ARN no codificantes largos exosomales y su papel en la patogénesis de la enfermedad de Alzheimer

Los exosomas son nanovesículas extracelulares de origen endocítico, con forma esférica, delimitada por una membrana lipídica, y diámetro promedio de 30-150 nm. Se sabe que los exosomas contienen varias moléculas bioactivas, incluyendo proteínas, ácidos nucleicos, lípidos y metabolitos. Es así como s...

Full description

Autores:
Mosquera Heredia, María Isabel
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad del Norte
Repositorio:
Repositorio Uninorte
Idioma:
spa
OAI Identifier:
oai:manglar.uninorte.edu.co:10584/12051
Acceso en línea:
http://hdl.handle.net/10584/12051
Palabra clave:
ARN -- Investigaciones
Enfermedad de Alzheimer -- Investigaciones
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id REPOUNORT2_b925a8ca0c1db941b1e37dabaf15891d
oai_identifier_str oai:manglar.uninorte.edu.co:10584/12051
network_acronym_str REPOUNORT2
network_name_str Repositorio Uninorte
repository_id_str
dc.title.es_ES.fl_str_mv ARN no codificantes largos exosomales y su papel en la patogénesis de la enfermedad de Alzheimer
title ARN no codificantes largos exosomales y su papel en la patogénesis de la enfermedad de Alzheimer
spellingShingle ARN no codificantes largos exosomales y su papel en la patogénesis de la enfermedad de Alzheimer
ARN -- Investigaciones
Enfermedad de Alzheimer -- Investigaciones
title_short ARN no codificantes largos exosomales y su papel en la patogénesis de la enfermedad de Alzheimer
title_full ARN no codificantes largos exosomales y su papel en la patogénesis de la enfermedad de Alzheimer
title_fullStr ARN no codificantes largos exosomales y su papel en la patogénesis de la enfermedad de Alzheimer
title_full_unstemmed ARN no codificantes largos exosomales y su papel en la patogénesis de la enfermedad de Alzheimer
title_sort ARN no codificantes largos exosomales y su papel en la patogénesis de la enfermedad de Alzheimer
dc.creator.fl_str_mv Mosquera Heredia, María Isabel
dc.contributor.advisor.none.fl_str_mv Garavito Galofre, María del Pilar
Vélez, Jorge I.
dc.contributor.author.none.fl_str_mv Mosquera Heredia, María Isabel
dc.subject.lemb.none.fl_str_mv ARN -- Investigaciones
Enfermedad de Alzheimer -- Investigaciones
topic ARN -- Investigaciones
Enfermedad de Alzheimer -- Investigaciones
description Los exosomas son nanovesículas extracelulares de origen endocítico, con forma esférica, delimitada por una membrana lipídica, y diámetro promedio de 30-150 nm. Se sabe que los exosomas contienen varias moléculas bioactivas, incluyendo proteínas, ácidos nucleicos, lípidos y metabolitos. Es así como su relevancia funcional, radica en el efecto que estas vesículas tienen al entregar su contenido a las células receptoras, participando tanto en procesos fisiológicos, como la proliferación celular, la respuesta inmune, la lactancia y la función neuronal y cardiovascular; como en procesos patológicos, contribuyendo a la génesis de distintas enfermedades. El ácido ribonucleico (RNA, por su sigla en inglés) se considera el principal componente funcional del exosoma. Se ha demostrado que la carga de RNA refleja el estado y el contenido citoplasmático de la célula de origen, y una vez en la célula receptora, esta molécula desempeña el mismo papel que en la célula de origen, regulando genes diana que podrían estar involucrados en la patogénesis de las enfermedades. En el caso de la Enfermedad de Alzheimer (EA), principal tipo de demencia en el mundo representando el 60 – 70% de los casos, la investigación en este campo apenas inicia, por lo tanto, falta aún identificar nuevos RNA no codificantes (ncRNA) involucrados y aclarar cómo participan en las vías patogénicas de la enfermedad; esta información permitiría establecerlos como futuros biomarcadores o blancos terapéuticos de la EA. Este trabajo tiene como objetivo caracterizar el perfil de expresión diferencial de RNA no codificantes largos (lncRNA, por su sigla en inglés) en exosomas sanguíneos y su asociación con la patogénesis de la EA de inicio tardío. Para ello, se diseñó un estudio de casos y controles, conformándose 2 grupos con 15 sujetos cada uno: casos de EA esporádica y un grupo control. La muestra de casos se reclutó a partir de una población que asiste al Instituto Colombiano de Neuropedagogía de Barranquilla, conformada por sujetos con diagnóstico de esta enfermedad, y los participantes del grupo control son voluntarios no familiares con edades entre 72 - 106 años. Para la obtención de datos se identificaron los lncRNA contenidos en exosomas sanguíneos y se caracterizó su perfil de expresión diferencial en los casos y controles mediante estudio de microarreglos. Posteriormente, se analizó la asociación con sus posibles genes diana mediante un estudio in silico, con el fin de dar una aproximación de su papel en la red patogénica de la EA. Finalmente, se correlacionaron las variables neuropsicológicas y la edad de inicio de la enfermedad con los niveles de expresión de los lncRNA identificados y se logró establecer con esta información un modelo predictivo de la enfermedad basado en Machine Learning (ML). Se encontró un total de 647 lncRNA expresados diferencialmente entre los grupos. De estos, 550 estuvieron sobreexpresados y 97 subexpresados. Entre ellos, se identificaron varios lncRNA como TMEM186, PROX1-AS1, AC109635.2, LINC02043, AC022031.2, POT1-AS1, AL020993.1, ERICH3, DEXI, SS18, AC073529.1, TAB2-AS1, AC117382.2, AC007342.1, HTR2A-AS1, LINC01232, SOX9-AS1 y PCA3, que podrían estar involucrados en la patogénesis de la enfermedad, afectando procesos clave como la neurogénesis, diferenciación celular, proteostasis del péptido Aβ y p-TAU. Neuroinflamación, apoptosis, crecimiento de la neurita, plasticidad sináptica y remodelación de la cromatina. Todos estos lncRNA se correlacionan mínimo con dos de las variables neuropsicológicas evaluadas, siendo la flexibilidad cognitiva el dominio con mayor número de lncRNA asociados (16/18); solo ERICH3 y AC007342,1 no mostraron correlación. Por su parte, los lncRNA AC117382.2 y LINC01232 se asociaron con la edad de inicio de la enfermedad. Entre los algoritmos de ML explorados, se pudo establecer que el algoritmo svmLinear2 fue el de mejor rendimiento con una precisión del 99%. El análisis de importancia reveló que los mejores predictores de la enfermedad eran PROX1-AS1 y SS18. Se espera que el aporte generado en este estudio relacionado con la comprensión de la fisiopatología molecular de la EA y el diseño del modelo predictivo pueda ser útil en el ámbito clínico para anticipar el desarrollo de la enfermedad, gracias a lo cual se podrán ofrecer alternativas preventivas que retrasen la aparición y/o progresión de la EA en los sujetos afectados, mejorando su calidad de vida y la de sus cuidadores.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-06-17T21:43:17Z
dc.date.available.none.fl_str_mv 2024-06-17T21:43:17Z
dc.type.es_ES.fl_str_mv Trabajo de grado - Doctorado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_71e4c1898caa6e32
dc.type.coar.es_ES.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.driver.es_ES.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.content.es_ES.fl_str_mv Text
format http://purl.org/coar/resource_type/c_db06
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10584/12051
url http://hdl.handle.net/10584/12051
dc.language.iso.es_ES.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.es_ES.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.es_ES.fl_str_mv application/pdf
dc.format.extent.es_ES.fl_str_mv 257 páginas
dc.publisher.es_ES.fl_str_mv Universidad del Norte
dc.publisher.program.es_ES.fl_str_mv Doctorado en Ciencias Biomédicas
dc.publisher.department.es_ES.fl_str_mv Departamento de medicina
dc.publisher.place.es_ES.fl_str_mv Barranquilla, Colombia
institution Universidad del Norte
bitstream.url.fl_str_mv https://manglar.uninorte.edu.co/bitstream/10584/12051/1/TesisMI_MosqueraBiblioteca.pdf
https://manglar.uninorte.edu.co/bitstream/10584/12051/2/license.txt
bitstream.checksum.fl_str_mv 0dcaade0d66f6a21cf4d58f9eeb36b2d
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Digital de la Universidad del Norte
repository.mail.fl_str_mv mauribe@uninorte.edu.co
_version_ 1812183093394538496
spelling Garavito Galofre, María del PilarVélez, Jorge I.Mosquera Heredia, María Isabel2024-06-17T21:43:17Z2024-06-17T21:43:17Z2023http://hdl.handle.net/10584/12051Los exosomas son nanovesículas extracelulares de origen endocítico, con forma esférica, delimitada por una membrana lipídica, y diámetro promedio de 30-150 nm. Se sabe que los exosomas contienen varias moléculas bioactivas, incluyendo proteínas, ácidos nucleicos, lípidos y metabolitos. Es así como su relevancia funcional, radica en el efecto que estas vesículas tienen al entregar su contenido a las células receptoras, participando tanto en procesos fisiológicos, como la proliferación celular, la respuesta inmune, la lactancia y la función neuronal y cardiovascular; como en procesos patológicos, contribuyendo a la génesis de distintas enfermedades. El ácido ribonucleico (RNA, por su sigla en inglés) se considera el principal componente funcional del exosoma. Se ha demostrado que la carga de RNA refleja el estado y el contenido citoplasmático de la célula de origen, y una vez en la célula receptora, esta molécula desempeña el mismo papel que en la célula de origen, regulando genes diana que podrían estar involucrados en la patogénesis de las enfermedades. En el caso de la Enfermedad de Alzheimer (EA), principal tipo de demencia en el mundo representando el 60 – 70% de los casos, la investigación en este campo apenas inicia, por lo tanto, falta aún identificar nuevos RNA no codificantes (ncRNA) involucrados y aclarar cómo participan en las vías patogénicas de la enfermedad; esta información permitiría establecerlos como futuros biomarcadores o blancos terapéuticos de la EA. Este trabajo tiene como objetivo caracterizar el perfil de expresión diferencial de RNA no codificantes largos (lncRNA, por su sigla en inglés) en exosomas sanguíneos y su asociación con la patogénesis de la EA de inicio tardío. Para ello, se diseñó un estudio de casos y controles, conformándose 2 grupos con 15 sujetos cada uno: casos de EA esporádica y un grupo control. La muestra de casos se reclutó a partir de una población que asiste al Instituto Colombiano de Neuropedagogía de Barranquilla, conformada por sujetos con diagnóstico de esta enfermedad, y los participantes del grupo control son voluntarios no familiares con edades entre 72 - 106 años. Para la obtención de datos se identificaron los lncRNA contenidos en exosomas sanguíneos y se caracterizó su perfil de expresión diferencial en los casos y controles mediante estudio de microarreglos. Posteriormente, se analizó la asociación con sus posibles genes diana mediante un estudio in silico, con el fin de dar una aproximación de su papel en la red patogénica de la EA. Finalmente, se correlacionaron las variables neuropsicológicas y la edad de inicio de la enfermedad con los niveles de expresión de los lncRNA identificados y se logró establecer con esta información un modelo predictivo de la enfermedad basado en Machine Learning (ML). Se encontró un total de 647 lncRNA expresados diferencialmente entre los grupos. De estos, 550 estuvieron sobreexpresados y 97 subexpresados. Entre ellos, se identificaron varios lncRNA como TMEM186, PROX1-AS1, AC109635.2, LINC02043, AC022031.2, POT1-AS1, AL020993.1, ERICH3, DEXI, SS18, AC073529.1, TAB2-AS1, AC117382.2, AC007342.1, HTR2A-AS1, LINC01232, SOX9-AS1 y PCA3, que podrían estar involucrados en la patogénesis de la enfermedad, afectando procesos clave como la neurogénesis, diferenciación celular, proteostasis del péptido Aβ y p-TAU. Neuroinflamación, apoptosis, crecimiento de la neurita, plasticidad sináptica y remodelación de la cromatina. Todos estos lncRNA se correlacionan mínimo con dos de las variables neuropsicológicas evaluadas, siendo la flexibilidad cognitiva el dominio con mayor número de lncRNA asociados (16/18); solo ERICH3 y AC007342,1 no mostraron correlación. Por su parte, los lncRNA AC117382.2 y LINC01232 se asociaron con la edad de inicio de la enfermedad. Entre los algoritmos de ML explorados, se pudo establecer que el algoritmo svmLinear2 fue el de mejor rendimiento con una precisión del 99%. El análisis de importancia reveló que los mejores predictores de la enfermedad eran PROX1-AS1 y SS18. Se espera que el aporte generado en este estudio relacionado con la comprensión de la fisiopatología molecular de la EA y el diseño del modelo predictivo pueda ser útil en el ámbito clínico para anticipar el desarrollo de la enfermedad, gracias a lo cual se podrán ofrecer alternativas preventivas que retrasen la aparición y/o progresión de la EA en los sujetos afectados, mejorando su calidad de vida y la de sus cuidadores.DoctoradoDoctor en Ciencias Biomédicasapplication/pdf257 páginasspaUniversidad del NorteDoctorado en Ciencias BiomédicasDepartamento de medicinaBarranquilla, ColombiaARN no codificantes largos exosomales y su papel en la patogénesis de la enfermedad de AlzheimerTrabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06info:eu-repo/semantics/doctoralThesisTexthttp://purl.org/coar/version/c_71e4c1898caa6e32https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2ARN -- InvestigacionesEnfermedad de Alzheimer -- InvestigacionesEstudiantesDoctoradoORIGINALTesisMI_MosqueraBiblioteca.pdfTesisMI_MosqueraBiblioteca.pdfapplication/pdf2259283https://manglar.uninorte.edu.co/bitstream/10584/12051/1/TesisMI_MosqueraBiblioteca.pdf0dcaade0d66f6a21cf4d58f9eeb36b2dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://manglar.uninorte.edu.co/bitstream/10584/12051/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5210584/12051oai:manglar.uninorte.edu.co:10584/120512024-06-17 16:43:18.001Repositorio Digital de la Universidad del Nortemauribe@uninorte.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=