Design and implementation of data assimilation methods based on Cholesky decomposition
In Data Assimilation, analyses of a system are obtained by combining a previous numerical model of the system and observations or measurements from it. These numerical models are typically expressed as a set of ordinary differential equations and/or a set of partial differential equations wherein al...
- Autores:
-
Mancilla Herrera, Alfonso Manuel
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2020
- Institución:
- Universidad del Norte
- Repositorio:
- Repositorio Uninorte
- Idioma:
- eng
- OAI Identifier:
- oai:manglar.uninorte.edu.co:10584/10186
- Acceso en línea:
- http://hdl.handle.net/10584/10186
- Palabra clave:
- Álgebras lineales -- Procesamiento de datos
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by/4.0/
id |
REPOUNORT2_723c5fe9b8c5bb6ede484e847537b087 |
---|---|
oai_identifier_str |
oai:manglar.uninorte.edu.co:10584/10186 |
network_acronym_str |
REPOUNORT2 |
network_name_str |
Repositorio Uninorte |
repository_id_str |
|
dc.title.es_ES.fl_str_mv |
Design and implementation of data assimilation methods based on Cholesky decomposition |
title |
Design and implementation of data assimilation methods based on Cholesky decomposition |
spellingShingle |
Design and implementation of data assimilation methods based on Cholesky decomposition Álgebras lineales -- Procesamiento de datos |
title_short |
Design and implementation of data assimilation methods based on Cholesky decomposition |
title_full |
Design and implementation of data assimilation methods based on Cholesky decomposition |
title_fullStr |
Design and implementation of data assimilation methods based on Cholesky decomposition |
title_full_unstemmed |
Design and implementation of data assimilation methods based on Cholesky decomposition |
title_sort |
Design and implementation of data assimilation methods based on Cholesky decomposition |
dc.creator.fl_str_mv |
Mancilla Herrera, Alfonso Manuel |
dc.contributor.advisor.none.fl_str_mv |
Niño Ruiz, Elías David |
dc.contributor.author.none.fl_str_mv |
Mancilla Herrera, Alfonso Manuel |
dc.subject.lemb.none.fl_str_mv |
Álgebras lineales -- Procesamiento de datos |
topic |
Álgebras lineales -- Procesamiento de datos |
description |
In Data Assimilation, analyses of a system are obtained by combining a previous numerical model of the system and observations or measurements from it. These numerical models are typically expressed as a set of ordinary differential equations and/or a set of partial differential equations wherein all knowledge about dynamics and physics of, for instance, the ocean and or the atmosphere are encapsulated. We treat numerical forecasts and observations as random variables and therefore, error dynamics can be estimated by using Bayes’ rule. For the estimation of hyper-parameters in error distributions, an ensemble of model realizations is employed. In practice, model resolutions are several order of magnitudes larger than ensemble sizes, and consequently, sampling errors impact the quality of analysis corrections and besides, models can be highly non-linear and well-common Gaussian assumptions on prior errors can be broken. To overcome these situations, we replace prior errors by a mixture of Gaussians and even more, precision covariance matrices intra-clusters are estimated by means of the modified Cholesky decomposition. Four different methods are proposed, namely the Posterior EnKF with its deterministic and stochastic variations, a Non-Gaussian method and a MCMC filter, which used the Bickel-Levina estimator; these methods are based on a modified Cholesky decomposition and tested with the Lorenz 96 model. Their implementations are shown to provide equivalent solutions compared to another EnKF methods like the LETKF and the EnSRF. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2022-03-16T22:37:25Z |
dc.date.available.none.fl_str_mv |
2022-03-16T22:37:25Z |
dc.type.es_ES.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_dc82b40f9837b551 |
dc.type.coar.es_ES.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.driver.es_ES.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.content.es_ES.fl_str_mv |
Text |
format |
http://purl.org/coar/resource_type/c_db06 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10584/10186 |
url |
http://hdl.handle.net/10584/10186 |
dc.language.iso.es_ES.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.es_ES.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.es_ES.fl_str_mv |
application/pdf |
dc.format.extent.es_ES.fl_str_mv |
82 páginas |
dc.publisher.es_ES.fl_str_mv |
Universidad del Norte |
dc.publisher.program.es_ES.fl_str_mv |
Doctorado en Ingeniería de Sistemas y Computación |
dc.publisher.department.es_ES.fl_str_mv |
Departamento de ingeniería de sistemas |
dc.publisher.place.es_ES.fl_str_mv |
Barranquilla, Colombia |
institution |
Universidad del Norte |
bitstream.url.fl_str_mv |
https://manglar.uninorte.edu.co/bitstream/10584/10186/2/license.txt https://manglar.uninorte.edu.co/bitstream/10584/10186/1/8709908.pdf |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 67f8078dc0ec6fe559857dc7239dde1f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital de la Universidad del Norte |
repository.mail.fl_str_mv |
mauribe@uninorte.edu.co |
_version_ |
1828169895694565376 |
spelling |
Niño Ruiz, Elías DavidMancilla Herrera, Alfonso Manuel2022-03-16T22:37:25Z2022-03-16T22:37:25Z2020http://hdl.handle.net/10584/10186In Data Assimilation, analyses of a system are obtained by combining a previous numerical model of the system and observations or measurements from it. These numerical models are typically expressed as a set of ordinary differential equations and/or a set of partial differential equations wherein all knowledge about dynamics and physics of, for instance, the ocean and or the atmosphere are encapsulated. We treat numerical forecasts and observations as random variables and therefore, error dynamics can be estimated by using Bayes’ rule. For the estimation of hyper-parameters in error distributions, an ensemble of model realizations is employed. In practice, model resolutions are several order of magnitudes larger than ensemble sizes, and consequently, sampling errors impact the quality of analysis corrections and besides, models can be highly non-linear and well-common Gaussian assumptions on prior errors can be broken. To overcome these situations, we replace prior errors by a mixture of Gaussians and even more, precision covariance matrices intra-clusters are estimated by means of the modified Cholesky decomposition. Four different methods are proposed, namely the Posterior EnKF with its deterministic and stochastic variations, a Non-Gaussian method and a MCMC filter, which used the Bickel-Levina estimator; these methods are based on a modified Cholesky decomposition and tested with the Lorenz 96 model. Their implementations are shown to provide equivalent solutions compared to another EnKF methods like the LETKF and the EnSRF.DoctoradoDoctor en Ingeniería de Sistemas y Computaciónapplication/pdf82 páginasengUniversidad del NorteDoctorado en Ingeniería de Sistemas y ComputaciónDepartamento de ingeniería de sistemasBarranquilla, ColombiaDesign and implementation of data assimilation methods based on Cholesky decompositionTrabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06info:eu-repo/semantics/doctoralThesisTexthttp://purl.org/coar/version/c_dc82b40f9837b551https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Álgebras lineales -- Procesamiento de datosEstudiantesDoctoradoLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://manglar.uninorte.edu.co/bitstream/10584/10186/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINAL8709908.pdf8709908.pdfapplication/pdf20694161https://manglar.uninorte.edu.co/bitstream/10584/10186/1/8709908.pdf67f8078dc0ec6fe559857dc7239dde1fMD5110584/10186oai:manglar.uninorte.edu.co:10584/101862022-03-16 17:37:25.734Repositorio Digital de la Universidad del Nortemauribe@uninorte.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |