Wearable-based human activity recognition: from a healthcare application to a kinetic energy harvesting approach

Wearable technology is changing society by becoming an essential component of daily life. Human activity recognition (HAR) is one of the most prominent research areas where wearable devices play a key role. The first major contribution to the field in this dissertation is a smart physical work- load...

Full description

Autores:
Manjarrés Córdoba, José Elías
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2020
Institución:
Universidad del Norte
Repositorio:
Repositorio Uninorte
Idioma:
eng
OAI Identifier:
oai:manglar.uninorte.edu.co:10584/10098
Acceso en línea:
http://hdl.handle.net/10584/10098
Palabra clave:
Sistemas de comunicación inalámbrica
Mecánica humana -- Simulación por computadores
Circuitos integrados
Computadores de bolsillo
Sistemas analógicos electrónicos
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id REPOUNORT2_a8a63cefec2b8a96b9c3fc214d226549
oai_identifier_str oai:manglar.uninorte.edu.co:10584/10098
network_acronym_str REPOUNORT2
network_name_str Repositorio Uninorte
repository_id_str
dc.title.es_ES.fl_str_mv Wearable-based human activity recognition: from a healthcare application to a kinetic energy harvesting approach
title Wearable-based human activity recognition: from a healthcare application to a kinetic energy harvesting approach
spellingShingle Wearable-based human activity recognition: from a healthcare application to a kinetic energy harvesting approach
Sistemas de comunicación inalámbrica
Mecánica humana -- Simulación por computadores
Circuitos integrados
Computadores de bolsillo
Sistemas analógicos electrónicos
title_short Wearable-based human activity recognition: from a healthcare application to a kinetic energy harvesting approach
title_full Wearable-based human activity recognition: from a healthcare application to a kinetic energy harvesting approach
title_fullStr Wearable-based human activity recognition: from a healthcare application to a kinetic energy harvesting approach
title_full_unstemmed Wearable-based human activity recognition: from a healthcare application to a kinetic energy harvesting approach
title_sort Wearable-based human activity recognition: from a healthcare application to a kinetic energy harvesting approach
dc.creator.fl_str_mv Manjarrés Córdoba, José Elías
dc.contributor.advisor.none.fl_str_mv Pardo González, Mauricio
dc.contributor.author.none.fl_str_mv Manjarrés Córdoba, José Elías
dc.subject.lemb.none.fl_str_mv Sistemas de comunicación inalámbrica
Mecánica humana -- Simulación por computadores
Circuitos integrados
Computadores de bolsillo
Sistemas analógicos electrónicos
topic Sistemas de comunicación inalámbrica
Mecánica humana -- Simulación por computadores
Circuitos integrados
Computadores de bolsillo
Sistemas analógicos electrónicos
description Wearable technology is changing society by becoming an essential component of daily life. Human activity recognition (HAR) is one of the most prominent research areas where wearable devices play a key role. The first major contribution to the field in this dissertation is a smart physical work- load tracking system that combines wearable-based HAR and heart rate tracking. The proposed system employs a concept from ergonomics, the Frimat’s method, to compute the physical workload from heart rate measurements within a specified time window. This dissertation includes a case of study where tracking of an individual over the course of 20 days corroborates the ability of the system to assess adaptation to an exercise routine. The second and third contributions of this dissertation point to KEH in wearable environments. The second contribution is an energy logger for wrist-worn systems, with the purpose of tracking energy generation in KEH systems during daily activities. Thus, it is possible to determine if the harvested energy is enough to power a conventional wearable device. The proposed system computes the harvested energy using the characteristics of the objective load, which in this case is a battery charger. I carried out experiments with multiple subjects to examine the generation capabilities of a commercial harvester under the conditions of human motion. This study provides insights of the performance and limitations of kinetic harvesters as battery chargers. The third contribution is a KEH-based HAR system using deep learning, data augmentation and transfer learning to outperform existing classification approaches in the KEH domain. The proposed architecture comprises convolutional neural networks (CNN) and long short-term memory networks (LSTM), which has been demonstrated to outperform other architectures found in the literature. Since deep learning classifiers require large amounts of data, and KEH datasets are limited in size, this thesis also includes the proposal of three data augmentation methods to synthesize KEH signals simulating new users. Finally, transfer learning is employed to build a system that maintains performance independent of device location or the subject wearing the device.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2022-03-03T20:14:35Z
dc.date.available.none.fl_str_mv 2022-03-03T20:14:35Z
dc.type.es_ES.fl_str_mv Trabajo de grado - Doctorado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_dc82b40f9837b551
dc.type.coar.es_ES.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.driver.es_ES.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.content.es_ES.fl_str_mv Text
format http://purl.org/coar/resource_type/c_db06
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10584/10098
url http://hdl.handle.net/10584/10098
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.es_ES.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.es_ES.fl_str_mv application/pdf
dc.format.extent.es_ES.fl_str_mv ix, 104 páginas
dc.publisher.es_ES.fl_str_mv Universidad del Norte
dc.publisher.program.es_ES.fl_str_mv Doctorado en Ingeniería Eléctrica y Electrónica
dc.publisher.department.es_ES.fl_str_mv Departamento de eléctrica y electrónica
dc.publisher.place.es_ES.fl_str_mv Barranquilla, Colombia
institution Universidad del Norte
bitstream.url.fl_str_mv https://manglar.uninorte.edu.co/bitstream/10584/10098/1/20028240.pdf
https://manglar.uninorte.edu.co/bitstream/10584/10098/2/license.txt
bitstream.checksum.fl_str_mv 509e91c90d483a59d105826b544cf1f9
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Digital de la Universidad del Norte
repository.mail.fl_str_mv mauribe@uninorte.edu.co
_version_ 1812183114056728576
spelling Pardo González, MauricioManjarrés Córdoba, José Elías2022-03-03T20:14:35Z2022-03-03T20:14:35Z2020http://hdl.handle.net/10584/10098Wearable technology is changing society by becoming an essential component of daily life. Human activity recognition (HAR) is one of the most prominent research areas where wearable devices play a key role. The first major contribution to the field in this dissertation is a smart physical work- load tracking system that combines wearable-based HAR and heart rate tracking. The proposed system employs a concept from ergonomics, the Frimat’s method, to compute the physical workload from heart rate measurements within a specified time window. This dissertation includes a case of study where tracking of an individual over the course of 20 days corroborates the ability of the system to assess adaptation to an exercise routine. The second and third contributions of this dissertation point to KEH in wearable environments. The second contribution is an energy logger for wrist-worn systems, with the purpose of tracking energy generation in KEH systems during daily activities. Thus, it is possible to determine if the harvested energy is enough to power a conventional wearable device. The proposed system computes the harvested energy using the characteristics of the objective load, which in this case is a battery charger. I carried out experiments with multiple subjects to examine the generation capabilities of a commercial harvester under the conditions of human motion. This study provides insights of the performance and limitations of kinetic harvesters as battery chargers. The third contribution is a KEH-based HAR system using deep learning, data augmentation and transfer learning to outperform existing classification approaches in the KEH domain. The proposed architecture comprises convolutional neural networks (CNN) and long short-term memory networks (LSTM), which has been demonstrated to outperform other architectures found in the literature. Since deep learning classifiers require large amounts of data, and KEH datasets are limited in size, this thesis also includes the proposal of three data augmentation methods to synthesize KEH signals simulating new users. Finally, transfer learning is employed to build a system that maintains performance independent of device location or the subject wearing the device.DoctoradoDoctor en Ingeniería Eléctrica y Electrónicaapplication/pdfix, 104 páginasengUniversidad del NorteDoctorado en Ingeniería Eléctrica y ElectrónicaDepartamento de eléctrica y electrónicaBarranquilla, ColombiaWearable-based human activity recognition: from a healthcare application to a kinetic energy harvesting approachTrabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06info:eu-repo/semantics/doctoralThesisTexthttp://purl.org/coar/version/c_dc82b40f9837b551https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sistemas de comunicación inalámbricaMecánica humana -- Simulación por computadoresCircuitos integradosComputadores de bolsilloSistemas analógicos electrónicosEstudiantesDoctoradoORIGINAL20028240.pdf20028240.pdfapplication/pdf4396207https://manglar.uninorte.edu.co/bitstream/10584/10098/1/20028240.pdf509e91c90d483a59d105826b544cf1f9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://manglar.uninorte.edu.co/bitstream/10584/10098/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5210584/10098oai:manglar.uninorte.edu.co:10584/100982022-03-03 16:54:38.021Repositorio Digital de la Universidad del Nortemauribe@uninorte.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=