Photovoltaic Solar Cells. G2V Optics Inc. Disponible en: https://g2voptics.com/A. Kumar, M. Shkir, H.H. Somaily, K.L. Singh, B.C. Choudhary, S. K. Tripathi, “A simple, low-cost modified drop-casting method to develop high-quality CH3NH3PbI3 perovskite thin films”, Physica B: Physics of Condensed Matter, Vol. 630, Apr. 2022. https://doi.org/10.1016/j.physb.2022.413678L. Smart,E. Moore, “Solid State Chemistry. An Introduction”, Ed. Taylor & Francis Group. Third Edition, 2005, pp. 52. https://doi.org/10.1201/b12396A. M. Glazer, R. H. Mitchell, “Perovskites modern and ancient”, Thunder Bay, Ontario: Almaz Press, Acta Crystallogr B, vol. 58, no. 6, pp. 1075–1075, 2002, doi: https://doi.org/10.1107/S0108768102020220.M. Čebela et al., “BiFeO3 perovskites: A multidisciplinary approach to multiferroics”, Ceram Int, vol. 43, No. 1, pp. 1256–1264, Jan. 2017, doi: https://doi.org/10.1016/J.CERAMINT.2016.10.074.P. Ghadage et al., “Pd loaded bismuth ferrite: A versatile perovskite for dual applications as acetone gas sensor and photocatalytic dye degradation of malachite green”, Ceram Int, vol. 49, No. 4, pp. 5738–5747, Feb. 2023, doi: https://doi.org/10.1016/j.ceramint.2022.10.153.A. Tuluk, T. Mahon, S. Van der Zwaag, and P. Groen, “Estimating the true piezoelectric properties of BiFeO3 from measurements on BiFeO3-PVDF terpolymer composites,” J Alloys Compd, vol. 868, p. 159186, Jul. 2021, doi: https://doi.org/10.1016/J.JALLCOM.2021.159186L. Zhao et al., “Current rectifying and resistive switching in high density BiFeO3 nanocapacitor arrays on Nb-SrTiO3 substrates”, Scientific Reports 2015 5:1, vol. 5, No. 1, pp. 1–6, Apr. 2015, doi: https://doi.org/10.1038/srep09680.K. F. Wang, J. M. Liu, and Z. F. Ren, “Multiferroicity: the coupling between magnetic and polarization orders,” Adv. Phys., vol. 58, no. 4, pp. 321–448, Jul. 2009, doi: https://doi.org/10.1080/00018730902920554.L. F. Zhu, X. W. Lei, L. Zhao, M. I. Hussain, G. Z. Zhao, and B. P. Zhang, “Phase structure and energy storage performance for BiFeO3–BaTiO3 based lead-free ferroelectric ceramics”, Ceram Int, vol. 45, No. 16, pp. 20266–20275, Nov. 2019, doi: https://doi.org/10.1016/J.CERAMINT.2019.06.300.R. Montecillo, C. S. Chen, Y. T. Lee, P. Y. Chen, and C. S. Tu, “Optimized electric-energy storage in BiFeO3–BaTiO3 ceramics via tailoring microstructure and nanocluster”, J. Eur Ceram Soc, vol. 43, No. 5, pp. 1941–1951, May 2023, doi: https://doi.org/10.1016/j.jeurceramsoc.2022.12.064.B. Deka, K. H. Cho, S. Tingry, and Z. Tang, “BiFeO3-Based Relaxor Ferroelectrics for Energy Storage: Progress and Prospects”, Materials 2021, Vol. 14, Page 7188, vol. 14, No. 23, p. 7188, Nov. 2021, doi: https://doi.org/10.3390/MA14237188.Y. Zhao et al., “Ultra-low power consumption and favorable reliability Mn-doped BiFeO3 resistance-switching devices via tunable oxygen vacancy”, Ceram Int, vol. 49, No. 6, pp. 9090–9096, Mar. 2023, doi: https://doi.org/10.1016/j.ceramint.2022.11.066.N. Li, B. Zhang, Y. He, and Y. Luo, “Sub-Picosecond Nanodiodes for Low-Power Ultrafast Electronics”, Advanced Materials, vol. 33, No. 33, p. 2100874, Aug. 2021, doi: https://doi.org/10.1002/ADMA.202100874.A. Wold, O. Muller and R. Roy, “Nonmetallic Crystals: The Major Ternary Structural Families”, Springer-Verlag, New York, 1974, 488 pp., illus. Crystal Chemistry of Non-Metallic Materials, vol. 4.,” Science (1979), vol. 188, No. 4184, pp. 143–143, Apr. 1975, https://doi.org/10.1126/science.188.4184.143.a.F. Pedro, F. Sánchez, A. M. Bolarín, C. A. Cortés, and A. Barba, “Propiedades magnéticas de BiFeO3 obtenido por mecanosíntesis”. Tópicos de Investigación en Ciencias de la Tierra y Materiales, vol. 3, pp. 176–183, Sep. 2016, doi: https://doi.org/10.29057/aactm.v3i3.9628.F. Pedro, A. M. Bolarín, F. Sánchez, C. A. Cortés, Z. Valdez, and G. Torres, “Stabilization of α-BiFeO3 structure by Sr2+ and its effect on multiferroic properties”, Ceram Int, vol. 44, No. 7, pp. 8087–8093, May 2018, doi: https://doi.org/10.1016/J.CERAMINT.2018.01.251.G. Dhir, P. Uniyal, and N. K. Verma, “Tactics of particle size for enhanced multiferroic properties in nanoscale Ca-doped BiFeO3”, Physica Status Solidi (C) Current Topics in Solid State Physics, vol. 14, No. 5, May 2017, doi: https://doi.org/10.1002/PSSC.201600253.J. S. Wang et al., “Evolution of structural distortion in BiFeO3 thin films probed by second-harmonic generation”, Sci Rep, vol. 6, Dec. 2016, doi: https://doi.org/10.1038/SREP38268.S. Almosni et al., “Material challenges for solar cells in the twenty-first century: directions in emerging technologies,” Sci Technol Adv Mater, vol. 19, No. 1, pp. 336–369, Dec. 2018, doi: https://doi.org/10.1080/14686996.2018.1433439.M.C. Blanco, V.C. Fuertes, R.E. Carbonio. Hablemos de perovskitas. Bitácora digital / Facultad de Ciencias Químicas (UNC). http://hdl.handle.net/11336/51128D.G. Franco, V.C. Fuertes, M. C. Blanco, M.T. Fernández, R.D. Sánchez, R.E. Carbonio, “Synthesis, structure and magnetic properties of La3Co2SbO9: A double perovskite with competing antiferromagnetic and ferromagnetic interactions”, J. Solid State Chem. (2012) 194, 385–391. https://doi.org/10.1016/j.jssc.2012.05.045M.C. Blanco, S.A. Paz, V.M. Nassif, J.J. Guimpel, R.E. Carbonio, “Synthesis and characterization of the new two dimensional Heisenberg antiferromagnetic double perovskite BaLaCuSbO6”, Dalton Trans., (2015). doi: 10.1039/C4DT03880KS. Vasala, M. Karppinen, “A2B’B’’O6 perovskites: A review, Progress in Solid State”, Chemistry (2015) 43, 1-36. https://doi.org/10.1016/j.progsolidstchem.2014.08.001S.W. Cheong, M. Mostovoy, “Multiferroics: a magnetic twist for ferroelectricity”, Nat Mater (2007) 6, 13-20, doi: 10.1038/nmat1804D. Fraga, T. Stoyanova, R. Martí, I. Calvet, E. Barrachina, J.B. Carda, “Effect of alkali doping on CIGS photovoltaic ceramic tiles”. Elsevier. Sol Energy, Vol. 147, 2017, pp. 1-7. https://doi.org/10.1016/j.solener.2017.03.033X. Chongyang, L. Zhihai, L. Eun-Cheol, “Non-equivalent Tl doping for high performance perovskite solar cells: Crystal quality improvement with enhanced p-type character”. Elsevier. Journal of Power Sources, Vol. 479, 2020. https://doi.org/10.1016/j.jpowsour.2020.228818Z. Meiling, F. Minghao, L. Liangyu, Z. Yajing, Y. Bozhi, M. Xin, D. Pengpeng, L. Yan'gai, W. Xiaowen, H. Zhaohui, “Effect of Fe dopant on oxygen vacancy variation and enhanced photocatalysis hydrogen production of LaMnO3 perovskite nanofibers”, Elsevier. Material Science in Semiconductor Processing. Vol. 166, 2023. https://doi.org/10.1016/j.mssp.2023.107697C. JeongHyun, K. Minjae, Y. Inchan, T. Kyung, H. Chang, W. Hai, J. Ji Chul, “Oxygen vacancy engineering for tuning catalytic activity of LaCoO3 perovskite”, Elsevier. Journal of Rare Earths. In press, Journal Pre-proof, 2023. https://doi.org/10.1016/j.jre.2023.01.002Y. Li-Hui, L. Ze-Qin, L. Man-Ting, Y. Wen-Jian, P. Jian-Xin, L. Wei, Y. Cao, W. Yan-Juan, W. Guang-Zhao, L. Si-Hao, “Engineering oxygen vacancies in perovskite oxides by in-situ electrochemical activation for highly efficient nitrate reduction”, Elsevier. Applied Surface Science. Vol. 639, 2023. https://doi.org/10.1016/j.apsusc.2023.158208L. Jing, Y. Fan, D. Yunzhu, J. Min, C. Xiyang, H. Qiaodan, Z. Junliang, “The critical role of A, B-site cations and oxygen vacancies on the OER electrocatalytic performances of Bi0.15Sr0.85Co1−xFexO3−δ (0.2 ≤ x ≤ 1) perovskites in alkaline media”, Elsevier. Chemical Engineering Journal, Vol. 451., Part 2, 2023. https://doi.org/10.1016/j.cej.2022.138646I. Szafraniak, M. Połomska, B. Hilczer, A. Pietraszko, and L. Kepiński, “Characterization of BiFeO3 nanopowder obtained by mechanochemical synthesis”, J Eur Ceram Soc, vol. 27, No. 13–15, pp. 4399–4402, Jan. 2007, doi: https://doi.org/10.1016/J.JEURCERAMSOC.2007.02.163.P. Uniyal and K. L. Yadav, “Observation of the room temperature magnetoelectric effect in Dy doped BiFeO3,” Journal of Physics: Condensed Matter, vol. 21, no. 1, p. 012205, Dec. 2008, doi: https://doi.org/10.1088/0953-8984/21/1/012205.Y. Wang, Z. Guo, Q. Jia, J. Dong, J. Zhang, and D. Chen, “Effect of Nd/Mn substitution on the structure and magnetic properties of nano-BiFeO3,” J Alloys Compd, vol. 786, pp. 385–393, May 2019, doi: https://doi.org/10.1016/J.JALLCOM.2019.01.369X. Song, S. Du, X. Xing, B. Dong, Z. Feng, and F. Cheng, “Flux-assisted synthesis of tungsten-doped layered perovskite oxychloride with promoted visible-light-responsive O2 evolution performance,” Chem. Commun., p., 2023, doi: https://doi.org/10.1039/D2CC05806ED. Sando, A. Barthélémy, and M. Bibes, “BiFeO3 epitaxial thin films and devices: past, present and future,” Journal of Physics: Condensed Matter, vol. 26, no. 47, p. 473201, Oct. 2014, doi: https://doi.org/10.1088/0953-8984/26/47/473201.D. Carranza-Celis et al., “Control of Multiferroic properties in BiFeO3 nanoparticles,” Scientific Reports 2019 9:1, vol. 9, no. 1, pp. 1–9, Feb. 2019, doi: https://doi.org/10.1038/s41598-019-39517-3.D. Sando, C. Carretero, M. N. Grisolia, A. Barthélémy, V. Nagarajan, and M. Bibes, “Revisiting the Optical Band Gap in Epitaxial BiFeO3 Thin Films,” Adv Opt Mater, vol. 6, no. 2, p. 1700836, 2018, doi: https://doi.org/10.1002/adom.201700836.P. Lopez-Varo et al., “Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion,” Physics Reports, vol. 653. Elsevier B.V., pp. 1–40, Oct. 07, 2016. doi: https://doi.org/10.1016/j.physrep.2016.07.006.A. A. Amirov et al., “Specific features of the thermal, magnetic, and dielectric properties of multiferroics BiFeO3 and Bi0.95La0.05FeO3,” Physics of the Solid State, vol. 51, no. 6, pp. 1189–1192, Jun. 2009, doi: https://doi.org/10.1134/S1063783409060183.B. Kundys, M. Viret, C. Meny, V. da Costa, D. Colson, and B. Doudin, “Wavelength dependence of photoinduced deformation in BiFeO3,” Phys Rev B Condens Matter Mater Phys, vol. 85, no. 9, p. 092301, Mar. 2012, doi: https://doi.org/10.1103/PhysRevB.85.092301.A. Serovaiskii et al., “Synthesis of Perovskite-Type BiScO3 Ceramics and their Dielectric and Infrared Characterization,” J Phys Chem Lett, vol. 13, no. 43, pp. 10114–10119, Nov. 2022, doi: https://doi.org/10.1021/acs.jpclett.2c02898.M. A. Jalaja and S. Dutta, “Switchable photovoltaic properties of multiferroic KBiFe2O5,” Mater Res Bull, vol. 88, pp. 9–13, Apr. 2017, doi: https://doi.org/10.1016/j.materresbull.2016.12.008.M. Zhang, Z. Wang, S. Lin, Y. Wang, and Y. Pan, “Investigation on a new multiferroic compound KBiFe2O5: Structural, optical, electrical and magnetic properties,” J Alloys Compd, vol. 699, pp. 561–566, 2017, doi: https://doi.org/10.1016/j.jallcom.2017.01.041.R. Taylor and P. A. Wood, “A Million Crystal Structures: The Whole Is Greater than the Sum of Its Parts,” Chem Rev, vol. 119, no. 16, pp. 9427–9477, Aug. 2019, doi: https://doi.org/10.1021/acs.chemrev.9b00155.N. A. Sahara and B. Kurniawan, “The effect of partial substitution of monovalent ion on divalent ion of La0.8Ca0.2-xAgxMnO3 (x=0 and x=0.05) compounds in structure, morphology, and purity by sol-gel method,” IOP Conf Ser Mater Sci Eng, vol. 496, no. 1, p. 012004, Mar. 2019, doi: https://doi.org/10.1088/1757-899X/496/1/012004.F. Majid, S. T. Mirza, S. Riaz, and S. Naseem, “Sol-Gel Synthesis of BiFeO3 Nanoparticles,” Mater Today Proc, vol. 2, no. 10, pp. 5293–5297, Jan. 2015, doi: https://doi.org/10.1016/J.MATPR.2015.11.038.R. Y. Zheng, J. Wang, and S. Ramakrishna, “Electrical and magnetic properties of multiferroic BiFeO3/CoFe2O4 heterostructure,” J Appl Phys, vol. 104, no. 3, 2008, doi: https://doi.org/10.1063/1.2966696.Z. Cheng, X. Wang, S. Dou, H. Kimura, and K. Ozawa, “Improved ferroelectric properties in multiferroic BiFeO3 thin films through La and Nb codoping,” Phys Rev B Condens Matter Mater Phys, vol. 77, no. 9, p. 092101, Mar. 2008, doi: https://doi.org/10.1103/PhysRevB.77.092101.G. Catalan and J. F. Scott, “Physics and Applications of Bismuth Ferrite,” Advanced Materials, vol. 21, no. 24, pp. 2463–2485, Jun. 2009, doi: https://doi.org/10.1002/ADMA.200802849.E. A. V. Ferri, I. A. Santos, E. Radovanovic, R. Bonzanini, and E. M. Girotto, “Chemical characterization of BiFeO3 obtained by Pechini method,” J Braz Chem Soc, vol. 19, no. 6, pp. 1153–1157, 2008, doi: https://doi.org/10.1590/S0103-50532008000600015A. V. Rane, K. Kanny, V. K. Abitha, and S. Thomas, “Chapter 5 - Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites,” in Synthesis of Inorganic Nanomaterials, S. Mohan Bhagyaraj, O. S. Oluwafemi, N. Kalarikkal, and S. Thomas, Eds., in Micro and Nano Technologies. Woodhead Publishing, 2018, pp. 121–139. doi: https://doi.org/10.1016/B978-0-08-101975-7.00005-1.R. I. Walton, “Perovskite Oxides Prepared by Hydrothermal and Solvothermal Synthesis: A Review of Crystallisation, Chemistry, and Compositions,” Chemistry – A European Journal, vol. 26, no. 42, pp. 9041–9069, 2020, doi: https://doi.org/10.1002/chem.202000707.D. P. Dutta, O. D. Jayakumar, A. K. Tyagi, K. G. Girija, C. G. S. Pillai, and G. Sharma, “Effect of doping on the morphology and multiferroic properties of BiFeO3 nanorods,” Nanoscale, vol. 2, no. 7, pp. 1149–1154, Jul. 2010, doi: https://doi.org/10.1039/C0NR00100G.N. Das, R. Majumdar, A. Sen, and H. S. Maiti, “Nanosized bismuth ferrite powder prepared through sonochemical and microemulsion techniques,” Mater Lett, vol. 61, no. 10, pp. 2100–2104, Apr. 2007, doi: https://doi.org/10.1016/J.MATLET.2006.08.026.N. Das, R. Majumdar, A. Sen, and H. S. Maiti, “Nanosized bismuth ferrite powder prepared through sonochemical and microemulsion techniques,” Mater Lett, vol. 61, no. 10, pp. 2100–2104, Apr. 2007, doi: https://doi.org/10.1016/J.MATLET.2006.08.026.A. Moure, J. Tartaj, and C. Moure, “Processing and characterization of Sr doped BiFeO3 multiferroic materials by high energetic milling,” J Alloys Compd, vol. 509, no. 25, pp. 7042–7046, Jun. 2011, doi: https://doi.org/10.1016/J.JALLCOM.2011.03.132.A. A. Cristóbal and P. M. Botta, “Mechanochemically assisted synthesis of nanocrystalline BiFeO3,” Mater Chem Phys, vol. 139, no. 2–3, pp. 931–935, May 2013, doi: https://doi.org/10.1016/J.MATCHEMPHYS.2013.02.058.T. J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, “Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles.,” Nano Lett, vol. 7, no. 3, pp. 766–772, Mar. 2007, doi: https://doi.org/10.1021/NL063039W.F. Sun, D. Chen, X. Gao, and J. M. Liu, “Emergent strain engineering of multiferroic BiFeO3 thin films,” Journal of Materiomics, vol. 7, no. 2, pp. 281–294, Mar. 2021, doi: https://doi.org/10.1016/J.JMAT.2020.08.005.J. S. Wang et al., “Evolution of structural distortion in BiFeO3 thin films probed by second-harmonic generation,” Scientific Reports 2016 6:1, vol. 6, no. 1, pp. 1–9, Dec. 2016, doi: https://doi.org/10.1038/srep38268.Y. Yang, I. C. Infante, B. Dkhil, and L. Bellaiche, “Strain effects on multiferroic BiFeO3 films,” C R Phys, vol. 16, no. 2, pp. 193–203, Mar. 2015, doi: https://doi.org/10.1016/J.CRHY.2015.01.010.C. Zhang, H. Yan, X. Wang, Z. Wang, H. Li, and L. Li, “Structural, electrical and magnetic properties of YFe0.9Mn0.1O3 ceramics,” Ceram Int, vol. 43, no. 18, pp. 17216–17219, Dec. 2017, doi: https://doi.org/10.1016/J.CERAMINT.2017.09.021.S. Zhang, W. Luo, D. Wang, and Y. Ma, “Phase evolution and magnetic property of Bi1−xDyxFeO3 ceramics,” Mater Lett, vol. 63, no. 21, pp. 1820–1822, Aug. 2009, doi: https://doi.org/10.1016/J.MATLET.2009.05.056.M. Peiteado, M.A. de la Rubia, M.J. Velasco, F.J. Valle, A.C. Caballero, “Bi2O3 vaporization from ZnO-based varistors”, Journal of the European Ceramic Society. Vol. 25, Issue 9, June 2005, Pages 1675-1680. https://doi.org/10.1016/j.jeurceramsoc.2004.06.006Y. Astuti, S. Nurhayati; Arnelli, “Effect of calcination temperature on the morphology and photocatalytic activity of Bismuth oxide”. AIP Conference proceedings, Vol. 2553. Issue 1, November 2022. https://doi.org/10.1063/5.0104124G. Tammann , “Die Temperatur des Beginns innerer Diffusion in Kristallen”. Wiley Online Library. https://doi.org/10.1002/zaac.19261570123O. Amiri, M. Reza Mozdianfar, M. Vahid, M. Salavati-Niasari, and S. Gholamrezaei, “Synthesis and Characterization of BiFeO3 Ceramic by Simple and Novel Methods,” vol. 35, no. 6, pp. 551–557, 2016, doi: https://doi.org/10.1515/htmp-2015-0045T. Degen, M. Sadki, E. Bron, U. König, and G. Nénert, “The High Score suite; Powder diffraction; Volume 29.” pp. S13–S18, Dec. 2014, doi: https://doi.org/10.1017/S0885715614000840.R. T. Downs and M. Hall-Wallace, “The American Mineralogist Crystal Structure Database,” American Mineralogist, vol. 88, pp. 247–250, 2003, link The American Mineralogist crystal structure database | American Mineralogist | GeoScienceWorld.S. Gražulis, A. Merkys, A. Vaitkus, and M. Okulič-Kazarinas, “Computing stoichiometric molecular composition from crystal structures,” J Appl Crystallogr, vol. 48, no. 1, pp. 85–91, Feb. 2015, doi: https://doi.org/10.1107/S1600576714025904.J. R. Deschamps and J. L. Flippen-Anderson, “Crystallography,” R. A. B. T.-E. of P. S. and T. (Third E. Meyers, Ed. New York: Academic Press, 2002, pp. 121–153. DOI: 10.1016/B0-12-227410-5/00160-5.J. S. O. Evans and I. R. Evans, “Structure Analysis from Powder Diffraction Data: Rietveld Refinement in Excel,” J Chem Educ, vol. 98, no. 2, pp. 495–505, Feb. 2021, doi: https://doi.org/10.1021/acs.jchemed.0c01016.J. Rodriguez-Carvajal, “FULLPROF: a program for Rietveld refinement and pattern matching analysis,” in satellite meeting on powder diffraction of the XV congress of the IUCr, 1990, vol. 127, link: (PDF) Introduction to the Program FULLPROF: Refinement of Crystal and Magnetic Structures from Powder and Single Crystal Data (researchgate.net), Last access: 13/05/2023.P. Thompson, D. E. Cox, and J. B. Hastings, “Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3,” urn:issn:0021-8898, vol. 20, no. 2, pp. 79–83, Apr. 1987, doi: https://doi.org/10.1107/S0021889887087090.D. Gema, “Preparación y estudio de óxidos metálicos obtenidos por el procedimiento sol-gel para aplicaciones fotovoltaicas”, Universidad Autónoma de Madrid. Madrid, 2002. pp. 28-29. http://hdl.handle.net/10486/673749Angstrom Engineering, “Magnetron sputtering: description general”, Disponible en: https://angstromengineering.com/tech/magnetron-sputtering/X. Liu et al., “The current status and future prospects of kesterite solar cells: a brief review”, Prog. Photovoltaics, vol. 24, No. 6, pp. 879–898, 2016. https://doi.org/10.1002/pip.2741R. G. Weigel, “Luminotecnia sus principios y aplicaciones”, 2a ed. Barcelona [España], Gustavo Gili.S. Almosni et al., “Material challenges for solar cells in the twenty-first century: directions in emerging technologies,” Sci Technol Adv Mater, vol. 19, no. 1, pp. 336–369, Dec. 2018, doi: https://doi.org/10.1080/14686996.2018.1433439.I. Sosnowska et al., “Crystal and Magnetic Structure in Co-Substituted BiFeO3,” Inorg Chem, vol. 52, no. 22, pp. 13269–13277, Nov. 2013, doi: https://doi.org/10.1021/ic402427q.L. W. Finger and R. M. Hazen, “Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars,” J Appl Phys, vol. 51, pp. 5362–5367, 1980, doi: https://doi.org/10.1063/1.327451.S. F. Radaev, L. A. Muradyan, and V. I. Simonov, “Atomic structure and crystal chemistry of sillenites: Bi12(0.503+ 0.503+)O19.50 and Bi12(0.673+ 0.332+)O19.33,” Acta Crystallographica Section B, vol. 47, no. 1, pp. 1–6, Feb. 1991, doi: https://doi.org/10.1107/S0108768190007492.N. Niizeki and M. Wachi, “The crystal structures of Bi2Mn4O10, Bi2Al4O9 and Bi2Fe4O9,” Z Kristallogr Cryst Mater, vol. 127, no. 1–6, pp. 173–187, Dec. 1968, doi: https://doi.org/10.1524/ZKRI.1968.127.16.173.S. E. Ali, “Influence of preparation method on phase formation, structural and magnetic properties of BiFeO3,” J Electroceram, vol. 48, no. 2, pp. 95–101, Apr. 2022, doi: https://doi.org/10.1007/s10832-021-00276-1.S. Parwin and J. Parui, “Time-temperature-transformation of BiFeO3 phase synthesized by citrate–nitrate route and a synergetic effect for its stabilization,” Journal of Chemical Thermodynamics, vol. 156, May 2021, doi: https://doi.org/10.1016/j.jct.2020.106347.T. Rojac, M. Kosec, B. Budic, N. Setter, and D. Damjanovic, “Strong ferroelectric domain-wall pinning in BiFeO3 ceramics,” J Appl Phys, vol. 108, no. 7, p. 074107, Oct. 2010, doi: https://doi.org/10.1063/1.3490249.L. P. Kozeeva, M. Yu. Kameneva, N. v Podberezskaya, A. I. Smolentsev, and V. E. Fedorov, “Preparation and structural characterization of bismuth ferrite crystals of different morphological types,” Inorganic Materials, vol. 47, no. 1, pp. 68–74, 2011, doi: https://doi.org/10.1134/S0020168510121015.R. A. Parra-Huertas, C. O. Calderón-Carvajal, J. A. Gómez-Cuaspud, and E. Vera-López, “Synthesis and characterization of Faujasite-Na from fly ash by the fusion-hydrothermal method,” Boletín de la Sociedad Española de Cerámica y Vidrio, Feb. 2023, doi: https://doi.org/10.1016/J.BSECV.2023.01.004.B. Li, C. Wang, W. Liu, M. Ye, and N. Wang, “Multiferroic properties of La and Mn co-doped BiFeO3 nanofibers by sol–gel and electrospinning technique,” Mater Lett, vol. 90, pp. 45–48, 2013, doi: https://doi.org/10.1016/j.matlet.2012.09.012.B. Li, C. Wang, W. Liu, M. Ye, and N. Wang, “Multiferroic properties of La and Mn co-doped BiFeO3 nanofibers by sol–gel and electrospinning technique,” Mater Lett, vol. 90, pp. 45–48, 2013, doi: https://doi.org/10.1016/j.matlet.2012.09.012.V. Singh, S. Sharma, M. Kumar, and R. K. Dwivedi, “Synthesis and optical properties of Y3+ doped BiFeO3 multiferroics,” in AIP Conference Proceedings, 2013, pp. 1027–1028. doi: https://doi.org/10.1063/1.4810583.S. G. Nair, J. Satapathy, and N. P. Kumar, “Influence of synthesis, dopants, and structure on electrical properties of bismuth ferrite BiFeO3,” Applied Physics A, vol. 126, no. 11, p. 836, 2020, doi: https://doi.org/10.1007/s00339-020-04027-xZhou et al., “Structure, electrical properties of Bi(Fe, Co)O3–BaTiO3 piezoelectric ceramics with improved Curie temperature,” Physica B Condens Matter, vol. 410, no. 1, pp. 13–16, Feb. 2013, doi: https://doi.org/10.1016/J.PHYSB.2012.11.003.C. P. F. Perdomo, A. V. Suarez, R. F. K. Gunnewiek, and R. H. G. A. Kiminami, “Low temperature synthesis of high purity nanoscaled BiFeO3 by a fast polymer solution method and their ferromagnetic behavior,” J Alloys Compd, vol. 849, p. 156564, Dec. 2020, doi: https://doi.org/10.1016/J.JALLCOM.2020.156564Y. Li, M. Cao, D. Wang, and J. Yuan, “High-efficiency and dynamic stable electromagnetic wave attenuation for La doped bismuth ferrite at elevated temperature and gigahertz frequency,” RSC Adv, vol. 5, no. 94, pp. 77184–77191, 2015, doi: https://doi.org/10.1039/C5RA15458H.X. Wang et al., “Novel electrical conductivity properties in Ca-doped BiFeO3 nanoparticles,” Journal of Nanoparticle Research, vol. 17, no. 5, p. 209, 2015, doi: 10.1007/s11051-015-3018-1, doi: https://doi.org/10.1007/s11051-015-3018-1A. A. Qureshi et al., “Incorporation of Zr-doped TiO2 nanoparticles in electron transport layer for efficient planar perovskite solar cells,” Surfaces and Interfaces, vol. 25, Aug. 2021, doi: https://doi.org/10.1016/j.surfin.2021.101299.S. Frangini, L. della Seta, and C. Paoletti, “Preparation and Electrical Properties of Sr-Doped LaFeO3 Thin-Film Conversion Coatings for Solid Oxide Cell Steel Interconnect Applications,” Energies (Basel), vol. 15, no. 2, Jan. 2022, doi: https://doi.org/10.3390/en15020632.A. P. Souri et al., “Metal titanate (ATiO3, a: Ni, Co, Mg, Zn) nanorods for toluene photooxidation under led illumination,” Applied Sciences (Switzerland), vol. 11, no. 22, Nov. 2021, doi: https://doi.org/10.3390/app112210850.C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat Methods, vol. 9, no. 7, pp. 671–675, 2012, doi: https://doi.org/10.1038/nmeth.2089O. Y. Kurapova, A. G. Glukharev, O. v. Glumov, M. Y. Kurapov, E. v. Boltynjuk, and V. G. Konakov, “Structure and electrical properties of YSZ-RGO composites and YSZ ceramics, obtained from composite powder,” Electrochim Acta, vol. 320, Oct. 2019, doi: https://doi.org/10.1016/j.electacta.2019.134573.S. Farhadi and F. Mahmoudi, “Improving the adsorption ability of perovskite-type LaNiO3 nanomaterial towards organic dyes by hybridizing with phosphotungstic acid,” Polyhedron, vol. 169, pp. 39–50, Sep. 2019, doi: https://doi.org/10.1016/j.poly.2019.05.008.R. Kadari, G. Ravi, P. Venkataswamy, R. Velchuri, N. R. Munirathnam, and M. Vithal, “Effect of ion (Ag+, N3−) doping on the photocatalytic activity of the Ruddlesden–Popper-type layered perovskite K2Nd2Ti3O10,” Comptes Rendus Chimie, vol. 22, no. 9–10, pp. 667–677, Sep. 2019, doi: https://doi.org/10.1016/j.crci.2019.10.004B. Kurniawan et al., “Effect of Temperature and Time of Sintering to Doping Ag on Microstructure of Perovskite Material (La1-xAgx)0.8Ca0.2MnO3,” in Journal of Physics: Conference Series, Institute of Physics Publishing, May 2018. doi: https://doi.org/10.1088/1742-6596/1011/1/012014.T. Kalybekov, K. Rysbekov, D. Nauryzbayeva, A. Toktarov, and Y. Zhakypbek, “Substantiation of averaging the content of mined ores with account of their readiness for mining,” in E3S Web of Conferences, EDP Sciences, Oct. 2020. doi: https://doi.org/10.1051/e3sconf/202020101039.G. Koch, M. Hävecker, P. Kube, A. Tarasov, R. Schlögl, and A. Trunschke, “The Influence of the Chemical Potential on Defects and Function of Perovskites in Catalysis,” Front Chem, vol. 9, Sep. 2021, doi: https://doi.org/10.3389/fchem.2021.746229.F. Gao et al., “Visible-Light Photocatalytic Properties of Weak Magnetic BiFeO3 Nanoparticles,” Advanced Materials, vol. 19, no. 19, pp. 2889–2892, Oct. 2007, doi: https://doi.org/10.1002/ADMA.200602377.M. Mahesh, V. R. Palkar, K. Srinivas, and S. V. Suryanarayana, “Ferroelectricity in a pure BiFeO3 ceramic,” Appl Phys Lett, vol. 76, no. 19, pp. 2764–2766, May 2000, doi: https://doi.org/10.1063/1.126468.C. Kursun, M. Gogebakan, E. Uludag, M. S. Bozgeyik, and F. S. Uludag, “Structural, electrical and magnetic properties of Nd – A – CoO3 (A = Sr, Ca) Perovskite Powders by Mechanical Alloying,” Sci Rep, vol. 8, no. 1, Dec. 2018, doi: https://doi.org/10.1038/s41598-018-31458-7Q. Duan et al., “Synthesis and characterization of morphology-controllable BiFeO3 particles with efficient photocatalytic activity,” Mater Res Bull, vol. 112, pp. 104–108, 2019, doi: https://doi.org/10.1016/j.materresbull.2018.12.012.A. Galal, H. K. Hassan, N. F. Atta, A. M. Abdel-Mageed, and T. Jacob, “Synthesis, structural and morphological characterizations of nano-Ru-based perovskites/RGO composites,” Sci Rep, vol. 9, no. 1, Dec. 2019, doi: https://doi.org/10.1038/s41598-019-43726-1.M. Irshad et al., “Evaluation of BaZr0.8X0.2 (X= Y, Gd, Sm) proton conducting electrolytes sintered at low temperature for IT-SOFC synthesized by combustion method,” J Alloys Compd, vol. 815, Jan. 2020, doi: https://doi.org/10.1016/j.jallcom.2019.152389.A. Bedon, M. Rieu, J.-P. Viricelle, and A. Glisenti, “Rational Development of IT-SOFC Electrodes Based on the Nanofunctionalisation of La0.6Sr0.4Ga0.3Fe0.7O3 with Oxides. Part 1: Cathodes by Means of Iron Oxide,” ACS Appl. Energy Mater. pp. 6840-6850, 2018, doi: https://doi.org/10.1021/acsaem.8b01124W. Xu et al., “Effect of Temperature and Time of Sintering to Doping Ag On Microstructure of Perovskite Material (La1-xAgx)0.8Ca0.2MnO3,” J Phys Conf Ser, vol. 1011, no. 1, p. 012014, Apr. 2018, doi: https://doi.org/10.1088/1742-6596/1011/1/012014.E. Abdelkader, L. Nadjia, B. Naceur, and L. Favier-Teodorescu, “Thermal, structural and optical properties of magnetic BiFeO3 micron-particles synthesized by coprecipitation method: heterogeneous photocatalysis study under white LED irradiation,” Cerámica, vol. 68, no. 385, pp. 84–96, 2022, doi: https://doi.org/10.1590/0366-69132022683853181.N. A. Sahara and B. Kurniawan, “The effect of partial substitution of monovalent ion on divalent ion of La0.8Ca0.2-xAgxMnO3 (x=0 and x=0.05) compounds in structure, morphology, and purity by sol-gel method,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Feb. 2019. doi: https://doi.org/10.1088/1757-899X/496/1/012004M. K. Singh, H. M. Jang, S. Ryu, and M. H. Jo, “Polarized Raman scattering of multiferroic BiFeO3 epitaxial films with rhombohedral R3c symmetry,” Appl Phys Lett, vol. 88, no. 4, p. 042907, Jan. 2006, doi: https://doi.org/10.1063/1.2168038H. J. Fecht, “Nanostructured Materials: Synthesis by Mechanical Means,” Dekker Encyclopedia of Nanoscience and Nanotechnology, Third Edition, pp. 3280–3289, Mar. 2014, doi: https://doi.org/10.1081/E-ENN3-120009256.R. Haumont, J. Kreisel, P. Bouvier, and F. Hippert, “Phonon anomalies and the ferroelectric phase transition in multiferroic BiFeO3,” Phys Rev B Condens Matter Mater Phys, vol. 73, no. 13, p. 132101, Apr. 2006, doi: https://doi.org/10.1103/PhysRevB.73.132101.H. Zhong et al., “Idealizing Tauc Plot for Accurate Band gap Determination of Semiconductor with Ultraviolet–Visible Spectroscopy: A Case Study for Cubic Boron Arsenide,” J Phys Chem Lett, vol. 14, no. 29, pp. 6702–6708, Jul. 2023, doi: https://doi.org/10.1021/acs.jpclett.3c01416.J. Li and X. Y. Guan, “Structural and optical properties of Ce doped BiFeO3 nanoparticles via sol–gel method,” Micro Nano Lett, vol. 14, no. 13, pp. 1307–1311, Nov. 2019, doi: https://doi.org/10.1049/mnl.2019.0236.C. Hao et al., “Photocatalytic performances of BiFeO3 particles with the average size in nanometer, submicrometer, and micrometer,” Mater Res Bull, vol. 50, pp. 369–373, 2014, doi: https://doi.org/10.1016/j.materresbull.2013.11.039.J. T. Han et al., “Tunable Synthesis of Bismuth Ferrites with Various Morphologies,” Advanced Materials, vol. 18, No. 16, pp. 2145–2148, Aug. 2006, doi: https://doi.org/10.1002/adma.200600072.J. Zhang, Z. Liu, and Z. Liu, “Novel WO3/Sb2S3 Heterojunction Photocatalyst Based on WO3 of Different Morphologies for Enhanced Efficiency in Photoelectrochemical Water Splitting,” ACS Appl Mater Interfaces, vol. 8, No. 15, pp. 9684–9691, Apr. 2016, doi: https://doi.org/10.1021/acsami.6b00429.G. Dong, H. Fan, H. Tian, J. Fang, and Q. Li, “Gas-sensing and electrical properties of perovskite structure p-type barium-substituted bismuth ferrite,” RSC Adv, vol. 5, No. 38, pp. 29618–29623, 2015, doi: https://doi.org/10.1039/C5RA01869B.X. Yuan, L. Shi, J. Zhao, S. Zhou, and J. Guo, “Tunability of magnetization and band gap in mullite-type Bi2Fe4O9 ceramics through non-magnetic ions,” Scr Mater, vol. 146, pp. 55–59, 2018, doi: https://doi.org/10.1016/j.scriptamat.2017.11.016.Y. Wang et al., “Bi2Fe4O9 thin films as novel visible-light-active photoanodes for solar water splitting,” J Mater Chem A Mater, vol. 7, No. 16, pp. 9537–9541, 2019, doi: https://doi.org/10.1039/C8TA09583C.A. Kirsch, M. M. Murshed, M. Schowalter, A. Rosenauer, and T. M. Gesing, “Nanoparticle Precursor into Polycrystalline Bi2Fe4O9: An Evolutionary Investigation of Structural, Morphological, Optical, and Vibrational Properties,” The Journal of Physical Chemistry C, vol. 120, No. 33, pp. 18831–18840, Aug. 2016, doi: https://doi.org/10.1021/acs.jpcc.6b04773. [167]J. Zhu, M. Ye, and A. Han, “Preparation and microwave absorption properties of BiFeO3 and BiFeO3/PANI composites,” Journal of Materials Science: Materials in Electronics, vol. 28, No. 18, pp. 13350–13359, 2017, doi: https://doi.org/10.1007/s10854-017-7172-3.M. Kumar, S. Shankar, Brijmohan, S. Kumar, O. P. Thakur, and A. K. Ghosh, “Impedance spectroscopy and conductivity analysis of multiferroic BFO–BT solid solutions,” Phys Lett A, vol. 381, No. 4, pp. 379–386, 2017, doi: https://doi.org/10.1016/j.physleta.2016.11.009.A. De Jesús Bautista-Morantes, C. Ordulio Calderón-Carvajal, J. Alberto Gómez-Cuaspud, and E. Vera-López, “Synthesis of Na0.02Bi0.98FeO3-δ through the standardized preparation of BiFeO3,” SSRN, pp. 1–19, Jul. 2023, doi: http://dx.doi.org/10.2139/ssrn.4503740S. Gates-Rector and T. Blanton, “The Powder Diffraction File: a quality materials characterization database,” Powder Diffr, vol. 34, No. 4, pp. 352–360, 2019, doi: DOI: https://doi.org/10.1017/S0885715619000812.N. Niizekin and M. Wachi, “The crystal structures of Bi2Mn4O10, Bi2Al4O9 and Bi2Fe4O9,” Z Kristallogr Cryst Mater, vol. 127, No. 1–6, pp. 173–187, Feb. 1968, doi: https://doi.org/10.1524/zkri.1968.127.16.173.M. Guennou, M. Viret, and J. Kreisel, “Bismuth-based perovskites as multiferroics,” C R Phys, vol. 16, Feb. 2015, doi: https://doi.org/10.1016/j.crhy.2015.01.008M. Guennou et al., “Multiple high-pressure phase transitions in BiFeO3,” Phys Rev B, vol. 84, No. 17, p. 174107, Nov. 2011, doi: https://doi.org/10.1103/PhysRevB.84.174107.I. A. Kornev, S. Lisenkov, R. Haumont, B. Dkhil, and L. Bellaiche, “Finite-Temperature Properties of Multiferroic BiFeO3,” Phys Rev Lett, vol. 99, No. 22, p. 227602, Nov. 2007, doi: https://doi.org/10.1103/PhysRevLett.99.227602H. Liu et al., “Crystalline Phases and Ferroelectric Properties of Sputtered BiFeO3 Thin Films Cooled in Pure O2 and Mixed Ar/O2 Atmospheres,” J Electron Mater, vol. 51, No. 1, pp. 295–303, 2022, doi: https://doi.org/10.1007/s11664-021-09288-7.P. Kumari et al., “Electronic and Magnetic Properties of Chemical Solution Deposited BiFeO3 Thin Film: a Soft X-ray Magnetic Circular Dichroism Study,” J Supercond Nov Magn, vol. 34, No. 4, pp. 1119–1124, 2021, doi: https://doi.org/10.1007/s10948-021-05840-y.J. H. Park et al., “Analysis of oxygen vacancy in Co-doped ZnO using the electron density distribution obtained using MEM,” Nanoscale Res Lett, vol. 10, No. 1, p. 186, 2015, doi: https://doi.org/10.1186/s11671-015-0887-2.G. Orr, A. Goryachev, and P. Ishai, “Complex dielectric behaviours in BiFeO3/Bi2Fe4O9 ceramics,” Applied Physics A, vol. 128, p. 1095, Nov. 2022, doi: https://doi.org/10.1007/s00339-022-06234-0.R. R. Awasthi and B. Das, “Effect of temperature on physical properties of Bi2Fe4O9 polycrystalline materials,” Journal of the Australian Ceramic Society, vol. 56, No. 1, pp. 243–250, 2020, doi: https://doi.org/10.1007/s41779-019-00381-z.K. Akhtar, S. A. Khan, S. B. Khan, and A. M. Asiri, “Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization,” in Handbook of Materials Characterization, S. K. Sharma, Ed., Cham: Springer International Publishing, 2018, pp. 113–145. doi: https://doi.org/10.1007/978-3-319-92955-2_4.R. Schmitt, “Scanning Electron Microscope,” in CIRP Encyclopedia of Production Engineering, L. Laperriére and G. Reinhart, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 1085–1089. doi: https://doi.org/10.1007/978-3-642-20617-7_6595.Z. S. Duma, T. Sihvonen, J. Havukainen, V. Reinikainen, and S.-P. Reinikainen, “Optimizing energy dispersive X-Ray Spectroscopy (EDS) image fusion to Scanning Electron Microscopy (SEM) images,” Micron, vol. 163, p. 103361, 2022, doi: https://doi.org/10.1016/j.micron.2022.103361.D. Saputro, Utari, and B. Purnama, “XRD and FTIR analysis of bismuth substituted cobalt ferrite synthesized by co-precipitation method,” J Phys Conf Ser, vol. 1153, p. 012057, Feb. 2019, doi: 10.1088/1742-6596/1153/1/012057.R. D. Waldron, “Infrared Spectra of Ferrites,” Physical Review, vol. 99, No. 6, pp. 1727–1735, Sep. 1955, doi: https://doi.org/10.1103/PhysRev.99.1727.U. Venkat and P. Seenuvasakumaran, “Effect of synthesis method in magnetic properties of Bismuth iron oxide: A prevoskite type multiferroic materials,” Today Proc, vol. 47, pp. 1000–1005, 2021, doi: https://doi.org/10.1016/j.matpr.2021.05.460T. Liu, Y. Xu, and C. Zeng, “Synthesis of Bi2Fe4O9 via PVA sol–gel route,” Materials Science and Engineering: B, vol. 176, No. 7, pp. 535–539, 2011, doi: https://doi.org/10.1016/j.mseb.2011.01.009.J. Zhao, T. Liu, Y. Xu, Y. He, and W. Chen, “Synthesis and characterization of Bi2Fe4O9 powders,” Mater Chem Phys, vol. 128, No. 3, pp. 388–391, 2011, doi: https://doi.org/10.1016/j.matchemphys.2011.03.011.N. Daneshmand, H. Shokrollahi, and S. A. N. H. Lavasani, “Enhanced magnetic and dielectric properties in bismuth ferrite (Bi2−xSrxFe4O9) derived by the reverse chemical co-precipitation method,” Journal of Materials Science: Materials in Electronics, vol. 29, No. 4, pp. 3201–3209, 2018, doi: https://doi.org/10.1007/s10854-017-8255M. Eledath and M. Chandran, “Raman study of BiFeO3 nanostructures using different excitation wavelengths: Effects of crystallite size on vibrational modes,” Journal of Physics and Chemistry of Solids, vol. 172, p. 111060, 2023, doi: https://doi.org/10.1016/j.jpcs.2022.111060.R. Haumont, J. Kreisel, P. Bouvier, and F. Hippert, “Phonon anomalies and the ferroelectric phase transition in multiferroic BiFeO3,” Phys Rev B, vol. 73, No. 13, p. 132101, Apr. 2006, doi: https://doi.org/10.1103/PhysRevB.73.132101.T. W. Napporn et al., “Chapter 9 - Electrochemical Measurement Methods and Characterization on the Cell Level,” in Fuel Cells and Hydrogen, V. Hacker and S. Mitsushima, Eds., Elsevier, 2018, pp. 175–214. doi: https://doi.org/10.1016/B978-0-12-811459-9.00009-8.S. Mohapatra, B. Sahu, T. Badapanda, M. Pattanaik, S. datta Kaushik, and A. Singh, “Optical, dielectric relaxation and conduction study of Bi2Fe4O9 ceramic,” Journal of Materials Science: Materials in Electronics, vol. 27, Apr. 2016, doi: https://doi.org/10.1007/s10854-015-4203-9.S. Chatterjee, A. Bera, and A. J. Pal, “p–i–n Heterojunctions with BiFeO3 Perovskite Nanoparticles and p- and n-Type Oxides: Photovoltaic Properties,” ACS Appl Mater Interfaces, vol. 6, No. 22, pp. 20479–20486, Nov. 2014, doi: https://doi.org/10.1021/am506066mO. Ceballos-Sanchez et al., “Study of BiFeO3 thin film obtained by a simple chemical method for the heterojunction-type solar cell design,” J Alloys Compd, vol. 832, p. 154923, 2020, doi: https://doi.org/10.1016/j.jallcom.2020.154923.Z. Xie et al., “Photovoltaic, photo-impedance, and photo-capacitance effects of the flexible (111) BiFeO3 film,” Appl Phys Lett, vol. 115, No. 11, p. 112902, Sep. 2019, doi: https://doi.org/10.1063/1.5120484.Z. Fan, K. Yao, and J. Wang, “Photovoltaic effect in an indium-tin-oxide/ZnO/BiFeO3/Pt heterostructure,” Appl Phys Lett, vol. 105, No. 16, p. 162903, Oct. 2014, doi: https://doi.org/10.1063/1.4899146.H. Sattarian, T. Tohidi, and Sh. Rahmatallahpur, “Effect of TEA on characteristics of CdS/PbS thin film solar cells prepared by CBD,” Materials Science-Poland, vol. 34, pp. 540–547, 2016, [Online]. Available: https://api.semanticscholar.org/CorpusID:100354693.A. M. Kumar, I. J. Peter, K. Ramachandran, J. Mayandi, and K. Jayakumar, “Influence of Al-Cu doping on the efficiency of BiFeO3 based perovskite solar cell (PSC),” Mater Today Proc, vol. 35, pp. 62–65, 2021, doi: https://doi.org/10.1016/j.matpr.2019.05.454.M. Khan et al., “Improving the efficiency of dye-sensitized solar cells based on rare-earth metal modified bismuth ferrites,” Sci Rep, vol. 13, No. 1, p. 3123, 2023, doi: https://doi.org/10.1038/s41598-023-30000-8.A. Raj et al., “Comparative analysis of ‘La’ modified BiFeO3-based perovskite solar cell devices for high conversion efficiency,” Ceram Int, vol. 49, no. 1, pp. 1317–1327, 2023, doi: https://doi.org/10.1016/j.ceramint.2022.09.112.H. Renuka et al., “Enhanced photovoltaic response in ferroelectric Ti-doped BFO heterojunction through interface engineering for building integrated applications,” Solar Energy, vol. 225, pp. 863–874, 2021, doi: https://doi.org/10.1016/j.solener.2021.08.002.N. O. Laschuk, E. B. Easton, and O. V. Zenkina, “Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry,” RSC Advances, vol. 11, No. 45. Royal Society of Chemistry, pp. 27925–27936, Aug. 08, 2021. doi: https://doi.org/10.1039/D1RA03785D.Universidad Pedagógica y Tecnológica de ColombiaRepositorio Universidad Pedagógica y Tecnológica de ColombiaPerovskitasConductores eléctricosCeldas de combustibleInvestigadoresPúblico generalEstudiantesORIGINALEstudio_de_perovskitas.pdfEstudio_de_perovskitas.pdfapplication/pdf6882964https://repositorio.uptc.edu.co/bitstreams/8e6e4205-2a7f-4d50-8a2c-e33d17410799/download80fa4e9d6caff9a16c3dd4a46df0690cMD51A_AdeJBM.pdfA_AdeJBM.pdfapplication/pdf727605https://repositorio.uptc.edu.co/bitstreams/45731761-dba5-416c-b06c-71a4ce3904b0/downloadd59e6882a7636a67f281f8b6f30d0853MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uptc.edu.co/bitstreams/9c6e80bd-78e9-4e4d-9e87-12c8d618c4f7/download4460e5956bc1d1639be9ae6146a50347MD53TEXTEstudio_de_perovskitas.pdf.txtEstudio_de_perovskitas.pdf.txtExtracted texttext/plain101783https://repositorio.uptc.edu.co/bitstreams/bc2f62e4-23d4-4cca-b512-9de06541f045/download6a396e4a58d8787b48ead95a352a31f7MD54A_AdeJBM.pdf.txtA_AdeJBM.pdf.txtExtracted texttext/plain4https://repositorio.uptc.edu.co/bitstreams/ed5cdff0-3120-4344-9699-0bf82748af4a/downloadff4c8ff01d544500ea4bfea43e6108c1MD56THUMBNAILEstudio_de_perovskitas.pdf.jpgEstudio_de_perovskitas.pdf.jpgGenerated Thumbnailimage/jpeg5969https://repositorio.uptc.edu.co/bitstreams/b406fa36-1911-49cc-af03-213d2e94c8ff/download23f3af39e096ab83a64c107de980f24cMD55A_AdeJBM.pdf.jpgA_AdeJBM.pdf.jpgGenerated Thumbnailimage/jpeg10611https://repositorio.uptc.edu.co/bitstreams/257d5658-e690-4089-9c6b-801125c78bf3/download90e9e1687887412627f00720e9fac57eMD57001/17194oai:repositorio.uptc.edu.co:001/171942024-12-16 17:15:55.221http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co |