Reactive scheduling to treat disruptive events in the MRCPSP
Esta tesis se centra en diseñar y desarrollar una metodología para abordar el MRCPSP con diversas funciones objetivo y diferentes tipos de interrupciones. En esta tesis se exploran el MRCPSP con dos funciones objetivo, a saber: (1) minimizar la duración del proyecto y (2) maximizar el valor presente...
- Autores:
-
Machado Domínguez, Luis Fernando
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2021
- Institución:
- Universidad del Norte
- Repositorio:
- Repositorio Uninorte
- Idioma:
- eng
- OAI Identifier:
- oai:manglar.uninorte.edu.co:10584/10009
- Acceso en línea:
- http://hdl.handle.net/10584/10009
- Palabra clave:
- Matemáticas aplicadas
Algoritmos
Optimización matemática
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by/4.0/
Summary: | Esta tesis se centra en diseñar y desarrollar una metodología para abordar el MRCPSP con diversas funciones objetivo y diferentes tipos de interrupciones. En esta tesis se exploran el MRCPSP con dos funciones objetivo, a saber: (1) minimizar la duración del proyecto y (2) maximizar el valor presente neto del proyecto. Luego, se tiene en cuenta dos tipos diferentes de interrupciones, (a) interrupción de duración, e (b) interrupción de recurso renovable. Para resolver el MRCPSP, en esta tesis se proponen tres estrategias metaheurísticas: (1) algoritmo memético para minimizar la duración del proyecto, (2) algoritmo adaptativo de forrajeo bacteriano para maximizar el valor presente neto del proyecto y (3) algoritmo de optimización multiobjetivo de forrajeo bacteriano (MBFO) para resolver el MRCPSP con eventos de interrupción. Para juzgar el rendimiento del algoritmo memético y de forrajeo bacteriano propuestos, se ha llevado a cabo un extenso análisis basado en diseño factorial y diseño Taguchi para controlar y optimizar los parámetros del algoritmo. Además se han puesto a prueba resolviendo las instancias de los conjuntos más importantes en la literatura: PSPLIB (10,12,14,16,18,20 y 30 actividades) y MMLIB (50 y 100 actividades). También se ha demostrado la superioridad de los algoritmos metaheurísticos propuestos sobre otros enfoques heurísticos y metaheurísticos del estado del arte. A partir de los estudios experimentales se ha ajustado la MBFO, utilizando un caso de estudio. |
---|