Propiedades mecánicas y tribológicas de recubrimientos nanoestructurados de TiAlCrN - Si por co-sputtering con fuentes Hipims
En esta investigación se elige utilizar silicio y fuentes HIPIMS para caracterizar y estudiar recubrimientos por primera vez en el país. Las fuentes HIPIMS mejoran las propiedades y densidad de los recubrimientos. El documento se estructurado en marco referencial, con conceptos e investigaciones pre...
- Autores:
-
Ordóñez Jiménez, Andrés Felipe
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad Pedagógica y Tecnológica de Colombia
- Repositorio:
- RiUPTC: Repositorio Institucional UPTC
- Idioma:
- OAI Identifier:
- oai:repositorio.uptc.edu.co:001/17193
- Acceso en línea:
- https://repositorio.uptc.edu.co/handle/001/17193
- Palabra clave:
- Materiales nanoestructurados
Acero - Corrosión
Revestimientos protectores
Corrosión y anticorrosivos
- Rights
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
REPOUPTC2_05c1a9730424ad2fff6f3f9042ec4c7d |
---|---|
oai_identifier_str |
oai:repositorio.uptc.edu.co:001/17193 |
network_acronym_str |
REPOUPTC2 |
network_name_str |
RiUPTC: Repositorio Institucional UPTC |
repository_id_str |
|
dc.title.none.fl_str_mv |
Propiedades mecánicas y tribológicas de recubrimientos nanoestructurados de TiAlCrN - Si por co-sputtering con fuentes Hipims |
title |
Propiedades mecánicas y tribológicas de recubrimientos nanoestructurados de TiAlCrN - Si por co-sputtering con fuentes Hipims |
spellingShingle |
Propiedades mecánicas y tribológicas de recubrimientos nanoestructurados de TiAlCrN - Si por co-sputtering con fuentes Hipims Materiales nanoestructurados Acero - Corrosión Revestimientos protectores Corrosión y anticorrosivos |
title_short |
Propiedades mecánicas y tribológicas de recubrimientos nanoestructurados de TiAlCrN - Si por co-sputtering con fuentes Hipims |
title_full |
Propiedades mecánicas y tribológicas de recubrimientos nanoestructurados de TiAlCrN - Si por co-sputtering con fuentes Hipims |
title_fullStr |
Propiedades mecánicas y tribológicas de recubrimientos nanoestructurados de TiAlCrN - Si por co-sputtering con fuentes Hipims |
title_full_unstemmed |
Propiedades mecánicas y tribológicas de recubrimientos nanoestructurados de TiAlCrN - Si por co-sputtering con fuentes Hipims |
title_sort |
Propiedades mecánicas y tribológicas de recubrimientos nanoestructurados de TiAlCrN - Si por co-sputtering con fuentes Hipims |
dc.creator.fl_str_mv |
Ordóñez Jiménez, Andrés Felipe |
dc.contributor.advisor.none.fl_str_mv |
Moreno Telléz, Carlos Mauricio Olaya, Jhon Jairo |
dc.contributor.author.none.fl_str_mv |
Ordóñez Jiménez, Andrés Felipe |
dc.subject.armarc.none.fl_str_mv |
Materiales nanoestructurados Acero - Corrosión Revestimientos protectores Corrosión y anticorrosivos |
topic |
Materiales nanoestructurados Acero - Corrosión Revestimientos protectores Corrosión y anticorrosivos |
description |
En esta investigación se elige utilizar silicio y fuentes HIPIMS para caracterizar y estudiar recubrimientos por primera vez en el país. Las fuentes HIPIMS mejoran las propiedades y densidad de los recubrimientos. El documento se estructurado en marco referencial, con conceptos e investigaciones previas, procedimiento experimental, con detalles de obtención y técnicas de caracterización, resultados y discusión, presentando resultados y análisis de la caracterización y finalmente contiene conclusiones y recomendaciones, con hallazgos, implicaciones y posibilidades futuras. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-07-24T20:47:00Z |
dc.date.available.none.fl_str_mv |
2024-07-24T20:47:00Z |
dc.type.none.fl_str_mv |
http://purl.org/redcol/resource_type/TMPD |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_db06 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.uptc.edu.co/handle/001/17193 |
url |
https://repositorio.uptc.edu.co/handle/001/17193 |
dc.relation.ispartof.none.fl_str_mv |
Supakanya Khanchaiyaphum, Charnnarong Saikaew, Anurat Wisitsoraat, and Surasak Surinphong. Wear behaviours of filtered cathodic arc deposited TiN, TiAlSiN and TiCrAlSiN coatings on AISI 316 stainless steel fishing net-weaving machine components under dry soft-sliding against nylon fibres. Wear, 390-391(November 2016):146–154, 2017. |
dc.relation.references.none.fl_str_mv |
S. J. Bull and E. G. Berasetegui. An overview of the potential of quantitative coating adhesion measurement by scratch testing. Tribology International, 39(2):99–114, 2006. Magnetron sputtering: A review of recent developments and applications. Vacuum, 56(3):159–172, 2000. REN QIU. Electron Microscopy Investigation of Detailed Microstructures of CVD TiAlN and TiN Coatings: Effects of Gas Flow and Substrate on Coating Microstructure. (May 2020):55, 2020. Paul H. Mayrhofer, Christian Mitterer, Lars Hultman, and Helmut Clemens. Microstructural design of hard coatings. Progress in Materials Science, 51(8):1032–1114, 2006 Kirsten Bobzin. High-performance coatings for cutting tools. CIRP Journal of Manufacturing Science and Technology, 18(2016):1–9, 2017. Maxime Pellan, Sabine Lay, Jean Michel Missiaen, Susanne Norgren, Jenny Angseryd, Ernesto Coronel, and Tomas Persson. A new insight into the =2 grain boundary characteristics in WC powder and in WC-Co sintered materials. Acta Materialia, 155:372–378, 2018. Jos´e M. Albella. Capas delgadas y modificaci´on superficial de materiales. 2018 Hermann A. Jehn. Multicomponent and multiphase hard coatings for tribological applications. Surface and Coatings Technology, 131(1-3):433–440, 2000 J. Musil. Hard and superhard nanocomposite coatings. Surf. Coatings Technol, 125:322– 330, 2000. Sam Zhang, Deen Sun, Yongqing Fu, and Hejun Du. Recent advances of superhard nanocomposite coatings: A review. Surface and Coatings Technology, 167(2-3):113–119, 2003. J. Musil. Hard Nanocomposite Films Prepared by Reactive Magnetron Sputtering. Nanostructured Thin Films and Nanodispersion Strengthened Coatings, pages 43–56, 2006. Roland Hauert and J¨org Patscheider. From alloying to nanocomposites - Improved performance of hard coatings. Advanced Engineering Materials, 2(5):247–259, 2000. G. S. Fox-Rabinovich, A. I. Kovalev, M. H. Aguirre, B. D. Beake, K. Yamamoto, S. C. Veldhuis, J. L. Endrino, D. L. Wainstein, and A. Y. Rashkovskiy. Design and performance of AlTiN and TiAlCrN PVD coatings for machining of hard to cut materials. Surface and Coatings Technology, 204(4):489–496, 2009. K. Yamamoto, T. Sato, K. Takahara, and K. Hanaguri. Properties of (Ti,Cr,Al)N coatings with high Al content deposited by new plasma enhanced arc-cathode. Surface and Coatings Technology, 174-175:620–626, 2003. Jun Zhang, Huimin Lv, Guanying Cui, Zhi Jing, and Chuang Wang. Effects of bias voltage on the microstructure and mechanical properties of (Ti,Al,Cr)N hard films with N-gradient distributions. Thin Solid Films, 519(15):4818–4823, 2011. G. S. Fox-Rabinovich, K. Yamomoto, S. C. Veldhuis, A. I. Kovalev, and G. K. Dosbaeva. Tribological adaptability of TiAlCrN PVD coatings under high performance dry machining conditions. Surface and Coatings Technology, 200(5-6):1804–1813, 2005. Yu X Xu, Helmut Riedl, David Holec, Li Chen, Yong Du, and Paul H Mayrhofer. Thermal stability and oxidation resistance of sputtered Ti[sbnd]Al[sbnd]Cr[sbnd]N hard coatings. Surface and Coatings Technology, 324:48–56, 2017 P. L. Tam, Z. F. Zhou, P. W. Shum, and K. Y. Li. Structural, mechanical, and tribological studies of Cr-Ti-Al-N coating with different chemical compositions. Thin Solid Films, 516(16):5725–5731, 2008. F. Fernandes, M. Danek, T. Polcar, and A. Cavaleiro. Tribological and cutting performance of TiAlCrN films with different Cr contents deposited with multilayered structure. Tribology International, 119(November 2017):345–353, 2018. Feng Huang, Guohua Wei, John A. Barnard, and Mark L. Weaver. Microstructure and stress development in magnetron sputtered TiAlCr(N) films. Surface and Coatings Technology, 146-147:391–397, 2001. Andr´e Anders. Tutorial: Reactive high power impulse magnetron sputtering (RHiPIMS). Journal of Applied Physics, 121(17), 2017. J. Bohlmark, M. ¨ Ostbye, M. Lattemann, H. Ljungcrantz, T. Rosell, and U. Helmersson. Guiding the deposition flux in an ionized magnetron discharge. Thin Solid Films, 515(4):1928–1931, 2006. K. Bobzin, N. Bagcivan, P. Immich, S. Bolz, J. Alami, and R. Cremer. Advantages of nanocomposite coatings deposited by high power pulse magnetron sputtering technology. Journal of Materials Processing Technology, 209(1):165–170, 2009. Vladimir Kouznetsov, Karol Mac´Ak, Jochen M. Schneider, Ulf Helmersson, and Ivan Petrov. A novel pulsed magnetron sputter technique utilizing very high target power densities. Surface and Coatings Technology, 122(2-3):290–293, 1999. Ulf Helmersson, Martina Lattemann, Johan Bohlmark, Arutiun P. Ehiasarian, and Jon Tomas Gudmundsson. Ionized physical vapor deposition (IPVD): A review of technology and applications. Thin Solid Films, 513(1-2):1–24, 2006. D. J. Christie. Target material pathways model for high power pulsed magnetron sputtering. Journal of Vacuum Science Technology A: Vacuum, Surfaces, and Films, 23(2):330–335, 2005. U. Helmersson, M. Lattemann, J. Alami, J. Bohlmark, A. P. Ehiasarian, and J. T. Gudmundsson. High power impulse magnetron sputtering discharges and thin film growth: A brief review. Proceedings, Annual Technical Conference - Society of Vacuum Coaters, (January):458–464, 2005. P. H. Mayrhofer, R. Rachbauer, D. Holec, F. Rovere, and J. M. Schneider. Protective Transition Metal Nitride Coatings. In Comprehensive Materials Processing, volume 4, pages 355–388. 2014. Michael Tkadletz, Nina Schalk, Rostislav Daniel, Jozef Keckes, Christoph Czettl, and Christian Mitterer. Advanced characterization methods for wear resistant hard coatings: A review on recent progress. Surface and Coatings Technology, 285:31–46, 2016. Li Chen, Yong Du, She Q. Wang, Ai J. Wang, and H. H. Xu. Mechanical properties and microstructural evolution of TiN coatings alloyed with Al and Si. Materials Science and Engineering A, 502(1-2):139–143, 2009. S. Schiller, G. Beister, J. Reschke, and G. Hoetzsch. TiN hard coatings deposited on high-speed steel substrates by reactive direct current magnetron sputtering. Journal of Vacuum Science Technology A: Vacuum, Surfaces, and Films, 5(4):2180–2183, 1987. M. Griepentrog, B. Mackrodt, G. Mark, and T. Linz. Properties of TiN hard coatings prepared by unbalanced magnetron sputtering and cathodic arc deposition using a uniand bipolar pulsed bias voltage. Surface and Coatings Technology, 74-75(PART 1):326– 332, 1995. L. von Fieandt, T. Larsson, E. Lindahl, O. B¨acke, and M. Boman. Chemical vapor deposition of TiN on transition metal substrates. Surface and Coatings Technology, 334(November 2017):373–383, 2018. Sajjad Ghasemi, Ali Shanaghi, and Paul K. Chu. Nano mechanical and wear properties of multi-layer Ti/TiN coatings deposited on Al 7075 by high-vacuum magnetron sputtering. Thin Solid Films, 638:96–104, 2017. N. Fateh, G. A. Fontalvo, G. Gassner, and C. Mitterer. Influence of high-temperature oxide formation on the tribological behaviour of TiN and VN coatings. Wear, 262(9- 10):1152–1158, 2007. Y. C. Chim, X. Z. Ding, X. T. Zeng, and S. Zhang. Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc. Thin Solid Films, 517(17):4845–4849, 2009. Sture Hogmark, Staffan Jacobson, and Mats Larsson. Design and evaluation of tribological coatings. Wear, 246(1-2):20–33, nov 2000. C. Liu, Q. Bi, and A. Matthews. EIS comparison on corrosion performance of PVD TiN and CrN coated mild steel in 0.5 N NaCl aqueous solution. Corrosion Science, 43(10):1953–1961, 2001. C. Liu, Q. Bi, H. Ziegele, A. Leyland, and A. Matthews. Structure and corrosion properties of PVD Cr–N coatings. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 20(3):772–780, 2002. Teisuke Sato, Yoshihiro Tada, Masanori Ozaki, Kyin Hoke, and Tatsuo Besshi. A crossed-cylinders testing for evaluation of wear and tribological properties of coated tools. Wear, 178(1-2):95–100, 1994. V. Ezirmik, E. Senel, K. Kazmanli, A. Erdemir, and M. ¨Urgen. Effect of copper addition on the temperature dependent reciprocating wear behaviour of CrN coatings. Surface and Coatings Technology, 202(4-7):866–870, 2007. Zhongrong Geng, Haixin Wang, Chengbing Wang, Liping Wang, and Guangan Zhang. Effect of Si content on the tribological properties of CrSiN films in air and water environments. Tribology International, 79:140–150, 2014. Manfeng Gong, Jian Chen, Xin Deng, and ShanghuaWu. Sliding wear behavior of TiAlN and AlCrN coatings on a unique cemented carbide substrate. International Journal of Refractory Metals and Hard Materials, 69:209–214, 2017. J Musil. Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness. Surface and Coatings Technology, 207:50–65, 2012. Li Chen, J¨org Paulitsch, Yong Du, and Paul H. Mayrhofer. Thermal stability and oxidation resistance of Ti-Al-N coatings. Surface and Coatings Technology, 206(11- 12):2954–2960, 2012. A. Siozios, D. C. Koutsogeorgis, E. Lidorikis, G. P. Dimitrakopulos, N. Pliatsikas, G. Vourlias, T. Kehagias, P. Komninou, W. Cranton, C. Kosmidis, and P. Patsalas. Laser-matter interactions, phase changes and diffusion phenomena during laser annealing of plasmonic AlN:Ag templates and their applications in optical encoding. Journal of Physics D: Applied Physics, 48(28):285306, 2015. Meng Ren, He long Yu, Li na Zhu, Hai qing Li, Hai dou Wang, Zhi guo Xing, and Bin shi Xu. Microstructure, mechanical properties and tribological behaviors of TiAlNAg composite coatings by pulsed magnetron sputtering method. Surface and Coatings Technology, 436(February):128286, 2022. P. H. Mayrhofer, F. Kunc, J. Musil, and C. Mitterer. A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings. Thin Solid Films, 415(1-2):151–159, 2002. Jae Il Jang, M. J. Lance, Songqing Wen, Ting Y. Tsui, and G. M. Pharr. Indentationinduced phase transformations in silicon: Influences of load, rate and indenter angle on the transformation behavior. Acta Materialia, 53(6):1759–1770, 2005 Aijun Wang, Liangcai Zhou, Yi Kong, Yong Du, Zi Kui Liu, Shun Li Shang, Yifang Ouyang, Jiong Wang, Lijun Zhang, and Jianchuan Wang. First-principles study of binary special quasirandom structures for the Al-Cu, Al-Si, Cu-Si, and Mg-Si systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 33(4):769–773, 2009. J. M. Zuo, P. Blaha, and K. Schwarz. The theoretical charge density of silicon: Experimental testing of exchange and correlation potentials. Journal of Physics Condensed Matter, 9(36):7541–7561, 1997. J. L. Murray and A. J. McAlister. The Al-Si (Aluminum-Silicon) system. Bulletin of Alloy Phase Diagrams, 5(1):74–84, 1984. A. Bendijk, R. Delhez, L. Katgerman, Th H. De Keijser, E. J. Mittemeijer, and N. M. Van Der Pers. Characterization of Al-Si-alloys rapidly quenched from the melt. Journal of Materials Science, 15(11):2803–2810, 1980. Kazuhiro Nakata and Masao Ushio. Wear resistance of plasma sprayed Al-Si binary alloy coatings on A6063 Al alloy substrate. Surface and Coatings Technology, 142-144:277– 282, 2001. A. P´elisson, M. Parlinska-Wojtan, H. J. Hug, and J. Patscheider. Microstructure and mechanical properties of Al-Si-N transparent hard coatings deposited by magnetron sputtering. Surface and Coatings Technology, 202(4-7):884–889, 2007. Chi Lung Chang and Chi Song Huang. Effect of bias voltage on microstructure, mechanical and wear properties of Al-Si-N coatings deposited by cathodic arc evaporation. Thin Solid Films, 519(15):4923–4927, 2011. J. Musil, G. Remnev, V. Legostaev, V. Uglov, A. Lebedynskiy, A. Lauk, J. Proch´azka, S. Haviar, and E. Smolyanskiy. Flexible hard Al-Si-N films for high temperature operation. Surface and Coatings Technology, 307:1112–1118, 2016. Soni, Swati Kumari, S. K. Sharma, and S. K. Mishra. Effect of Deposition Pressure, Nitrogen Content and Substrate Temperature on Optical and Mechanical Behavior of Nanocomposite Al-Si-N Hard Coatings for Solar Thermal Applications. Journal of Materials Engineering and Performance, 27(12):6729–6736, 2018. Ji Cheng Ding, Qi Min Wang, Zhe Ren Liu, Seonhee Jeong, Teng Fei Zhang, and Kwang Ho Kim. Influence of bias voltage on the microstructure, mechanical and corrosion properties of AlSiN films deposited by HiPIMS technique. Journal of Alloys and Compounds, 772:112–121, 2019. C. Donnet and A. Erdemir. Historical developments and new trends in tribological and solid lubricant coatings. Surface and Coatings Technology, 180-181:76–84, 2004. A A Voevodin, J S Zabinski, and C Muratore. Recent advances in hard, tough, and low friction nanocomposite coatings, 2005. Ellis W. Delahoy. Design Considerations for High Temperature Furnaces. 1997. J. Gurland. New scientific approaches to development of tool materials. International Materials Reviews, 33(1):151–166, 1988. Paul A. Erickson. Physical and Chemical Hazards. Emergency Response Planning, (4):103–121, 1999. M. A G´omez Botero. Caracterizaci´on de las propiedades tribol´ogicas de los recubrimientos duros.Memoria presentada para optar al grado de Doctora Barcelona, Diciembre de 2005. 2006. L. Alden Kendall. Volume 18 of the ASM HandbookFriction, Lubrication, and Wear Technology. ASM Handbook, 18:430–437, 1992. Siegfried Hofmann. Auger- and X-Ray Photoelectron Spectroscopy in Materials Science. 2013. K. Bobzin, T. Br¨ogelmann, N. C. Kruppe, and M. Carlet. HPPMS TiAlCrSiN - Influence of substrate bias and pulse frequency on cutting performance. Surface and Coatings Technology, 397(June):126056, 2020. Yu Chu Kuo, Chaur Jeng Wang, and Jyh Wei Lee. The microstructure and mechanical properties evaluation of CrTiAlSiN coatings: Effects of silicon content. Thin Solid Films, 638:220–229, 2017. H. A. Mac´ıas, L. Yate, L. E. Coy, J. J. Olaya, and W. Aperador. Effect of nitrogen flow ratio on microstructure, mechanical and tribological properties of TiWSiN x thin film deposited by magnetron co-sputtering. Applied Surface Science, 456(June):445–456, 2018. Fuyang Cao, Paul Munroe, Zhifeng Zhou, and Zonghan Xie. Mechanically robust TiAl- SiN coatings prepared by pulsed-DC magnetron sputtering system: Scratch response and tribological performance. Thin Solid Films, 645(October 2017):222–230, 2018. Daniel — Musil. Novel Nanocomposite Coatings. Farooq Ahmad, Lin Zhang, Jun Zheng, Iram Sidra, and Shihong Zhang. Deposited on Plasma Nitrided AISI H13 Steels Using. 2020. Peter Panjan, Aljaˇz Drnovˇsek, and Goran Draˇzi´c. Influence of growth defects on the oxidation resistance of sputter-deposited tialn hard coatings. Coatings, 11(2):1–22, 2021. Awais Awan, Riffat Asim Pasha, Muhammad Shoaib Butt, Rizwan Ahmed Malik, Ibrahim M. Alarifi, Meshal Alzaid, Muhammad Latif, Ammar Naseer, Mohsin Saleem, and Hussein Alrobei. Corrosion and wear behavior of TiN PVD coated 304 stainlesssteel. Journal of Mechanical Science and Technology, 34(8):3227–3232, 2020. Binhua Gui, Hui Zhou, Jun Zheng, Xingguang Liu, Xingguo Feng, Yanshuai Zhang, and Lamaocao Yang. Microstructure and properties of TiAlCrN ceramic coatings deposited by hybrid HiPIMS/DC magnetron co-sputtering. Ceramics International, 47(6):8175– 8183, 2021. D. Cavaleiro, S. Carvalho, A. Cavaleiro, and F. Fernandes. TiSiN(Ag) films deposited by HiPIMS working in DOMS mode: Effect of Ag content on structure, mechanical properties and thermal stability. Applied Surface Science, 478(October 2018):426–434, 2019.D. Cavaleiro, S. Carvalho, A. Cavaleiro, and F. Fernandes. TiSiN(Ag) films deposited by HiPIMS working in DOMS mode: Effect of Ag content on structure, mechanical properties and thermal stability. Applied Surface Science, 478(October 2018):426–434, 2019. Bing Zhou, Yiming Wang, Zhubo Liu, Jiaqi Zhi, Hui Sun, Yongsheng Wang, Yanxia Wu, Hongjun Hei, and Shengwang Yu. Effect of modulation ratio on microstructure and tribological properties of TiAlN/TiAlCN multilayer coatings prepared by multiexcitation source plasma. Vacuum, 211(September 2022):111917, 2023. Hong shuai CAO, Fu jia LIU, Hao LI, Wen zhong LUO, Fu gang QI, Li wei LU, Nie ZHAO, and Xiao ping OUYANG. Effect of bias voltage on microstructure, mechanical and tribological properties of TiAlN coatings. Transactions of Nonferrous Metals Society of China (English Edition), 32(11):3596–3609, 2022. Aleksandar Mileti, Peter Panjan, Miha Cekada, Lazar Kova, and Goran Dra. Nanolayer CrAlN / TiSiN coating designed for tribological applications. 47(August 2020):2022– 2033, 2022. Lan Zhang, Yong Qing Shen, Yi man Zhao, Shu Nian Chen, Xiao Ouyang, Xu Zhang, Hong Liang, Bin Liao, and Lin Chen. Structure control of high-quality TiAlN Monolithic and TiAlN/TiAl multilayer coatings based on filtered cathodic vacuum arc technique. Surfaces and Interfaces, 38(April 2022):102836, 2023. Tomas Polcar and Albano Cavaleiro. High temperature properties of CrAlN, CrAlSiN and AlCrSiN coatings - Structure and oxidation. Materials Chemistry and Physics, 129(1-2):195–201, 2011. H. Chen, B. C. Zheng, Y. G. Li, Z. L. Wu, and M. K. Lei. Flexible hard TiAlSiN nanocomposite coatings deposited by modulated pulsed power magnetron sputtering with controllable peak power. Thin Solid Films, 669(May 2018):377–386, 2019. Li Chun Chang, Ming Ching Sung, and Yung I. Chen. Effects of bias voltage and substrate temperature on the mechanical properties and oxidation behavior of CrSiN films. Vacuum, 194(September):1–9, 2021 JinfengWu, Nairu He, Hongxuan Li, Xiaohong Liu, Li Ji, Xiaopeng Huang, and Jianmin Chen. Deposition and characterization of TiAlSiN coatings prepared by hybrid PVD coating system. Surface and Interface Analysis, 47(2):184–191, 2015. Tomas Polcar and Albano Cavaleiro. High temperature behavior of nanolayered CrAl- TiN coating: Thermal stability, oxidation, and tribological properties. Surface and Coatings Technology, 257:70–77, 2014. Di Wang, Song sheng Lin, Qian Shi, Yu na Xue, Hong zhi Yang, Dong can Zhang, Zhong zhan Xu, Chao qian Guo, Ming jiang Dai, Bai ling Jiang, and Ke song Zhou. Microstructure effects on fracture failure mechanism of CrAl/CrAlN coating. Ceramics International, 47(3):3657–3664, 2021. S. Veprek, R. F. Zhang, M. G.J. Veprek-Heijman, S. H. Sheng, and A. S. Argon. Superhard nanocomposites: Origin of hardness enhancement, properties and applications. Surface and Coatings Technology, 204(12-13):1898–1906, 2010. J¨org Patscheider, Thomas Zehnder, and Matthieu Diserens. Structure-performance relations in nanocomposite coatings. Surface and Coatings Technology, 146-147:201–208, 2001. Q. Luo, W. M. Rainforth, and W. D. M¨unz. TEM observations of wear mechanisms of TiAlCrN and TiAlN/CrN coatings grown by combined steered-arc/unbalanced magnetron deposition. Wear, 225-229(I):74–82, 1999. A. E. Santana, A. Karimi, V. H. Derflinger, and A. Sch¨utze. Microstructure and mechanical behavior of TiAlCrN multilayer thin films. Surface and Coatings Technology, 177-178:334–340, 2004. Jyh Wei Lee and Yue Chyuan Chang. A study on the microstructures and mechanical properties of pulsed DC reactive magnetron sputtered Cr-Si-N nanocomposite coatings. Surface and Coatings Technology, 202(4-7):831–836, 2007. Yin Yu Chang and Chia Yuan Hsiao. High temperature oxidation resistance of multicomponent Cr-Ti-Al-Si-N coatings. Surface and Coatings Technology, 204(6-7):992–996, 2009. Li Chun Chang, Yu Heng Liu, and Yung I. Chen. Mechanical properties and oxidation behavior of Cr-Si-N coatings. Coatings, 9(8), 2019. C.H. Lin, J.G. Duh, and J.W. Yeh. Multi-component nitride coatings derived from Ti–Al–Cr–Si–V target in RF magnetron sputter. Surface and Coatings Technology, 201(14):6304–6308, apr 2007. Hongbo Ju, Dian Yu, Lihua Yu, Ning Ding, Junhua Xu, Xindi Zhang, Yan Zheng, Lei Yang, and Xiaochen He. The influence of Ag contents on the microstructure, mechanical and tribological properties of ZrN-Ag films. Vacuum, 148:54–61, 2018. |
dc.relation.issupplementto.none.fl_str_mv |
Haizhi Ye. An overview of the development of Al-Si-alloy based material for engine applications. Journal of Materials Engineering and Performance, 12(3):288–297, 2003. |
dc.relation.instname.none.fl_str_mv |
Universidad Pedagógica y Tecnológica de Colombia |
dc.relation.reponame.none.fl_str_mv |
Repositorio Universidad Pedagógica y Tecnológica de Colombia |
dc.relation.repourl.none.fl_str_mv |
https://repositorio.uptc.edu.co/ |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.creativecommons.en.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 International http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Pedagógica y Tecnológica de Colombia |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.none.fl_str_mv |
Tunja |
dc.publisher.program.none.fl_str_mv |
Doctorado en Ingeniería y Ciencia de los Materiales |
publisher.none.fl_str_mv |
Universidad Pedagógica y Tecnológica de Colombia |
institution |
Universidad Pedagógica y Tecnológica de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.uptc.edu.co/bitstreams/aec6f476-caab-4981-a9f4-e447d0fac967/download https://repositorio.uptc.edu.co/bitstreams/fb457030-7598-476d-b117-493b673f33bc/download https://repositorio.uptc.edu.co/bitstreams/aa1cced2-eebb-473d-88ce-3e8f8df686ab/download https://repositorio.uptc.edu.co/bitstreams/4942911b-8887-4751-87ec-50323d79778e/download https://repositorio.uptc.edu.co/bitstreams/45f6147c-0dfd-48ca-90b5-ff60307abdf9/download https://repositorio.uptc.edu.co/bitstreams/975eb892-6b89-452d-b279-8d706377a886/download https://repositorio.uptc.edu.co/bitstreams/1adcb273-d835-4056-a1c5-1c6623b129d1/download |
bitstream.checksum.fl_str_mv |
900bbf8d923c3cda92f989cfc879bb97 609188498747092263b20d7798d54f67 4460e5956bc1d1639be9ae6146a50347 48c3c6dcdfe6248a3c413275104d3a74 ff4c8ff01d544500ea4bfea43e6108c1 b4f87437a23aab5dac4125e089d8d9a6 1c393e5ad39e325c65dd6119b63e125b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UPTC |
repository.mail.fl_str_mv |
repositorio.uptc@uptc.edu.co |
_version_ |
1828146463768576000 |
spelling |
Moreno Telléz, Carlos MauricioOlaya, Jhon JairoOrdóñez Jiménez, Andrés Felipe2024-07-24T20:47:00Z2024-07-24T20:47:00Z2023https://repositorio.uptc.edu.co/handle/001/17193En esta investigación se elige utilizar silicio y fuentes HIPIMS para caracterizar y estudiar recubrimientos por primera vez en el país. Las fuentes HIPIMS mejoran las propiedades y densidad de los recubrimientos. El documento se estructurado en marco referencial, con conceptos e investigaciones previas, procedimiento experimental, con detalles de obtención y técnicas de caracterización, resultados y discusión, presentando resultados y análisis de la caracterización y finalmente contiene conclusiones y recomendaciones, con hallazgos, implicaciones y posibilidades futuras.Incluye bibliografía y webgrafía: páginas 83-94application/pdfapplication/pdfUniversidad Pedagógica y Tecnológica de ColombiaFacultad de IngenieríaTunjaDoctorado en Ingeniería y Ciencia de los MaterialesSupakanya Khanchaiyaphum, Charnnarong Saikaew, Anurat Wisitsoraat, and Surasak Surinphong. Wear behaviours of filtered cathodic arc deposited TiN, TiAlSiN and TiCrAlSiN coatings on AISI 316 stainless steel fishing net-weaving machine components under dry soft-sliding against nylon fibres. Wear, 390-391(November 2016):146–154, 2017.S. J. Bull and E. G. Berasetegui. An overview of the potential of quantitative coating adhesion measurement by scratch testing. Tribology International, 39(2):99–114, 2006.Magnetron sputtering: A review of recent developments and applications. Vacuum, 56(3):159–172, 2000.REN QIU. Electron Microscopy Investigation of Detailed Microstructures of CVD TiAlN and TiN Coatings: Effects of Gas Flow and Substrate on Coating Microstructure. (May 2020):55, 2020.Paul H. Mayrhofer, Christian Mitterer, Lars Hultman, and Helmut Clemens. Microstructural design of hard coatings. Progress in Materials Science, 51(8):1032–1114, 2006Kirsten Bobzin. High-performance coatings for cutting tools. CIRP Journal of Manufacturing Science and Technology, 18(2016):1–9, 2017.Maxime Pellan, Sabine Lay, Jean Michel Missiaen, Susanne Norgren, Jenny Angseryd, Ernesto Coronel, and Tomas Persson. A new insight into the =2 grain boundary characteristics in WC powder and in WC-Co sintered materials. Acta Materialia, 155:372–378, 2018.Jos´e M. Albella. Capas delgadas y modificaci´on superficial de materiales. 2018Hermann A. Jehn. Multicomponent and multiphase hard coatings for tribological applications. Surface and Coatings Technology, 131(1-3):433–440, 2000J. Musil. Hard and superhard nanocomposite coatings. Surf. Coatings Technol, 125:322– 330, 2000.Sam Zhang, Deen Sun, Yongqing Fu, and Hejun Du. Recent advances of superhard nanocomposite coatings: A review. Surface and Coatings Technology, 167(2-3):113–119, 2003.J. Musil. Hard Nanocomposite Films Prepared by Reactive Magnetron Sputtering. Nanostructured Thin Films and Nanodispersion Strengthened Coatings, pages 43–56, 2006.Roland Hauert and J¨org Patscheider. From alloying to nanocomposites - Improved performance of hard coatings. Advanced Engineering Materials, 2(5):247–259, 2000.G. S. Fox-Rabinovich, A. I. Kovalev, M. H. Aguirre, B. D. Beake, K. Yamamoto, S. C. Veldhuis, J. L. Endrino, D. L. Wainstein, and A. Y. Rashkovskiy. Design and performance of AlTiN and TiAlCrN PVD coatings for machining of hard to cut materials. Surface and Coatings Technology, 204(4):489–496, 2009.K. Yamamoto, T. Sato, K. Takahara, and K. Hanaguri. Properties of (Ti,Cr,Al)N coatings with high Al content deposited by new plasma enhanced arc-cathode. Surface and Coatings Technology, 174-175:620–626, 2003.Jun Zhang, Huimin Lv, Guanying Cui, Zhi Jing, and Chuang Wang. Effects of bias voltage on the microstructure and mechanical properties of (Ti,Al,Cr)N hard films with N-gradient distributions. Thin Solid Films, 519(15):4818–4823, 2011.G. S. Fox-Rabinovich, K. Yamomoto, S. C. Veldhuis, A. I. Kovalev, and G. K. Dosbaeva. Tribological adaptability of TiAlCrN PVD coatings under high performance dry machining conditions. Surface and Coatings Technology, 200(5-6):1804–1813, 2005.Yu X Xu, Helmut Riedl, David Holec, Li Chen, Yong Du, and Paul H Mayrhofer. Thermal stability and oxidation resistance of sputtered Ti[sbnd]Al[sbnd]Cr[sbnd]N hard coatings. Surface and Coatings Technology, 324:48–56, 2017P. L. Tam, Z. F. Zhou, P. W. Shum, and K. Y. Li. Structural, mechanical, and tribological studies of Cr-Ti-Al-N coating with different chemical compositions. Thin Solid Films, 516(16):5725–5731, 2008.F. Fernandes, M. Danek, T. Polcar, and A. Cavaleiro. Tribological and cutting performance of TiAlCrN films with different Cr contents deposited with multilayered structure. Tribology International, 119(November 2017):345–353, 2018.Feng Huang, Guohua Wei, John A. Barnard, and Mark L. Weaver. Microstructure and stress development in magnetron sputtered TiAlCr(N) films. Surface and Coatings Technology, 146-147:391–397, 2001.Andr´e Anders. Tutorial: Reactive high power impulse magnetron sputtering (RHiPIMS). Journal of Applied Physics, 121(17), 2017.J. Bohlmark, M. ¨ Ostbye, M. Lattemann, H. Ljungcrantz, T. Rosell, and U. Helmersson. Guiding the deposition flux in an ionized magnetron discharge. Thin Solid Films, 515(4):1928–1931, 2006.K. Bobzin, N. Bagcivan, P. Immich, S. Bolz, J. Alami, and R. Cremer. Advantages of nanocomposite coatings deposited by high power pulse magnetron sputtering technology. Journal of Materials Processing Technology, 209(1):165–170, 2009.Vladimir Kouznetsov, Karol Mac´Ak, Jochen M. Schneider, Ulf Helmersson, and Ivan Petrov. A novel pulsed magnetron sputter technique utilizing very high target power densities. Surface and Coatings Technology, 122(2-3):290–293, 1999.Ulf Helmersson, Martina Lattemann, Johan Bohlmark, Arutiun P. Ehiasarian, and Jon Tomas Gudmundsson. Ionized physical vapor deposition (IPVD): A review of technology and applications. Thin Solid Films, 513(1-2):1–24, 2006.D. J. Christie. Target material pathways model for high power pulsed magnetron sputtering. Journal of Vacuum Science Technology A: Vacuum, Surfaces, and Films, 23(2):330–335, 2005.U. Helmersson, M. Lattemann, J. Alami, J. Bohlmark, A. P. Ehiasarian, and J. T. Gudmundsson. High power impulse magnetron sputtering discharges and thin film growth: A brief review. Proceedings, Annual Technical Conference - Society of Vacuum Coaters, (January):458–464, 2005.P. H. Mayrhofer, R. Rachbauer, D. Holec, F. Rovere, and J. M. Schneider. Protective Transition Metal Nitride Coatings. In Comprehensive Materials Processing, volume 4, pages 355–388. 2014.Michael Tkadletz, Nina Schalk, Rostislav Daniel, Jozef Keckes, Christoph Czettl, and Christian Mitterer. Advanced characterization methods for wear resistant hard coatings: A review on recent progress. Surface and Coatings Technology, 285:31–46, 2016.Li Chen, Yong Du, She Q. Wang, Ai J. Wang, and H. H. Xu. Mechanical properties and microstructural evolution of TiN coatings alloyed with Al and Si. Materials Science and Engineering A, 502(1-2):139–143, 2009.S. Schiller, G. Beister, J. Reschke, and G. Hoetzsch. TiN hard coatings deposited on high-speed steel substrates by reactive direct current magnetron sputtering. Journal of Vacuum Science Technology A: Vacuum, Surfaces, and Films, 5(4):2180–2183, 1987.M. Griepentrog, B. Mackrodt, G. Mark, and T. Linz. Properties of TiN hard coatings prepared by unbalanced magnetron sputtering and cathodic arc deposition using a uniand bipolar pulsed bias voltage. Surface and Coatings Technology, 74-75(PART 1):326– 332, 1995.L. von Fieandt, T. Larsson, E. Lindahl, O. B¨acke, and M. Boman. Chemical vapor deposition of TiN on transition metal substrates. Surface and Coatings Technology, 334(November 2017):373–383, 2018.Sajjad Ghasemi, Ali Shanaghi, and Paul K. Chu. Nano mechanical and wear properties of multi-layer Ti/TiN coatings deposited on Al 7075 by high-vacuum magnetron sputtering. Thin Solid Films, 638:96–104, 2017.N. Fateh, G. A. Fontalvo, G. Gassner, and C. Mitterer. Influence of high-temperature oxide formation on the tribological behaviour of TiN and VN coatings. Wear, 262(9- 10):1152–1158, 2007.Y. C. Chim, X. Z. Ding, X. T. Zeng, and S. Zhang. Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc. Thin Solid Films, 517(17):4845–4849, 2009.Sture Hogmark, Staffan Jacobson, and Mats Larsson. Design and evaluation of tribological coatings. Wear, 246(1-2):20–33, nov 2000.C. Liu, Q. Bi, and A. Matthews. EIS comparison on corrosion performance of PVD TiN and CrN coated mild steel in 0.5 N NaCl aqueous solution. Corrosion Science, 43(10):1953–1961, 2001.C. Liu, Q. Bi, H. Ziegele, A. Leyland, and A. Matthews. Structure and corrosion properties of PVD Cr–N coatings. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 20(3):772–780, 2002.Teisuke Sato, Yoshihiro Tada, Masanori Ozaki, Kyin Hoke, and Tatsuo Besshi. A crossed-cylinders testing for evaluation of wear and tribological properties of coated tools. Wear, 178(1-2):95–100, 1994.V. Ezirmik, E. Senel, K. Kazmanli, A. Erdemir, and M. ¨Urgen. Effect of copper addition on the temperature dependent reciprocating wear behaviour of CrN coatings. Surface and Coatings Technology, 202(4-7):866–870, 2007.Zhongrong Geng, Haixin Wang, Chengbing Wang, Liping Wang, and Guangan Zhang. Effect of Si content on the tribological properties of CrSiN films in air and water environments. Tribology International, 79:140–150, 2014.Manfeng Gong, Jian Chen, Xin Deng, and ShanghuaWu. Sliding wear behavior of TiAlN and AlCrN coatings on a unique cemented carbide substrate. International Journal of Refractory Metals and Hard Materials, 69:209–214, 2017.J Musil. Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness. Surface and Coatings Technology, 207:50–65, 2012.Li Chen, J¨org Paulitsch, Yong Du, and Paul H. Mayrhofer. Thermal stability and oxidation resistance of Ti-Al-N coatings. Surface and Coatings Technology, 206(11- 12):2954–2960, 2012.A. Siozios, D. C. Koutsogeorgis, E. Lidorikis, G. P. Dimitrakopulos, N. Pliatsikas, G. Vourlias, T. Kehagias, P. Komninou, W. Cranton, C. Kosmidis, and P. Patsalas. Laser-matter interactions, phase changes and diffusion phenomena during laser annealing of plasmonic AlN:Ag templates and their applications in optical encoding. Journal of Physics D: Applied Physics, 48(28):285306, 2015.Meng Ren, He long Yu, Li na Zhu, Hai qing Li, Hai dou Wang, Zhi guo Xing, and Bin shi Xu. Microstructure, mechanical properties and tribological behaviors of TiAlNAg composite coatings by pulsed magnetron sputtering method. Surface and Coatings Technology, 436(February):128286, 2022.P. H. Mayrhofer, F. Kunc, J. Musil, and C. Mitterer. A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings. Thin Solid Films, 415(1-2):151–159, 2002.Jae Il Jang, M. J. Lance, Songqing Wen, Ting Y. Tsui, and G. M. Pharr. Indentationinduced phase transformations in silicon: Influences of load, rate and indenter angle on the transformation behavior. Acta Materialia, 53(6):1759–1770, 2005Aijun Wang, Liangcai Zhou, Yi Kong, Yong Du, Zi Kui Liu, Shun Li Shang, Yifang Ouyang, Jiong Wang, Lijun Zhang, and Jianchuan Wang. First-principles study of binary special quasirandom structures for the Al-Cu, Al-Si, Cu-Si, and Mg-Si systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 33(4):769–773, 2009.J. M. Zuo, P. Blaha, and K. Schwarz. The theoretical charge density of silicon: Experimental testing of exchange and correlation potentials. Journal of Physics Condensed Matter, 9(36):7541–7561, 1997.J. L. Murray and A. J. McAlister. The Al-Si (Aluminum-Silicon) system. Bulletin of Alloy Phase Diagrams, 5(1):74–84, 1984.A. Bendijk, R. Delhez, L. Katgerman, Th H. De Keijser, E. J. Mittemeijer, and N. M. Van Der Pers. Characterization of Al-Si-alloys rapidly quenched from the melt. Journal of Materials Science, 15(11):2803–2810, 1980.Kazuhiro Nakata and Masao Ushio. Wear resistance of plasma sprayed Al-Si binary alloy coatings on A6063 Al alloy substrate. Surface and Coatings Technology, 142-144:277– 282, 2001.A. P´elisson, M. Parlinska-Wojtan, H. J. Hug, and J. Patscheider. Microstructure and mechanical properties of Al-Si-N transparent hard coatings deposited by magnetron sputtering. Surface and Coatings Technology, 202(4-7):884–889, 2007.Chi Lung Chang and Chi Song Huang. Effect of bias voltage on microstructure, mechanical and wear properties of Al-Si-N coatings deposited by cathodic arc evaporation. Thin Solid Films, 519(15):4923–4927, 2011.J. Musil, G. Remnev, V. Legostaev, V. Uglov, A. Lebedynskiy, A. Lauk, J. Proch´azka, S. Haviar, and E. Smolyanskiy. Flexible hard Al-Si-N films for high temperature operation. Surface and Coatings Technology, 307:1112–1118, 2016.Soni, Swati Kumari, S. K. Sharma, and S. K. Mishra. Effect of Deposition Pressure, Nitrogen Content and Substrate Temperature on Optical and Mechanical Behavior of Nanocomposite Al-Si-N Hard Coatings for Solar Thermal Applications. Journal of Materials Engineering and Performance, 27(12):6729–6736, 2018.Ji Cheng Ding, Qi Min Wang, Zhe Ren Liu, Seonhee Jeong, Teng Fei Zhang, and Kwang Ho Kim. Influence of bias voltage on the microstructure, mechanical and corrosion properties of AlSiN films deposited by HiPIMS technique. Journal of Alloys and Compounds, 772:112–121, 2019.C. Donnet and A. Erdemir. Historical developments and new trends in tribological and solid lubricant coatings. Surface and Coatings Technology, 180-181:76–84, 2004.A A Voevodin, J S Zabinski, and C Muratore. Recent advances in hard, tough, and low friction nanocomposite coatings, 2005.Ellis W. Delahoy. Design Considerations for High Temperature Furnaces. 1997.J. Gurland. New scientific approaches to development of tool materials. International Materials Reviews, 33(1):151–166, 1988.Paul A. Erickson. Physical and Chemical Hazards. Emergency Response Planning, (4):103–121, 1999.M. A G´omez Botero. Caracterizaci´on de las propiedades tribol´ogicas de los recubrimientos duros.Memoria presentada para optar al grado de Doctora Barcelona, Diciembre de 2005. 2006.L. Alden Kendall. Volume 18 of the ASM HandbookFriction, Lubrication, and Wear Technology. ASM Handbook, 18:430–437, 1992.Siegfried Hofmann. Auger- and X-Ray Photoelectron Spectroscopy in Materials Science. 2013.K. Bobzin, T. Br¨ogelmann, N. C. Kruppe, and M. Carlet. HPPMS TiAlCrSiN - Influence of substrate bias and pulse frequency on cutting performance. Surface and Coatings Technology, 397(June):126056, 2020.Yu Chu Kuo, Chaur Jeng Wang, and Jyh Wei Lee. The microstructure and mechanical properties evaluation of CrTiAlSiN coatings: Effects of silicon content. Thin Solid Films, 638:220–229, 2017.H. A. Mac´ıas, L. Yate, L. E. Coy, J. J. Olaya, and W. Aperador. Effect of nitrogen flow ratio on microstructure, mechanical and tribological properties of TiWSiN x thin film deposited by magnetron co-sputtering. Applied Surface Science, 456(June):445–456, 2018.Fuyang Cao, Paul Munroe, Zhifeng Zhou, and Zonghan Xie. Mechanically robust TiAl- SiN coatings prepared by pulsed-DC magnetron sputtering system: Scratch response and tribological performance. Thin Solid Films, 645(October 2017):222–230, 2018.Daniel — Musil. Novel Nanocomposite Coatings.Farooq Ahmad, Lin Zhang, Jun Zheng, Iram Sidra, and Shihong Zhang. Deposited on Plasma Nitrided AISI H13 Steels Using. 2020.Peter Panjan, Aljaˇz Drnovˇsek, and Goran Draˇzi´c. Influence of growth defects on the oxidation resistance of sputter-deposited tialn hard coatings. Coatings, 11(2):1–22, 2021.Awais Awan, Riffat Asim Pasha, Muhammad Shoaib Butt, Rizwan Ahmed Malik, Ibrahim M. Alarifi, Meshal Alzaid, Muhammad Latif, Ammar Naseer, Mohsin Saleem, and Hussein Alrobei. Corrosion and wear behavior of TiN PVD coated 304 stainlesssteel. Journal of Mechanical Science and Technology, 34(8):3227–3232, 2020.Binhua Gui, Hui Zhou, Jun Zheng, Xingguang Liu, Xingguo Feng, Yanshuai Zhang, and Lamaocao Yang. Microstructure and properties of TiAlCrN ceramic coatings deposited by hybrid HiPIMS/DC magnetron co-sputtering. Ceramics International, 47(6):8175– 8183, 2021.D. Cavaleiro, S. Carvalho, A. Cavaleiro, and F. Fernandes. TiSiN(Ag) films deposited by HiPIMS working in DOMS mode: Effect of Ag content on structure, mechanical properties and thermal stability. Applied Surface Science, 478(October 2018):426–434, 2019.D. Cavaleiro, S. Carvalho, A. Cavaleiro, and F. Fernandes. TiSiN(Ag) films deposited by HiPIMS working in DOMS mode: Effect of Ag content on structure, mechanical properties and thermal stability. Applied Surface Science, 478(October 2018):426–434, 2019.Bing Zhou, Yiming Wang, Zhubo Liu, Jiaqi Zhi, Hui Sun, Yongsheng Wang, Yanxia Wu, Hongjun Hei, and Shengwang Yu. Effect of modulation ratio on microstructure and tribological properties of TiAlN/TiAlCN multilayer coatings prepared by multiexcitation source plasma. Vacuum, 211(September 2022):111917, 2023.Hong shuai CAO, Fu jia LIU, Hao LI, Wen zhong LUO, Fu gang QI, Li wei LU, Nie ZHAO, and Xiao ping OUYANG. Effect of bias voltage on microstructure, mechanical and tribological properties of TiAlN coatings. Transactions of Nonferrous Metals Society of China (English Edition), 32(11):3596–3609, 2022.Aleksandar Mileti, Peter Panjan, Miha Cekada, Lazar Kova, and Goran Dra. Nanolayer CrAlN / TiSiN coating designed for tribological applications. 47(August 2020):2022– 2033, 2022.Lan Zhang, Yong Qing Shen, Yi man Zhao, Shu Nian Chen, Xiao Ouyang, Xu Zhang, Hong Liang, Bin Liao, and Lin Chen. Structure control of high-quality TiAlN Monolithic and TiAlN/TiAl multilayer coatings based on filtered cathodic vacuum arc technique. Surfaces and Interfaces, 38(April 2022):102836, 2023.Tomas Polcar and Albano Cavaleiro. High temperature properties of CrAlN, CrAlSiN and AlCrSiN coatings - Structure and oxidation. Materials Chemistry and Physics, 129(1-2):195–201, 2011.H. Chen, B. C. Zheng, Y. G. Li, Z. L. Wu, and M. K. Lei. Flexible hard TiAlSiN nanocomposite coatings deposited by modulated pulsed power magnetron sputtering with controllable peak power. Thin Solid Films, 669(May 2018):377–386, 2019.Li Chun Chang, Ming Ching Sung, and Yung I. Chen. Effects of bias voltage and substrate temperature on the mechanical properties and oxidation behavior of CrSiN films. Vacuum, 194(September):1–9, 2021JinfengWu, Nairu He, Hongxuan Li, Xiaohong Liu, Li Ji, Xiaopeng Huang, and Jianmin Chen. Deposition and characterization of TiAlSiN coatings prepared by hybrid PVD coating system. Surface and Interface Analysis, 47(2):184–191, 2015.Tomas Polcar and Albano Cavaleiro. High temperature behavior of nanolayered CrAl- TiN coating: Thermal stability, oxidation, and tribological properties. Surface and Coatings Technology, 257:70–77, 2014.Di Wang, Song sheng Lin, Qian Shi, Yu na Xue, Hong zhi Yang, Dong can Zhang, Zhong zhan Xu, Chao qian Guo, Ming jiang Dai, Bai ling Jiang, and Ke song Zhou. Microstructure effects on fracture failure mechanism of CrAl/CrAlN coating. Ceramics International, 47(3):3657–3664, 2021.S. Veprek, R. F. Zhang, M. G.J. Veprek-Heijman, S. H. Sheng, and A. S. Argon. Superhard nanocomposites: Origin of hardness enhancement, properties and applications. Surface and Coatings Technology, 204(12-13):1898–1906, 2010.J¨org Patscheider, Thomas Zehnder, and Matthieu Diserens. Structure-performance relations in nanocomposite coatings. Surface and Coatings Technology, 146-147:201–208, 2001.Q. Luo, W. M. Rainforth, and W. D. M¨unz. TEM observations of wear mechanisms of TiAlCrN and TiAlN/CrN coatings grown by combined steered-arc/unbalanced magnetron deposition. Wear, 225-229(I):74–82, 1999.A. E. Santana, A. Karimi, V. H. Derflinger, and A. Sch¨utze. Microstructure and mechanical behavior of TiAlCrN multilayer thin films. Surface and Coatings Technology, 177-178:334–340, 2004.Jyh Wei Lee and Yue Chyuan Chang. A study on the microstructures and mechanical properties of pulsed DC reactive magnetron sputtered Cr-Si-N nanocomposite coatings. Surface and Coatings Technology, 202(4-7):831–836, 2007.Yin Yu Chang and Chia Yuan Hsiao. High temperature oxidation resistance of multicomponent Cr-Ti-Al-Si-N coatings. Surface and Coatings Technology, 204(6-7):992–996, 2009.Li Chun Chang, Yu Heng Liu, and Yung I. Chen. Mechanical properties and oxidation behavior of Cr-Si-N coatings. Coatings, 9(8), 2019.C.H. Lin, J.G. Duh, and J.W. Yeh. Multi-component nitride coatings derived from Ti–Al–Cr–Si–V target in RF magnetron sputter. Surface and Coatings Technology, 201(14):6304–6308, apr 2007.Hongbo Ju, Dian Yu, Lihua Yu, Ning Ding, Junhua Xu, Xindi Zhang, Yan Zheng, Lei Yang, and Xiaochen He. The influence of Ag contents on the microstructure, mechanical and tribological properties of ZrN-Ag films. Vacuum, 148:54–61, 2018.Haizhi Ye. An overview of the development of Al-Si-alloy based material for engine applications. Journal of Materials Engineering and Performance, 12(3):288–297, 2003.Universidad Pedagógica y Tecnológica de ColombiaRepositorio Universidad Pedagógica y Tecnológica de Colombiahttps://repositorio.uptc.edu.co/http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Propiedades mecánicas y tribológicas de recubrimientos nanoestructurados de TiAlCrN - Si por co-sputtering con fuentes Hipimshttp://purl.org/redcol/resource_type/TMPDhttp://purl.org/coar/resource_type/c_db06http://purl.org/redcol/resource_type/TDhttp://purl.org/coar/version/c_970fb48d4fbd8a85Materiales nanoestructuradosAcero - CorrosiónRevestimientos protectoresCorrosión y anticorrosivosInvestigadoresPúblico generalORIGINALPropiedades_mecanicas_y_tribiologicas_de_recubrimientos.pdfPropiedades_mecanicas_y_tribiologicas_de_recubrimientos.pdfapplication/pdf31559799https://repositorio.uptc.edu.co/bitstreams/aec6f476-caab-4981-a9f4-e447d0fac967/download900bbf8d923c3cda92f989cfc879bb97MD51A_AFOI.pdfA_AFOI.pdfapplication/pdf627636https://repositorio.uptc.edu.co/bitstreams/fb457030-7598-476d-b117-493b673f33bc/download609188498747092263b20d7798d54f67MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uptc.edu.co/bitstreams/aa1cced2-eebb-473d-88ce-3e8f8df686ab/download4460e5956bc1d1639be9ae6146a50347MD53TEXTPropiedades_mecanicas_y_tribiologicas_de_recubrimientos.pdf.txtPropiedades_mecanicas_y_tribiologicas_de_recubrimientos.pdf.txtExtracted texttext/plain102032https://repositorio.uptc.edu.co/bitstreams/4942911b-8887-4751-87ec-50323d79778e/download48c3c6dcdfe6248a3c413275104d3a74MD54A_AFOI.pdf.txtA_AFOI.pdf.txtExtracted texttext/plain4https://repositorio.uptc.edu.co/bitstreams/45f6147c-0dfd-48ca-90b5-ff60307abdf9/downloadff4c8ff01d544500ea4bfea43e6108c1MD56THUMBNAILPropiedades_mecanicas_y_tribiologicas_de_recubrimientos.pdf.jpgPropiedades_mecanicas_y_tribiologicas_de_recubrimientos.pdf.jpgGenerated Thumbnailimage/jpeg6876https://repositorio.uptc.edu.co/bitstreams/975eb892-6b89-452d-b279-8d706377a886/downloadb4f87437a23aab5dac4125e089d8d9a6MD55A_AFOI.pdf.jpgA_AFOI.pdf.jpgGenerated Thumbnailimage/jpeg11077https://repositorio.uptc.edu.co/bitstreams/1adcb273-d835-4056-a1c5-1c6623b129d1/download1c393e5ad39e325c65dd6119b63e125bMD57001/17193oai:repositorio.uptc.edu.co:001/171932024-12-16 17:15:55.054http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co |