Adaptive methodology based on computational intelligence for time series modeling

Time series processes are important in several sectors like marketing, transport, energy, telecommunications, etc. Time series forecasting tasks can help in operative and strategic tasks. Several conventional and non-conventional techniques as ARIMA models, artificial neural networks (ANN), support...

Full description

Autores:
Jiménez Mares, Jamer René
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad del Norte
Repositorio:
Repositorio Uninorte
Idioma:
eng
OAI Identifier:
oai:manglar.uninorte.edu.co:10584/10818
Acceso en línea:
http://hdl.handle.net/10584/10818
Palabra clave:
Inteligencia computacional
Análisis de series de tiempo
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id REPOUNORT2_fb040ad18dbdf9ae9d415e254b7d0111
oai_identifier_str oai:manglar.uninorte.edu.co:10584/10818
network_acronym_str REPOUNORT2
network_name_str Repositorio Uninorte
repository_id_str
dc.title.es_ES.fl_str_mv Adaptive methodology based on computational intelligence for time series modeling
title Adaptive methodology based on computational intelligence for time series modeling
spellingShingle Adaptive methodology based on computational intelligence for time series modeling
Inteligencia computacional
Análisis de series de tiempo
title_short Adaptive methodology based on computational intelligence for time series modeling
title_full Adaptive methodology based on computational intelligence for time series modeling
title_fullStr Adaptive methodology based on computational intelligence for time series modeling
title_full_unstemmed Adaptive methodology based on computational intelligence for time series modeling
title_sort Adaptive methodology based on computational intelligence for time series modeling
dc.creator.fl_str_mv Jiménez Mares, Jamer René
dc.contributor.advisor.none.fl_str_mv Quintero Monroy, Christian Giovanny
dc.contributor.author.none.fl_str_mv Jiménez Mares, Jamer René
dc.subject.lemb.none.fl_str_mv Inteligencia computacional
Análisis de series de tiempo
topic Inteligencia computacional
Análisis de series de tiempo
description Time series processes are important in several sectors like marketing, transport, energy, telecommunications, etc. Time series forecasting tasks can help in operative and strategic tasks. Several conventional and non-conventional techniques as ARIMA models, artificial neural networks (ANN), support vector machines (SVM), Regression Tree Ensembles (RTE) or combinations of them have been used for time series modeling. The implementation of this type of techniques provides support in time series modeling, however, normally the trained models may lose performance due to the dynamic behavior of the phenomena. A methodology capable to assess the performance and maintenance of the models is necessary to guarantee the automatic adaptability in each case. Hence, in this research an adaptive methodology based on computational intelligence for time series modeling is proposed. In this case, an Auditor is developed, which allows identifying when a model must be retrained or updated before losing forecast performance. Furthermore, when the retrain process is not achieving a better performance, a new metric is proposed to choose which time series modeling technique is included in the knowledge base. The intelligent system allows building the time series model automatically, considering exogenous variables such as weather, calendar and statistical transformations to group and simplify the number of models required.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-08-08T20:51:25Z
dc.date.available.none.fl_str_mv 2022-08-08T20:51:25Z
dc.type.es_ES.fl_str_mv Trabajo de grado - Doctorado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_dc82b40f9837b551
dc.type.coar.es_ES.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.driver.es_ES.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.content.es_ES.fl_str_mv Text
format http://purl.org/coar/resource_type/c_db06
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10584/10818
url http://hdl.handle.net/10584/10818
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.es_ES.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.es_ES.fl_str_mv application/pdf
dc.format.extent.es_ES.fl_str_mv 129 páginas
dc.publisher.es_ES.fl_str_mv Universidad del Norte
dc.publisher.program.es_ES.fl_str_mv Doctorado en Ingeniería Eléctrica y Electrónica
dc.publisher.department.es_ES.fl_str_mv Departamento de eléctrica y electrónica
dc.publisher.place.es_ES.fl_str_mv Barranquilla, Colombia
institution Universidad del Norte
bitstream.url.fl_str_mv https://manglar.uninorte.edu.co/bitstream/10584/10818/1/1042426180.pdf
https://manglar.uninorte.edu.co/bitstream/10584/10818/2/license.txt
bitstream.checksum.fl_str_mv 75ca4d8acae540ba6cec9c02131f53b5
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Digital de la Universidad del Norte
repository.mail.fl_str_mv mauribe@uninorte.edu.co
_version_ 1818112432432742400
spelling Quintero Monroy, Christian GiovannyJiménez Mares, Jamer René2022-08-08T20:51:25Z2022-08-08T20:51:25Z2021http://hdl.handle.net/10584/10818Time series processes are important in several sectors like marketing, transport, energy, telecommunications, etc. Time series forecasting tasks can help in operative and strategic tasks. Several conventional and non-conventional techniques as ARIMA models, artificial neural networks (ANN), support vector machines (SVM), Regression Tree Ensembles (RTE) or combinations of them have been used for time series modeling. The implementation of this type of techniques provides support in time series modeling, however, normally the trained models may lose performance due to the dynamic behavior of the phenomena. A methodology capable to assess the performance and maintenance of the models is necessary to guarantee the automatic adaptability in each case. Hence, in this research an adaptive methodology based on computational intelligence for time series modeling is proposed. In this case, an Auditor is developed, which allows identifying when a model must be retrained or updated before losing forecast performance. Furthermore, when the retrain process is not achieving a better performance, a new metric is proposed to choose which time series modeling technique is included in the knowledge base. The intelligent system allows building the time series model automatically, considering exogenous variables such as weather, calendar and statistical transformations to group and simplify the number of models required.DoctoradoDoctor en Ingeniería Eléctrica y Electrónicaapplication/pdf129 páginasengUniversidad del NorteDoctorado en Ingeniería Eléctrica y ElectrónicaDepartamento de eléctrica y electrónicaBarranquilla, ColombiaAdaptive methodology based on computational intelligence for time series modelingTrabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06info:eu-repo/semantics/doctoralThesisTexthttp://purl.org/coar/version/c_dc82b40f9837b551https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Inteligencia computacionalAnálisis de series de tiempoEstudiantesDoctoradoORIGINAL1042426180.pdf1042426180.pdfapplication/pdf3458758https://manglar.uninorte.edu.co/bitstream/10584/10818/1/1042426180.pdf75ca4d8acae540ba6cec9c02131f53b5MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://manglar.uninorte.edu.co/bitstream/10584/10818/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5210584/10818oai:manglar.uninorte.edu.co:10584/108182022-08-08 15:51:26.014Repositorio Digital de la Universidad del Nortemauribe@uninorte.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=