Automatic Identification of Transformation in the Colombian Tropical Dry Forest Using GMM and UBM-GMM

Today, machine learning methods have become a powerful tool to help curb the effects of global warming by solving ecological questions. In particular, the Colombian Tropical Dry Forest (TDF) is an important ecosystem that is currently under threat due to deforestation generated by cattle, mining, an...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/14285
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11752
https://repositorio.uptc.edu.co/handle/001/14285
Palabra clave:
acoustic index
ecoacoustics
gaussian mixture model
machine learning
; maximum likelihood estimation
universal background model
ecoacústica
modelos de mezclas gausianas
índices acústicos
machine learning
estimación de máxima verosimilitud
modelo universal
Rights
License
http://purl.org/coar/access_right/c_abf386
id REPOUPTC2_05dfe7d8b2b20a7d6adda9c6fe8b6552
oai_identifier_str oai:repositorio.uptc.edu.co:001/14285
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
dc.title.en-US.fl_str_mv Automatic Identification of Transformation in the Colombian Tropical Dry Forest Using GMM and UBM-GMM
dc.title.es-ES.fl_str_mv Identificación automática de transformación en el bosque seco tropical colombiano usando GMM y UBM-GMM
title Automatic Identification of Transformation in the Colombian Tropical Dry Forest Using GMM and UBM-GMM
spellingShingle Automatic Identification of Transformation in the Colombian Tropical Dry Forest Using GMM and UBM-GMM
acoustic index
ecoacoustics
gaussian mixture model
machine learning
; maximum likelihood estimation
universal background model
ecoacústica
modelos de mezclas gausianas
índices acústicos
machine learning
estimación de máxima verosimilitud
modelo universal
title_short Automatic Identification of Transformation in the Colombian Tropical Dry Forest Using GMM and UBM-GMM
title_full Automatic Identification of Transformation in the Colombian Tropical Dry Forest Using GMM and UBM-GMM
title_fullStr Automatic Identification of Transformation in the Colombian Tropical Dry Forest Using GMM and UBM-GMM
title_full_unstemmed Automatic Identification of Transformation in the Colombian Tropical Dry Forest Using GMM and UBM-GMM
title_sort Automatic Identification of Transformation in the Colombian Tropical Dry Forest Using GMM and UBM-GMM
dc.subject.en-US.fl_str_mv acoustic index
ecoacoustics
gaussian mixture model
machine learning
; maximum likelihood estimation
universal background model
topic acoustic index
ecoacoustics
gaussian mixture model
machine learning
; maximum likelihood estimation
universal background model
ecoacústica
modelos de mezclas gausianas
índices acústicos
machine learning
estimación de máxima verosimilitud
modelo universal
dc.subject.es-ES.fl_str_mv ecoacústica
modelos de mezclas gausianas
índices acústicos
machine learning
estimación de máxima verosimilitud
modelo universal
description Today, machine learning methods have become a powerful tool to help curb the effects of global warming by solving ecological questions. In particular, the Colombian Tropical Dry Forest (TDF) is an important ecosystem that is currently under threat due to deforestation generated by cattle, mining, and urban development since colonial times. One of the urgent challenges in this area is to understand the threatened ecosystems landscape transformation and forest degradation. Traditionally, environmental conservation experts measure these changes using transformation levels (high, medium, low). These levels have been obtained through direct observation, counting species, and measures of spatial variation through the time. Therefore, these methods are invasive to the study landscapes and require large amounts of time analysis. A proficient alternative to classical methods is the passive acoustic monitoring, as they are less invasive to the environment, avoid seeing the difficulty of species from isolated individuals, and help reduce the time of researchers at the sites. Even though too much data is generated, and computational tools have been required for their analysis. This paper proposes a new method to automatically identify the transformation in the Colombian TDF. The method is based on Gaussian Mixture Models (GMM) and Universal Background Model (UBM). In addition, it includes an acoustic indices analysis to select the most informative variables. The GMM proposal was tested in two local sites (La Guajira and Bolivar regions) and achieved an accuracy of 93% and 89% for each one, and it was obtained 84% with the general UBM model.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-07-05T19:11:55Z
dc.date.available.none.fl_str_mv 2024-07-05T19:11:55Z
dc.date.none.fl_str_mv 2020-09-18
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a469
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11752
10.19053/01211129.v29.n54.2020.11752
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/14285
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11752
https://repositorio.uptc.edu.co/handle/001/14285
identifier_str_mv 10.19053/01211129.v29.n54.2020.11752
dc.language.none.fl_str_mv spa
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11752/9618
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11752/10009
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf386
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf386
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
application/xml
dc.publisher.en-US.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista Facultad de Ingeniería; Vol. 29 No. 54 (2020): Continuos Publication; e11752
dc.source.es-ES.fl_str_mv Revista Facultad de Ingeniería; Vol. 29 Núm. 54 (2020): Publicación Continua; e11752
dc.source.none.fl_str_mv 2357-5328
0121-1129
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633887576195072
spelling 2020-09-182024-07-05T19:11:55Z2024-07-05T19:11:55Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/1175210.19053/01211129.v29.n54.2020.11752https://repositorio.uptc.edu.co/handle/001/14285Today, machine learning methods have become a powerful tool to help curb the effects of global warming by solving ecological questions. In particular, the Colombian Tropical Dry Forest (TDF) is an important ecosystem that is currently under threat due to deforestation generated by cattle, mining, and urban development since colonial times. One of the urgent challenges in this area is to understand the threatened ecosystems landscape transformation and forest degradation. Traditionally, environmental conservation experts measure these changes using transformation levels (high, medium, low). These levels have been obtained through direct observation, counting species, and measures of spatial variation through the time. Therefore, these methods are invasive to the study landscapes and require large amounts of time analysis. A proficient alternative to classical methods is the passive acoustic monitoring, as they are less invasive to the environment, avoid seeing the difficulty of species from isolated individuals, and help reduce the time of researchers at the sites. Even though too much data is generated, and computational tools have been required for their analysis. This paper proposes a new method to automatically identify the transformation in the Colombian TDF. The method is based on Gaussian Mixture Models (GMM) and Universal Background Model (UBM). In addition, it includes an acoustic indices analysis to select the most informative variables. The GMM proposal was tested in two local sites (La Guajira and Bolivar regions) and achieved an accuracy of 93% and 89% for each one, and it was obtained 84% with the general UBM model.Hoy, los métodos de aprendizaje automático se han convertido en una herramienta para ayudar a frenar los efectos del calentamiento global, al resolver cuestiones ecológicas. En particular, el bosque seco tropical (BST) de Colombia se encuentra actualmente amenazado por la deforestación generada, desde la época colonial, por la ganadería, la minería y el desarrollo urbano. Uno de los desafíos urgentes en esta área es comprender la transformacion y degradación de los bosques. Tradicionalmente, los cambios de los ecosistemas se miden por varios niveles de transformación (alto, medio, bajo). Estos se obtienen a través de observación directa, recuento de especies y medidas de variación espacial a lo largo del tiempo. Por ende, estos métodos son invasivos y requieren de largos lapsos de observación en los lugares de estudio. Una alternativa eficaz a los métodos clásicos es el monitoreo acústico pasivo, que es menos invasivo, ya que evita el aislamiento de las especies y reduce el tiempo de los investigadores en los sitios. Sin embargo, implica la generación de múltiples datos y la necesidad de herramientas computacionales destinadas al análisis de las grabaciones. Este trabajo propone un método para identificar automáticamente la transformación del BST mediante grabaciones acústicas, aplicando dos modelos de clasificación: Gaussian Mixture Models (GMM), por cada región estudiada, y Universal Background Model (UBM), para un modelo general. Además, contiene un análisis de índices acústicos, con el fin de detectar los más representativos para las transformaciones del BST. Nuestra propuesta de GMM alcanzó una precisión de 93% y 89% para las regiones de La Guajira y Bolívar. El modelo general UBM logró 84% de precisión.application/pdfapplication/xmlspaspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/11752/9618https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11752/10009Copyright (c) 2020 Néstor David Rendón-Hurtado, Claudia Victoria Isaza-Narváez, Ph. D., Susana Rodríguez-Buriticá, Ph. D.http://purl.org/coar/access_right/c_abf386http://purl.org/coar/access_right/c_abf2Revista Facultad de Ingeniería; Vol. 29 No. 54 (2020): Continuos Publication; e11752Revista Facultad de Ingeniería; Vol. 29 Núm. 54 (2020): Publicación Continua; e117522357-53280121-1129acoustic indexecoacousticsgaussian mixture modelmachine learning; maximum likelihood estimationuniversal background modelecoacústicamodelos de mezclas gausianasíndices acústicosmachine learningestimación de máxima verosimilitudmodelo universalAutomatic Identification of Transformation in the Colombian Tropical Dry Forest Using GMM and UBM-GMMIdentificación automática de transformación en el bosque seco tropical colombiano usando GMM y UBM-GMMinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a469http://purl.org/coar/version/c_970fb48d4fbd8a85Rendón-Hurtado, Néstor DavidIsaza-Narváez, Claudia VictoriaRodríguez-Buriticá, Susana001/14285oai:repositorio.uptc.edu.co:001/142852025-07-18 11:53:51.421metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co