Reactive scheduling to treat disruptive events in the MRCPSP

Esta tesis se centra en diseñar y desarrollar una metodología para abordar el MRCPSP con diversas funciones objetivo y diferentes tipos de interrupciones. En esta tesis se exploran el MRCPSP con dos funciones objetivo, a saber: (1) minimizar la duración del proyecto y (2) maximizar el valor presente...

Full description

Autores:
Machado Domínguez, Luis Fernando
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad del Norte
Repositorio:
Repositorio Uninorte
Idioma:
eng
OAI Identifier:
oai:manglar.uninorte.edu.co:10584/10009
Acceso en línea:
http://hdl.handle.net/10584/10009
Palabra clave:
Matemáticas aplicadas
Algoritmos
Optimización matemática
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id REPOUNORT2_d1c25fdba16c559cc3243af1618bd03f
oai_identifier_str oai:manglar.uninorte.edu.co:10584/10009
network_acronym_str REPOUNORT2
network_name_str Repositorio Uninorte
repository_id_str
dc.title.es_ES.fl_str_mv Reactive scheduling to treat disruptive events in the MRCPSP
title Reactive scheduling to treat disruptive events in the MRCPSP
spellingShingle Reactive scheduling to treat disruptive events in the MRCPSP
Matemáticas aplicadas
Algoritmos
Optimización matemática
title_short Reactive scheduling to treat disruptive events in the MRCPSP
title_full Reactive scheduling to treat disruptive events in the MRCPSP
title_fullStr Reactive scheduling to treat disruptive events in the MRCPSP
title_full_unstemmed Reactive scheduling to treat disruptive events in the MRCPSP
title_sort Reactive scheduling to treat disruptive events in the MRCPSP
dc.creator.fl_str_mv Machado Domínguez, Luis Fernando
dc.contributor.advisor.none.fl_str_mv Paternina Arboleda, Carlos Daniel
Barrios Sarmiento, Agustín
dc.contributor.author.none.fl_str_mv Machado Domínguez, Luis Fernando
dc.subject.lemb.none.fl_str_mv Matemáticas aplicadas
Algoritmos
Optimización matemática
topic Matemáticas aplicadas
Algoritmos
Optimización matemática
description Esta tesis se centra en diseñar y desarrollar una metodología para abordar el MRCPSP con diversas funciones objetivo y diferentes tipos de interrupciones. En esta tesis se exploran el MRCPSP con dos funciones objetivo, a saber: (1) minimizar la duración del proyecto y (2) maximizar el valor presente neto del proyecto. Luego, se tiene en cuenta dos tipos diferentes de interrupciones, (a) interrupción de duración, e (b) interrupción de recurso renovable. Para resolver el MRCPSP, en esta tesis se proponen tres estrategias metaheurísticas: (1) algoritmo memético para minimizar la duración del proyecto, (2) algoritmo adaptativo de forrajeo bacteriano para maximizar el valor presente neto del proyecto y (3) algoritmo de optimización multiobjetivo de forrajeo bacteriano (MBFO) para resolver el MRCPSP con eventos de interrupción. Para juzgar el rendimiento del algoritmo memético y de forrajeo bacteriano propuestos, se ha llevado a cabo un extenso análisis basado en diseño factorial y diseño Taguchi para controlar y optimizar los parámetros del algoritmo. Además se han puesto a prueba resolviendo las instancias de los conjuntos más importantes en la literatura: PSPLIB (10,12,14,16,18,20 y 30 actividades) y MMLIB (50 y 100 actividades). También se ha demostrado la superioridad de los algoritmos metaheurísticos propuestos sobre otros enfoques heurísticos y metaheurísticos del estado del arte. A partir de los estudios experimentales se ha ajustado la MBFO, utilizando un caso de estudio.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-02-11T21:44:57Z
dc.date.available.none.fl_str_mv 2022-02-11T21:44:57Z
dc.type.es_ES.fl_str_mv Trabajo de grado - Doctorado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_dc82b40f9837b551
dc.type.coar.es_ES.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.driver.es_ES.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.content.es_ES.fl_str_mv Text
format http://purl.org/coar/resource_type/c_db06
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10584/10009
url http://hdl.handle.net/10584/10009
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.es_ES.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.es_ES.fl_str_mv application/pdf
dc.format.extent.es_ES.fl_str_mv 147 páginas
dc.publisher.es_ES.fl_str_mv Universidad del Norte
dc.publisher.program.es_ES.fl_str_mv Doctorado en Ingeniería Industrial
dc.publisher.department.es_ES.fl_str_mv Departamento de ingeniería industrial
dc.publisher.place.es_ES.fl_str_mv Barranquilla, Colombia
institution Universidad del Norte
bitstream.url.fl_str_mv https://manglar.uninorte.edu.co/bitstream/10584/10009/1/10966742%20%282%29.pdf
https://manglar.uninorte.edu.co/bitstream/10584/10009/2/license.txt
bitstream.checksum.fl_str_mv c6a7cba539ce1b1672b7c30484b2753d
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Digital de la Universidad del Norte
repository.mail.fl_str_mv mauribe@uninorte.edu.co
_version_ 1812183091489275904
spelling Paternina Arboleda, Carlos DanielBarrios Sarmiento, AgustínMachado Domínguez, Luis Fernando2022-02-11T21:44:57Z2022-02-11T21:44:57Z2021http://hdl.handle.net/10584/10009Esta tesis se centra en diseñar y desarrollar una metodología para abordar el MRCPSP con diversas funciones objetivo y diferentes tipos de interrupciones. En esta tesis se exploran el MRCPSP con dos funciones objetivo, a saber: (1) minimizar la duración del proyecto y (2) maximizar el valor presente neto del proyecto. Luego, se tiene en cuenta dos tipos diferentes de interrupciones, (a) interrupción de duración, e (b) interrupción de recurso renovable. Para resolver el MRCPSP, en esta tesis se proponen tres estrategias metaheurísticas: (1) algoritmo memético para minimizar la duración del proyecto, (2) algoritmo adaptativo de forrajeo bacteriano para maximizar el valor presente neto del proyecto y (3) algoritmo de optimización multiobjetivo de forrajeo bacteriano (MBFO) para resolver el MRCPSP con eventos de interrupción. Para juzgar el rendimiento del algoritmo memético y de forrajeo bacteriano propuestos, se ha llevado a cabo un extenso análisis basado en diseño factorial y diseño Taguchi para controlar y optimizar los parámetros del algoritmo. Además se han puesto a prueba resolviendo las instancias de los conjuntos más importantes en la literatura: PSPLIB (10,12,14,16,18,20 y 30 actividades) y MMLIB (50 y 100 actividades). También se ha demostrado la superioridad de los algoritmos metaheurísticos propuestos sobre otros enfoques heurísticos y metaheurísticos del estado del arte. A partir de los estudios experimentales se ha ajustado la MBFO, utilizando un caso de estudio.DoctoradoDoctor en Ingeniería Industrialapplication/pdf147 páginasengUniversidad del NorteDoctorado en Ingeniería IndustrialDepartamento de ingeniería industrialBarranquilla, ColombiaReactive scheduling to treat disruptive events in the MRCPSPTrabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06info:eu-repo/semantics/doctoralThesisTexthttp://purl.org/coar/version/c_dc82b40f9837b551https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Matemáticas aplicadasAlgoritmosOptimización matemáticaEstudiantesDoctoradoORIGINAL10966742 (2).pdf10966742 (2).pdfapplication/pdf3898087https://manglar.uninorte.edu.co/bitstream/10584/10009/1/10966742%20%282%29.pdfc6a7cba539ce1b1672b7c30484b2753dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://manglar.uninorte.edu.co/bitstream/10584/10009/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5210584/10009oai:manglar.uninorte.edu.co:10584/100092023-05-03 15:46:07.022Repositorio Digital de la Universidad del Nortemauribe@uninorte.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=