EGFR and KRAS mutation prediction on lung cancer through medical image processing and artificial intelligence

Lung cancer causes more deaths globally than any other type of cancer. To determine the best treatment, detecting EGFR and KRAS mutations is of interest. However, non-invasive ways to obtain this information are not available. In this study, an ensemble approach is applied to increase the performanc...

Full description

Autores:
Moreno Trillos, Silvia Carolina
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad del Norte
Repositorio:
Repositorio Uninorte
Idioma:
eng
OAI Identifier:
oai:manglar.uninorte.edu.co:10584/10206
Acceso en línea:
http://hdl.handle.net/10584/10206
Palabra clave:
Procesamiento de imágenes -- Técnicas digitales
Medicina -- Procesamiento de datos
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id REPOUNORT2_9dbde25821e7fe9a027b212029d97eeb
oai_identifier_str oai:manglar.uninorte.edu.co:10584/10206
network_acronym_str REPOUNORT2
network_name_str Repositorio Uninorte
repository_id_str
dc.title.es_ES.fl_str_mv EGFR and KRAS mutation prediction on lung cancer through medical image processing and artificial intelligence
title EGFR and KRAS mutation prediction on lung cancer through medical image processing and artificial intelligence
spellingShingle EGFR and KRAS mutation prediction on lung cancer through medical image processing and artificial intelligence
Procesamiento de imágenes -- Técnicas digitales
Medicina -- Procesamiento de datos
title_short EGFR and KRAS mutation prediction on lung cancer through medical image processing and artificial intelligence
title_full EGFR and KRAS mutation prediction on lung cancer through medical image processing and artificial intelligence
title_fullStr EGFR and KRAS mutation prediction on lung cancer through medical image processing and artificial intelligence
title_full_unstemmed EGFR and KRAS mutation prediction on lung cancer through medical image processing and artificial intelligence
title_sort EGFR and KRAS mutation prediction on lung cancer through medical image processing and artificial intelligence
dc.creator.fl_str_mv Moreno Trillos, Silvia Carolina
dc.contributor.advisor.none.fl_str_mv Zurek Varela, Eduardo Enrique
dc.contributor.author.none.fl_str_mv Moreno Trillos, Silvia Carolina
dc.subject.lemb.none.fl_str_mv Procesamiento de imágenes -- Técnicas digitales
Medicina -- Procesamiento de datos
topic Procesamiento de imágenes -- Técnicas digitales
Medicina -- Procesamiento de datos
description Lung cancer causes more deaths globally than any other type of cancer. To determine the best treatment, detecting EGFR and KRAS mutations is of interest. However, non-invasive ways to obtain this information are not available. In this study, an ensemble approach is applied to increase the performance of EGFR and KRAS mutation prediction from CT images using a small dataset. A new voting scheme, Selective Class Average Voting (SCAV) is proposed and its performance is assessed both for machine learning models and Convolutional Neural Networks (CNNs). For the EGFR mutation, in the machine learning approach, there was an increase in the Sensitivity from 0.66 to 0.75, and an increase in AUC from 0.68 to 0.70. With the deep learning approach an AUC of 0.846 was obtained with custom CNNs, and with SCAV the Accuracy of the model was increased from 0.80 to 0.857. Finally, when combining the best Custom and Pre-trained CNNs using SCAV an AUC of 0.914 was obtained. For the KRAS mutation both in the machine learning models (0.65 to 0.71 AUC) and the deep learning models (0.739 to 0.778 AUC) a significant increase in performance was found. This increase was even greater with Ensembles of Pre-trained CNNs (0.809 AUC). The results obtained in this work show how to effectively learn from small image datasets to predict EGFR and KRAS mutations, and that using ensembles with SCAV increases the performance of machine learning classifiers and CNNs.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-04-01T19:12:39Z
dc.date.available.none.fl_str_mv 2022-04-01T19:12:39Z
dc.date.issued.none.fl_str_mv 2022
dc.type.es_ES.fl_str_mv Trabajo de grado - Doctorado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_dc82b40f9837b551
dc.type.coar.es_ES.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.driver.es_ES.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.content.es_ES.fl_str_mv Text
format http://purl.org/coar/resource_type/c_db06
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10584/10206
url http://hdl.handle.net/10584/10206
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.es_ES.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.es_ES.fl_str_mv application/pdf
dc.format.extent.es_ES.fl_str_mv 78 páginas
dc.publisher.es_ES.fl_str_mv Universidad del Norte
dc.publisher.program.es_ES.fl_str_mv Doctorado en Ingeniería de Sistemas y Computación
dc.publisher.department.es_ES.fl_str_mv Departamento de ingeniería de sistemas
dc.publisher.place.es_ES.fl_str_mv Barranquilla, Colombia
institution Universidad del Norte
bitstream.url.fl_str_mv https://manglar.uninorte.edu.co/bitstream/10584/10206/1/329360561%20.pdf
https://manglar.uninorte.edu.co/bitstream/10584/10206/2/license.txt
bitstream.checksum.fl_str_mv 38c0d09af30d076bbf3b659ab6f27a8d
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Digital de la Universidad del Norte
repository.mail.fl_str_mv mauribe@uninorte.edu.co
_version_ 1812183109643272192
spelling Zurek Varela, Eduardo EnriqueMoreno Trillos, Silvia Carolina2022-04-01T19:12:39Z2022-04-01T19:12:39Z2022http://hdl.handle.net/10584/10206Lung cancer causes more deaths globally than any other type of cancer. To determine the best treatment, detecting EGFR and KRAS mutations is of interest. However, non-invasive ways to obtain this information are not available. In this study, an ensemble approach is applied to increase the performance of EGFR and KRAS mutation prediction from CT images using a small dataset. A new voting scheme, Selective Class Average Voting (SCAV) is proposed and its performance is assessed both for machine learning models and Convolutional Neural Networks (CNNs). For the EGFR mutation, in the machine learning approach, there was an increase in the Sensitivity from 0.66 to 0.75, and an increase in AUC from 0.68 to 0.70. With the deep learning approach an AUC of 0.846 was obtained with custom CNNs, and with SCAV the Accuracy of the model was increased from 0.80 to 0.857. Finally, when combining the best Custom and Pre-trained CNNs using SCAV an AUC of 0.914 was obtained. For the KRAS mutation both in the machine learning models (0.65 to 0.71 AUC) and the deep learning models (0.739 to 0.778 AUC) a significant increase in performance was found. This increase was even greater with Ensembles of Pre-trained CNNs (0.809 AUC). The results obtained in this work show how to effectively learn from small image datasets to predict EGFR and KRAS mutations, and that using ensembles with SCAV increases the performance of machine learning classifiers and CNNs.DoctoradoDoctor en Ingeniería de Sistemas y Computaciónapplication/pdf78 páginasengUniversidad del NorteDoctorado en Ingeniería de Sistemas y ComputaciónDepartamento de ingeniería de sistemasBarranquilla, ColombiaEGFR and KRAS mutation prediction on lung cancer through medical image processing and artificial intelligenceTrabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06info:eu-repo/semantics/doctoralThesisTexthttp://purl.org/coar/version/c_dc82b40f9837b551https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Procesamiento de imágenes -- Técnicas digitalesMedicina -- Procesamiento de datosEstudiantesDoctoradoORIGINAL329360561 .pdf329360561 .pdfapplication/pdf3414835https://manglar.uninorte.edu.co/bitstream/10584/10206/1/329360561%20.pdf38c0d09af30d076bbf3b659ab6f27a8dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://manglar.uninorte.edu.co/bitstream/10584/10206/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5210584/10206oai:manglar.uninorte.edu.co:10584/102062022-04-01 14:12:39.492Repositorio Digital de la Universidad del Nortemauribe@uninorte.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=