Well-balanced and entropy stable numerical schemes for some models described by balance laws
This thesis contains two parts dedicated to advancing numerical methods for some models described by balance laws. In the first part, we designed a high-order entropy-stable numerical scheme for the Keyfitz-Kranzer model following theory of Tadmor [E. Tadmor, The numerical viscosity of entropy stabl...
- Autores:
-
Valbuena Duarte, Sonia
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad del Norte
- Repositorio:
- Repositorio Uninorte
- Idioma:
- eng
- OAI Identifier:
- oai:manglar.uninorte.edu.co:10584/13275
- Acceso en línea:
- http://hdl.handle.net/10584/13275
- Palabra clave:
- Entropía
Métodos numéricos
Ciencias naturales
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by/4.0/
id |
REPOUNORT2_9a2ef49eecea58b298bd25ebf2ef0224 |
---|---|
oai_identifier_str |
oai:manglar.uninorte.edu.co:10584/13275 |
network_acronym_str |
REPOUNORT2 |
network_name_str |
Repositorio Uninorte |
repository_id_str |
|
dc.title.en_US.fl_str_mv |
Well-balanced and entropy stable numerical schemes for some models described by balance laws |
title |
Well-balanced and entropy stable numerical schemes for some models described by balance laws |
spellingShingle |
Well-balanced and entropy stable numerical schemes for some models described by balance laws Entropía Métodos numéricos Ciencias naturales |
title_short |
Well-balanced and entropy stable numerical schemes for some models described by balance laws |
title_full |
Well-balanced and entropy stable numerical schemes for some models described by balance laws |
title_fullStr |
Well-balanced and entropy stable numerical schemes for some models described by balance laws |
title_full_unstemmed |
Well-balanced and entropy stable numerical schemes for some models described by balance laws |
title_sort |
Well-balanced and entropy stable numerical schemes for some models described by balance laws |
dc.creator.fl_str_mv |
Valbuena Duarte, Sonia |
dc.contributor.advisor.none.fl_str_mv |
Vega Fuentes, Carlos Arturo |
dc.contributor.author.none.fl_str_mv |
Valbuena Duarte, Sonia |
dc.subject.lemb.none.fl_str_mv |
Entropía Métodos numéricos Ciencias naturales |
topic |
Entropía Métodos numéricos Ciencias naturales |
description |
This thesis contains two parts dedicated to advancing numerical methods for some models described by balance laws. In the first part, we designed a high-order entropy-stable numerical scheme for the Keyfitz-Kranzer model following theory of Tadmor [E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws, Math. Comput., 49(1987) pp.91–103], and Fjordholm et al. [U.S. Fjordholm, S. Mishra, and E. Tadmor, Arbitrarily high-order essentially non-oscillatory entropy stable schemes for systems of conservation laws. SIAM Journal on Numerical Analysis, 50(2012) pp.544–573], we constructed an explicit entropy pair and a non-oscillatory reconstruction of a fourth-order numerical flux. The procedure satisfies the sign property, ensuring the proposed scheme is entropy stable. In the second part, we designed numerical methods for the blood flow model in arteries. A characteristic of hyperbolic systems of balance laws is the existence of non-trivial equilibrium solutions, where the effects of convective flows and source terms cancel; such solutions may have physical significance. Generally, a standard numerical method may not satisfy the equilibrium's discrete version at steady state. To avoid this, we constructed an entropy pair and designed a well-balanced and entropy-stable numerical scheme. In our approach, we adopted theory of Tadmor and Fjordholm et al. In addition, we designed a well-balanced discontinuous Galerkin scheme following theory of Mantri and Noelle [Y. Mantri and S. Noelle, Well-balanced discontinuous Galerkin scheme for 2×2 hyperbolic balance law. Computational Physics, 429(2021) pp.1–13]. The robust numerical scheme constructed can preserve the blood flow model's equilibrium states. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2025-05-23T14:15:14Z |
dc.date.available.none.fl_str_mv |
2025-05-23T14:15:14Z |
dc.type.es_ES.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_71e4c1898caa6e32 |
dc.type.coar.es_ES.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.driver.es_ES.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.content.es_ES.fl_str_mv |
Text |
format |
http://purl.org/coar/resource_type/c_db06 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10584/13275 |
url |
http://hdl.handle.net/10584/13275 |
dc.language.iso.es_ES.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.es_ES.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.es_ES.fl_str_mv |
application/pdf |
dc.format.extent.es_ES.fl_str_mv |
110 páginas |
dc.publisher.es_ES.fl_str_mv |
Universidad del Norte |
dc.publisher.program.es_ES.fl_str_mv |
Doctorado en Ciencias Naturales |
dc.publisher.department.es_ES.fl_str_mv |
División ciencias básicas |
dc.publisher.place.es_ES.fl_str_mv |
Barranquilla, Colombia |
institution |
Universidad del Norte |
bitstream.url.fl_str_mv |
https://manglar.uninorte.edu.co/bitstream/10584/13275/2/license.txt https://manglar.uninorte.edu.co/bitstream/10584/13275/1/Resumen%20Tesis%20Doctorado.pdf |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 72baecb39d9e795b168683d290ef8e09 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital de la Universidad del Norte |
repository.mail.fl_str_mv |
mauribe@uninorte.edu.co |
_version_ |
1834108972752175104 |
spelling |
Vega Fuentes, Carlos ArturoValbuena Duarte, Sonia2025-05-23T14:15:14Z2025-05-23T14:15:14Z2023http://hdl.handle.net/10584/13275This thesis contains two parts dedicated to advancing numerical methods for some models described by balance laws. In the first part, we designed a high-order entropy-stable numerical scheme for the Keyfitz-Kranzer model following theory of Tadmor [E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws, Math. Comput., 49(1987) pp.91–103], and Fjordholm et al. [U.S. Fjordholm, S. Mishra, and E. Tadmor, Arbitrarily high-order essentially non-oscillatory entropy stable schemes for systems of conservation laws. SIAM Journal on Numerical Analysis, 50(2012) pp.544–573], we constructed an explicit entropy pair and a non-oscillatory reconstruction of a fourth-order numerical flux. The procedure satisfies the sign property, ensuring the proposed scheme is entropy stable. In the second part, we designed numerical methods for the blood flow model in arteries. A characteristic of hyperbolic systems of balance laws is the existence of non-trivial equilibrium solutions, where the effects of convective flows and source terms cancel; such solutions may have physical significance. Generally, a standard numerical method may not satisfy the equilibrium's discrete version at steady state. To avoid this, we constructed an entropy pair and designed a well-balanced and entropy-stable numerical scheme. In our approach, we adopted theory of Tadmor and Fjordholm et al. In addition, we designed a well-balanced discontinuous Galerkin scheme following theory of Mantri and Noelle [Y. Mantri and S. Noelle, Well-balanced discontinuous Galerkin scheme for 2×2 hyperbolic balance law. Computational Physics, 429(2021) pp.1–13]. The robust numerical scheme constructed can preserve the blood flow model's equilibrium states.DoctoradoDoctor en Ciencias Naturalesapplication/pdf110 páginasengUniversidad del NorteDoctorado en Ciencias NaturalesDivisión ciencias básicasBarranquilla, ColombiaWell-balanced and entropy stable numerical schemes for some models described by balance lawsTrabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06info:eu-repo/semantics/doctoralThesisTexthttp://purl.org/coar/version/c_71e4c1898caa6e32https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2EntropíaMétodos numéricosCiencias naturalesEstudiantesDoctoradoLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://manglar.uninorte.edu.co/bitstream/10584/13275/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALResumen Tesis Doctorado.pdfResumen Tesis Doctorado.pdfapplication/pdf208185https://manglar.uninorte.edu.co/bitstream/10584/13275/1/Resumen%20Tesis%20Doctorado.pdf72baecb39d9e795b168683d290ef8e09MD5110584/13275oai:manglar.uninorte.edu.co:10584/132752025-05-23 09:15:14.942Repositorio Digital de la Universidad del Nortemauribe@uninorte.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |