Adaptive methodology based on computational intelligence for time series modeling
Time series processes are important in several sectors like marketing, transport, energy, telecommunications, etc. Time series forecasting tasks can help in operative and strategic tasks. Several conventional and non-conventional techniques as ARIMA models, artificial neural networks (ANN), support...
- Autores:
-
Jiménez Mares, Jamer René
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2021
- Institución:
- Universidad del Norte
- Repositorio:
- Repositorio Uninorte
- Idioma:
- eng
- OAI Identifier:
- oai:manglar.uninorte.edu.co:10584/10818
- Acceso en línea:
- http://hdl.handle.net/10584/10818
- Palabra clave:
- Inteligencia computacional
Análisis de series de tiempo
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by/4.0/
id |
REPOUNORT2_fb040ad18dbdf9ae9d415e254b7d0111 |
---|---|
oai_identifier_str |
oai:manglar.uninorte.edu.co:10584/10818 |
network_acronym_str |
REPOUNORT2 |
network_name_str |
Repositorio Uninorte |
repository_id_str |
|
dc.title.es_ES.fl_str_mv |
Adaptive methodology based on computational intelligence for time series modeling |
title |
Adaptive methodology based on computational intelligence for time series modeling |
spellingShingle |
Adaptive methodology based on computational intelligence for time series modeling Inteligencia computacional Análisis de series de tiempo |
title_short |
Adaptive methodology based on computational intelligence for time series modeling |
title_full |
Adaptive methodology based on computational intelligence for time series modeling |
title_fullStr |
Adaptive methodology based on computational intelligence for time series modeling |
title_full_unstemmed |
Adaptive methodology based on computational intelligence for time series modeling |
title_sort |
Adaptive methodology based on computational intelligence for time series modeling |
dc.creator.fl_str_mv |
Jiménez Mares, Jamer René |
dc.contributor.advisor.none.fl_str_mv |
Quintero Monroy, Christian Giovanny |
dc.contributor.author.none.fl_str_mv |
Jiménez Mares, Jamer René |
dc.subject.lemb.none.fl_str_mv |
Inteligencia computacional Análisis de series de tiempo |
topic |
Inteligencia computacional Análisis de series de tiempo |
description |
Time series processes are important in several sectors like marketing, transport, energy, telecommunications, etc. Time series forecasting tasks can help in operative and strategic tasks. Several conventional and non-conventional techniques as ARIMA models, artificial neural networks (ANN), support vector machines (SVM), Regression Tree Ensembles (RTE) or combinations of them have been used for time series modeling. The implementation of this type of techniques provides support in time series modeling, however, normally the trained models may lose performance due to the dynamic behavior of the phenomena. A methodology capable to assess the performance and maintenance of the models is necessary to guarantee the automatic adaptability in each case. Hence, in this research an adaptive methodology based on computational intelligence for time series modeling is proposed. In this case, an Auditor is developed, which allows identifying when a model must be retrained or updated before losing forecast performance. Furthermore, when the retrain process is not achieving a better performance, a new metric is proposed to choose which time series modeling technique is included in the knowledge base. The intelligent system allows building the time series model automatically, considering exogenous variables such as weather, calendar and statistical transformations to group and simplify the number of models required. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-08-08T20:51:25Z |
dc.date.available.none.fl_str_mv |
2022-08-08T20:51:25Z |
dc.type.es_ES.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_dc82b40f9837b551 |
dc.type.coar.es_ES.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.driver.es_ES.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.content.es_ES.fl_str_mv |
Text |
format |
http://purl.org/coar/resource_type/c_db06 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10584/10818 |
url |
http://hdl.handle.net/10584/10818 |
dc.language.iso.es_ES.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.es_ES.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.es_ES.fl_str_mv |
application/pdf |
dc.format.extent.es_ES.fl_str_mv |
129 páginas |
dc.publisher.es_ES.fl_str_mv |
Universidad del Norte |
dc.publisher.program.es_ES.fl_str_mv |
Doctorado en Ingeniería Eléctrica y Electrónica |
dc.publisher.department.es_ES.fl_str_mv |
Departamento de eléctrica y electrónica |
dc.publisher.place.es_ES.fl_str_mv |
Barranquilla, Colombia |
institution |
Universidad del Norte |
bitstream.url.fl_str_mv |
https://manglar.uninorte.edu.co/bitstream/10584/10818/1/1042426180.pdf https://manglar.uninorte.edu.co/bitstream/10584/10818/2/license.txt |
bitstream.checksum.fl_str_mv |
75ca4d8acae540ba6cec9c02131f53b5 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital de la Universidad del Norte |
repository.mail.fl_str_mv |
mauribe@uninorte.edu.co |
_version_ |
1818112432432742400 |
spelling |
Quintero Monroy, Christian GiovannyJiménez Mares, Jamer René2022-08-08T20:51:25Z2022-08-08T20:51:25Z2021http://hdl.handle.net/10584/10818Time series processes are important in several sectors like marketing, transport, energy, telecommunications, etc. Time series forecasting tasks can help in operative and strategic tasks. Several conventional and non-conventional techniques as ARIMA models, artificial neural networks (ANN), support vector machines (SVM), Regression Tree Ensembles (RTE) or combinations of them have been used for time series modeling. The implementation of this type of techniques provides support in time series modeling, however, normally the trained models may lose performance due to the dynamic behavior of the phenomena. A methodology capable to assess the performance and maintenance of the models is necessary to guarantee the automatic adaptability in each case. Hence, in this research an adaptive methodology based on computational intelligence for time series modeling is proposed. In this case, an Auditor is developed, which allows identifying when a model must be retrained or updated before losing forecast performance. Furthermore, when the retrain process is not achieving a better performance, a new metric is proposed to choose which time series modeling technique is included in the knowledge base. The intelligent system allows building the time series model automatically, considering exogenous variables such as weather, calendar and statistical transformations to group and simplify the number of models required.DoctoradoDoctor en Ingeniería Eléctrica y Electrónicaapplication/pdf129 páginasengUniversidad del NorteDoctorado en Ingeniería Eléctrica y ElectrónicaDepartamento de eléctrica y electrónicaBarranquilla, ColombiaAdaptive methodology based on computational intelligence for time series modelingTrabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06info:eu-repo/semantics/doctoralThesisTexthttp://purl.org/coar/version/c_dc82b40f9837b551https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Inteligencia computacionalAnálisis de series de tiempoEstudiantesDoctoradoORIGINAL1042426180.pdf1042426180.pdfapplication/pdf3458758https://manglar.uninorte.edu.co/bitstream/10584/10818/1/1042426180.pdf75ca4d8acae540ba6cec9c02131f53b5MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://manglar.uninorte.edu.co/bitstream/10584/10818/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5210584/10818oai:manglar.uninorte.edu.co:10584/108182022-08-08 15:51:26.014Repositorio Digital de la Universidad del Nortemauribe@uninorte.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |