Sentiment analysis of reviews to determine the reception of a product using machine learning and data mining techniques

Leer múltiples reseñas de productos puede resultar tedioso, y concluir si un producto ha gustado o no a sus consumidores es complicado, por lo que es necesario implementar una herramienta que analice todas las reseñas de un producto y determine su polaridad. Lo anterior con el fin de agilizar y mejo...

Full description

Autores:
Espitaleta, Julián
García, Kelly
Maza, Jose
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad del Norte
Repositorio:
Repositorio Uninorte
Idioma:
spa
OAI Identifier:
oai:manglar.uninorte.edu.co:10584/11237
Acceso en línea:
http://hdl.handle.net/10584/11237
Palabra clave:
Analisis de sentimientos
Clasificacion
Aprendizaje automatico
Mineria de datos
Data mining
Sentiment analysis
Classification
Machine learning
Rights
License
Universidad del Norte
id REPOUNORT2_ebd60480faa2103aac87dd80db7857ce
oai_identifier_str oai:manglar.uninorte.edu.co:10584/11237
network_acronym_str REPOUNORT2
network_name_str Repositorio Uninorte
repository_id_str
dc.title.en_US.fl_str_mv Sentiment analysis of reviews to determine the reception of a product using machine learning and data mining techniques
dc.title.es_ES.fl_str_mv Análisis de sentimientos de reseñas para determinar la acogida de un producto utilizando técnicas de machine learning y data mining
title Sentiment analysis of reviews to determine the reception of a product using machine learning and data mining techniques
spellingShingle Sentiment analysis of reviews to determine the reception of a product using machine learning and data mining techniques
Analisis de sentimientos
Clasificacion
Aprendizaje automatico
Mineria de datos
Data mining
Sentiment analysis
Classification
Machine learning
title_short Sentiment analysis of reviews to determine the reception of a product using machine learning and data mining techniques
title_full Sentiment analysis of reviews to determine the reception of a product using machine learning and data mining techniques
title_fullStr Sentiment analysis of reviews to determine the reception of a product using machine learning and data mining techniques
title_full_unstemmed Sentiment analysis of reviews to determine the reception of a product using machine learning and data mining techniques
title_sort Sentiment analysis of reviews to determine the reception of a product using machine learning and data mining techniques
dc.creator.fl_str_mv Espitaleta, Julián
García, Kelly
Maza, Jose
dc.contributor.advisor.none.fl_str_mv Nieto, Wilson
Zurek, Eduardo
dc.contributor.author.none.fl_str_mv Espitaleta, Julián
García, Kelly
Maza, Jose
dc.subject.es_ES.fl_str_mv Analisis de sentimientos
Clasificacion
Aprendizaje automatico
Mineria de datos
Data mining
topic Analisis de sentimientos
Clasificacion
Aprendizaje automatico
Mineria de datos
Data mining
Sentiment analysis
Classification
Machine learning
dc.subject.en_US.fl_str_mv Sentiment analysis
Classification
Machine learning
description Leer múltiples reseñas de productos puede resultar tedioso, y concluir si un producto ha gustado o no a sus consumidores es complicado, por lo que es necesario implementar una herramienta que analice todas las reseñas de un producto y determine su polaridad. Lo anterior con el fin de agilizar y mejorar la toma de decisiones sobre un producto por parte de los interesados, así como la relación cliente-empresa, evaluando las reseñas bajo un mismo críterio. Durante el desarrollo del proyecto se diseñó e implementó la estrategia utilizando técnicas de Machine learning y Data mining para solucionar el problema planteado. Como resultado se implemento un modelo por medio de un dataset, luego se aplicó web scrapping a la página web de Amazon, un reconocido E-commerce, con el fin de extraer las reseñas de un producto dado, se visualizaron las reseñas de este a través de librerías de Python para luego ser procesadas y así realizar un analisis de sentimientos. Lo anterior permitió concluir la polaridad de un producto dado haciendo uso de tecnicas de machine learning y data mining.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-12-07T20:02:03Z
dc.date.available.none.fl_str_mv 2022-12-07T20:02:03Z
dc.date.issued.none.fl_str_mv 2022-11-30
dc.type.es_ES.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10584/11237
url http://hdl.handle.net/10584/11237
dc.language.iso.es_ES.fl_str_mv spa
language spa
dc.rights.es_ES.fl_str_mv Universidad del Norte
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Universidad del Norte
http://purl.org/coar/access_right/c_abf2
dc.publisher.es_ES.fl_str_mv Barranquilla, Universidad del Norte, 2022
institution Universidad del Norte
bitstream.url.fl_str_mv https://manglar.uninorte.edu.co/bitstream/10584/11237/1/Informe_Final-Espitaleta_Garcia_Maza.pdf
https://manglar.uninorte.edu.co/bitstream/10584/11237/2/license.txt
bitstream.checksum.fl_str_mv 1dc0d82b67055972e22051c0821d56a0
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Digital de la Universidad del Norte
repository.mail.fl_str_mv mauribe@uninorte.edu.co
_version_ 1812183107604840448
spelling Nieto, WilsonZurek, EduardoEspitaleta, JuliánGarcía, KellyMaza, Jose2022-12-07T20:02:03Z2022-12-07T20:02:03Z2022-11-30http://hdl.handle.net/10584/11237Leer múltiples reseñas de productos puede resultar tedioso, y concluir si un producto ha gustado o no a sus consumidores es complicado, por lo que es necesario implementar una herramienta que analice todas las reseñas de un producto y determine su polaridad. Lo anterior con el fin de agilizar y mejorar la toma de decisiones sobre un producto por parte de los interesados, así como la relación cliente-empresa, evaluando las reseñas bajo un mismo críterio. Durante el desarrollo del proyecto se diseñó e implementó la estrategia utilizando técnicas de Machine learning y Data mining para solucionar el problema planteado. Como resultado se implemento un modelo por medio de un dataset, luego se aplicó web scrapping a la página web de Amazon, un reconocido E-commerce, con el fin de extraer las reseñas de un producto dado, se visualizaron las reseñas de este a través de librerías de Python para luego ser procesadas y así realizar un analisis de sentimientos. Lo anterior permitió concluir la polaridad de un producto dado haciendo uso de tecnicas de machine learning y data mining.Reading multiple product reviews can be tedious, and concluding whether or not consumers liked a product is complicated, so it is necessary to implement a tool that analyzes all reviews of a product and determines their polarity. The foregoing in order to streamline and improve decision-making about a product by the interested parties, as well as the client-company relationship, evaluating the reviews under the same criteria. During the development of the project, the strategy was developed and implemented using Machine learning and Data mining techniques to solve the problem posed. As a result, a model was implemented through a data set, then web scrapping was applied to the Amazon website, a recognized E-commerce, in order to extract the reviews of a given product, the reviews of this product were displayed. through Python libraries to later be processed and thus carry out a sentiment analysis. The above concluded the polarity of a given product making use of machine learning and data mining techniques.spaBarranquilla, Universidad del Norte, 2022Universidad del Nortehttp://purl.org/coar/access_right/c_abf2Analisis de sentimientosClasificacionAprendizaje automaticoMineria de datosData miningSentiment analysisClassificationMachine learningSentiment analysis of reviews to determine the reception of a product using machine learning and data mining techniquesAnálisis de sentimientos de reseñas para determinar la acogida de un producto utilizando técnicas de machine learning y data miningarticlehttp://purl.org/coar/resource_type/c_6501ORIGINALInforme_Final-Espitaleta_Garcia_Maza.pdfInforme_Final-Espitaleta_Garcia_Maza.pdfArtículo principalapplication/pdf628682https://manglar.uninorte.edu.co/bitstream/10584/11237/1/Informe_Final-Espitaleta_Garcia_Maza.pdf1dc0d82b67055972e22051c0821d56a0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://manglar.uninorte.edu.co/bitstream/10584/11237/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5210584/11237oai:manglar.uninorte.edu.co:10584/112372022-12-07 15:02:03.773Repositorio Digital de la Universidad del Nortemauribe@uninorte.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=