Well-balanced and entropy stable numerical schemes for some models described by balance laws

This thesis contains two parts dedicated to advancing numerical methods for some models described by balance laws. In the first part, we designed a high-order entropy-stable numerical scheme for the Keyfitz-Kranzer model following theory of Tadmor [E. Tadmor, The numerical viscosity of entropy stabl...

Full description

Autores:
Valbuena Duarte, Sonia
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad del Norte
Repositorio:
Repositorio Uninorte
Idioma:
eng
OAI Identifier:
oai:manglar.uninorte.edu.co:10584/13275
Acceso en línea:
http://hdl.handle.net/10584/13275
Palabra clave:
Entropía
Métodos numéricos
Ciencias naturales
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id REPOUNORT2_9a2ef49eecea58b298bd25ebf2ef0224
oai_identifier_str oai:manglar.uninorte.edu.co:10584/13275
network_acronym_str REPOUNORT2
network_name_str Repositorio Uninorte
repository_id_str
dc.title.en_US.fl_str_mv Well-balanced and entropy stable numerical schemes for some models described by balance laws
title Well-balanced and entropy stable numerical schemes for some models described by balance laws
spellingShingle Well-balanced and entropy stable numerical schemes for some models described by balance laws
Entropía
Métodos numéricos
Ciencias naturales
title_short Well-balanced and entropy stable numerical schemes for some models described by balance laws
title_full Well-balanced and entropy stable numerical schemes for some models described by balance laws
title_fullStr Well-balanced and entropy stable numerical schemes for some models described by balance laws
title_full_unstemmed Well-balanced and entropy stable numerical schemes for some models described by balance laws
title_sort Well-balanced and entropy stable numerical schemes for some models described by balance laws
dc.creator.fl_str_mv Valbuena Duarte, Sonia
dc.contributor.advisor.none.fl_str_mv Vega Fuentes, Carlos Arturo
dc.contributor.author.none.fl_str_mv Valbuena Duarte, Sonia
dc.subject.lemb.none.fl_str_mv Entropía
Métodos numéricos
Ciencias naturales
topic Entropía
Métodos numéricos
Ciencias naturales
description This thesis contains two parts dedicated to advancing numerical methods for some models described by balance laws. In the first part, we designed a high-order entropy-stable numerical scheme for the Keyfitz-Kranzer model following theory of Tadmor [E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws, Math. Comput., 49(1987) pp.91–103], and Fjordholm et al. [U.S. Fjordholm, S. Mishra, and E. Tadmor, Arbitrarily high-order essentially non-oscillatory entropy stable schemes for systems of conservation laws. SIAM Journal on Numerical Analysis, 50(2012) pp.544–573], we constructed an explicit entropy pair and a non-oscillatory reconstruction of a fourth-order numerical flux. The procedure satisfies the sign property, ensuring the proposed scheme is entropy stable. In the second part, we designed numerical methods for the blood flow model in arteries. A characteristic of hyperbolic systems of balance laws is the existence of non-trivial equilibrium solutions, where the effects of convective flows and source terms cancel; such solutions may have physical significance. Generally, a standard numerical method may not satisfy the equilibrium's discrete version at steady state. To avoid this, we constructed an entropy pair and designed a well-balanced and entropy-stable numerical scheme. In our approach, we adopted theory of Tadmor and Fjordholm et al. In addition, we designed a well-balanced discontinuous Galerkin scheme following theory of Mantri and Noelle [Y. Mantri and S. Noelle, Well-balanced discontinuous Galerkin scheme for 2×2 hyperbolic balance law. Computational Physics, 429(2021) pp.1–13]. The robust numerical scheme constructed can preserve the blood flow model's equilibrium states.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2025-05-23T14:15:14Z
dc.date.available.none.fl_str_mv 2025-05-23T14:15:14Z
dc.type.es_ES.fl_str_mv Trabajo de grado - Doctorado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_71e4c1898caa6e32
dc.type.coar.es_ES.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.driver.es_ES.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.content.es_ES.fl_str_mv Text
format http://purl.org/coar/resource_type/c_db06
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10584/13275
url http://hdl.handle.net/10584/13275
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.es_ES.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.es_ES.fl_str_mv application/pdf
dc.format.extent.es_ES.fl_str_mv 110 páginas
dc.publisher.es_ES.fl_str_mv Universidad del Norte
dc.publisher.program.es_ES.fl_str_mv Doctorado en Ciencias Naturales
dc.publisher.department.es_ES.fl_str_mv División ciencias básicas
dc.publisher.place.es_ES.fl_str_mv Barranquilla, Colombia
institution Universidad del Norte
bitstream.url.fl_str_mv https://manglar.uninorte.edu.co/bitstream/10584/13275/2/license.txt
https://manglar.uninorte.edu.co/bitstream/10584/13275/1/Resumen%20Tesis%20Doctorado.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
72baecb39d9e795b168683d290ef8e09
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Digital de la Universidad del Norte
repository.mail.fl_str_mv mauribe@uninorte.edu.co
_version_ 1834108972752175104
spelling Vega Fuentes, Carlos ArturoValbuena Duarte, Sonia2025-05-23T14:15:14Z2025-05-23T14:15:14Z2023http://hdl.handle.net/10584/13275This thesis contains two parts dedicated to advancing numerical methods for some models described by balance laws. In the first part, we designed a high-order entropy-stable numerical scheme for the Keyfitz-Kranzer model following theory of Tadmor [E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws, Math. Comput., 49(1987) pp.91–103], and Fjordholm et al. [U.S. Fjordholm, S. Mishra, and E. Tadmor, Arbitrarily high-order essentially non-oscillatory entropy stable schemes for systems of conservation laws. SIAM Journal on Numerical Analysis, 50(2012) pp.544–573], we constructed an explicit entropy pair and a non-oscillatory reconstruction of a fourth-order numerical flux. The procedure satisfies the sign property, ensuring the proposed scheme is entropy stable. In the second part, we designed numerical methods for the blood flow model in arteries. A characteristic of hyperbolic systems of balance laws is the existence of non-trivial equilibrium solutions, where the effects of convective flows and source terms cancel; such solutions may have physical significance. Generally, a standard numerical method may not satisfy the equilibrium's discrete version at steady state. To avoid this, we constructed an entropy pair and designed a well-balanced and entropy-stable numerical scheme. In our approach, we adopted theory of Tadmor and Fjordholm et al. In addition, we designed a well-balanced discontinuous Galerkin scheme following theory of Mantri and Noelle [Y. Mantri and S. Noelle, Well-balanced discontinuous Galerkin scheme for 2×2 hyperbolic balance law. Computational Physics, 429(2021) pp.1–13]. The robust numerical scheme constructed can preserve the blood flow model's equilibrium states.DoctoradoDoctor en Ciencias Naturalesapplication/pdf110 páginasengUniversidad del NorteDoctorado en Ciencias NaturalesDivisión ciencias básicasBarranquilla, ColombiaWell-balanced and entropy stable numerical schemes for some models described by balance lawsTrabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06info:eu-repo/semantics/doctoralThesisTexthttp://purl.org/coar/version/c_71e4c1898caa6e32https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2EntropíaMétodos numéricosCiencias naturalesEstudiantesDoctoradoLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://manglar.uninorte.edu.co/bitstream/10584/13275/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALResumen Tesis Doctorado.pdfResumen Tesis Doctorado.pdfapplication/pdf208185https://manglar.uninorte.edu.co/bitstream/10584/13275/1/Resumen%20Tesis%20Doctorado.pdf72baecb39d9e795b168683d290ef8e09MD5110584/13275oai:manglar.uninorte.edu.co:10584/132752025-05-23 09:15:14.942Repositorio Digital de la Universidad del Nortemauribe@uninorte.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=