Framework to predict the metabolic syndrome without doing a blood test: based on machine learning for a clinical decision support system

Metabolic Syndrome (MetS) is a cluster of risk factors that increase the likelihood of heart disease and diabetes mellitus, and researchers have recently linked it to worse outcomes for the novel Covid-19 disease. It is crucial to get diagnosed with time to take preventive measures, especially for p...

Full description

Autores:
Barrios Barrios, Mauricio Andrés
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad del Norte
Repositorio:
Repositorio Uninorte
Idioma:
eng
OAI Identifier:
oai:manglar.uninorte.edu.co:10584/11004
Acceso en línea:
http://hdl.handle.net/10584/11004
Palabra clave:
Metabolic syndrome
Sangre - Análisis
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id REPOUNORT2_70c0aae6211f225f3815ac7fc0b32ddf
oai_identifier_str oai:manglar.uninorte.edu.co:10584/11004
network_acronym_str REPOUNORT2
network_name_str Repositorio Uninorte
repository_id_str
dc.title.en_US.fl_str_mv Framework to predict the metabolic syndrome without doing a blood test: based on machine learning for a clinical decision support system
title Framework to predict the metabolic syndrome without doing a blood test: based on machine learning for a clinical decision support system
spellingShingle Framework to predict the metabolic syndrome without doing a blood test: based on machine learning for a clinical decision support system
Metabolic syndrome
Sangre - Análisis
title_short Framework to predict the metabolic syndrome without doing a blood test: based on machine learning for a clinical decision support system
title_full Framework to predict the metabolic syndrome without doing a blood test: based on machine learning for a clinical decision support system
title_fullStr Framework to predict the metabolic syndrome without doing a blood test: based on machine learning for a clinical decision support system
title_full_unstemmed Framework to predict the metabolic syndrome without doing a blood test: based on machine learning for a clinical decision support system
title_sort Framework to predict the metabolic syndrome without doing a blood test: based on machine learning for a clinical decision support system
dc.creator.fl_str_mv Barrios Barrios, Mauricio Andrés
dc.contributor.advisor.none.fl_str_mv Jimeno Paba, Miguel Ángel
Villalba Amarís, Pedro Javier
dc.contributor.author.none.fl_str_mv Barrios Barrios, Mauricio Andrés
dc.subject.lemb.none.fl_str_mv Metabolic syndrome
Sangre - Análisis
topic Metabolic syndrome
Sangre - Análisis
description Metabolic Syndrome (MetS) is a cluster of risk factors that increase the likelihood of heart disease and diabetes mellitus, and researchers have recently linked it to worse outcomes for the novel Covid-19 disease. It is crucial to get diagnosed with time to take preventive measures, especially for patients in locations without proper laboratories and medical consultations. This work presents a new model to diagnose metabolic syndrome using machine learning and non-biochemical variables that healthcare professionals can obtain from initial consultations. For evaluating and comparing the model, this work also proposes a new methodology for performing research on data mining called RAMAD. The methodology standardizes the novel model’s comparison with similar classification models, using their reported variables and previously obtained data from a study in Colombia, using the holdout and random subsampling validation methods to get performance evaluation indicators between the models. The resulting ANN model used three hidden layers and only Hip Circumference, dichotomous Waist Circumference, and dichotomous blood pressure variables. It gave an Area under Receiver Operating Characteristic curves (AROC) of 87.75% by the International Diabetes Federation (IDF) and 85.12% by Harmonized Diagnosis or Joint Interim Statement (HMS) diagnosis criteria, higher than previous models. Thanks to the new methodology, diagnosis models can be thoroughly documented for appropriate future comparisons, thus benefiting the studied diseases’ diagnosis. Medical personnel needs to know the factors involved in the syndrome to start a treatment. So, this work also presents the segmentation of metabolic syndrome in types related to each biochemical variable. It uses the RAMAD methodology together with several machine learning techniques to design a framework to predict MetS and their several types, without using a blood test and only anthropometric and clinical information. The results showed an excellent system for predicting six MetS types that combine several factors mentioned above that have an AROC with a range of 71% to 96%, and an AROC 82.86%. This thesis finishes with the proposal of using a SCRUM Thinking framework for creating mobile health applications to implement the new models and serve as decision tools for healthcare professionals. The standard and fundamental characteristics were analyzed, finding the quality attributes verified in the framework’s early stages. Keywords — Metabolic Syndrome, Segmentation, Quine–McCluskey, Random Subsampling validation, RAMAD, Machine learning, Framework, International Diabetes Federation (IDF), Harmonized Diagnosis or Joint Interim Statement (HMS).
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-09-06T16:01:15Z
dc.date.available.none.fl_str_mv 2022-09-06T16:01:15Z
dc.type.es_ES.fl_str_mv Trabajo de grado - Doctorado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_71e4c1898caa6e32
dc.type.coar.es_ES.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.driver.es_ES.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.content.es_ES.fl_str_mv Text
format http://purl.org/coar/resource_type/c_db06
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10584/11004
url http://hdl.handle.net/10584/11004
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.es_ES.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.es_ES.fl_str_mv application/pdf
dc.format.extent.es_ES.fl_str_mv 138 páginas
dc.publisher.es_ES.fl_str_mv Universidad del Norte
dc.publisher.program.es_ES.fl_str_mv Doctorado en Ingeniería de Sistemas y Computación
dc.publisher.department.es_ES.fl_str_mv Departamento de ingeniería de sistemas
dc.publisher.place.es_ES.fl_str_mv Barranquilla, Colombia
institution Universidad del Norte
bitstream.url.fl_str_mv https://manglar.uninorte.edu.co/bitstream/10584/11004/2/license.txt
https://manglar.uninorte.edu.co/bitstream/10584/11004/1/Thesisv41.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
d473ca8350f43b3999ba8e198ddbd9ba
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Digital de la Universidad del Norte
repository.mail.fl_str_mv mauribe@uninorte.edu.co
_version_ 1812183118303461376
spelling Jimeno Paba, Miguel ÁngelVillalba Amarís, Pedro JavierBarrios Barrios, Mauricio Andrés2022-09-06T16:01:15Z2022-09-06T16:01:15Z2021http://hdl.handle.net/10584/11004Metabolic Syndrome (MetS) is a cluster of risk factors that increase the likelihood of heart disease and diabetes mellitus, and researchers have recently linked it to worse outcomes for the novel Covid-19 disease. It is crucial to get diagnosed with time to take preventive measures, especially for patients in locations without proper laboratories and medical consultations. This work presents a new model to diagnose metabolic syndrome using machine learning and non-biochemical variables that healthcare professionals can obtain from initial consultations. For evaluating and comparing the model, this work also proposes a new methodology for performing research on data mining called RAMAD. The methodology standardizes the novel model’s comparison with similar classification models, using their reported variables and previously obtained data from a study in Colombia, using the holdout and random subsampling validation methods to get performance evaluation indicators between the models. The resulting ANN model used three hidden layers and only Hip Circumference, dichotomous Waist Circumference, and dichotomous blood pressure variables. It gave an Area under Receiver Operating Characteristic curves (AROC) of 87.75% by the International Diabetes Federation (IDF) and 85.12% by Harmonized Diagnosis or Joint Interim Statement (HMS) diagnosis criteria, higher than previous models. Thanks to the new methodology, diagnosis models can be thoroughly documented for appropriate future comparisons, thus benefiting the studied diseases’ diagnosis. Medical personnel needs to know the factors involved in the syndrome to start a treatment. So, this work also presents the segmentation of metabolic syndrome in types related to each biochemical variable. It uses the RAMAD methodology together with several machine learning techniques to design a framework to predict MetS and their several types, without using a blood test and only anthropometric and clinical information. The results showed an excellent system for predicting six MetS types that combine several factors mentioned above that have an AROC with a range of 71% to 96%, and an AROC 82.86%. This thesis finishes with the proposal of using a SCRUM Thinking framework for creating mobile health applications to implement the new models and serve as decision tools for healthcare professionals. The standard and fundamental characteristics were analyzed, finding the quality attributes verified in the framework’s early stages. Keywords — Metabolic Syndrome, Segmentation, Quine–McCluskey, Random Subsampling validation, RAMAD, Machine learning, Framework, International Diabetes Federation (IDF), Harmonized Diagnosis or Joint Interim Statement (HMS).DoctoradoDoctor en Ingeniería de Sistemas y Computaciónapplication/pdf138 páginasengUniversidad del NorteDoctorado en Ingeniería de Sistemas y ComputaciónDepartamento de ingeniería de sistemasBarranquilla, ColombiaFramework to predict the metabolic syndrome without doing a blood test: based on machine learning for a clinical decision support systemTrabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06info:eu-repo/semantics/doctoralThesisTexthttp://purl.org/coar/version/c_71e4c1898caa6e32https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Metabolic syndromeSangre - AnálisisEstudiantesDoctoradoLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://manglar.uninorte.edu.co/bitstream/10584/11004/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALThesisv41.pdfThesisv41.pdfapplication/pdf1470593https://manglar.uninorte.edu.co/bitstream/10584/11004/1/Thesisv41.pdfd473ca8350f43b3999ba8e198ddbd9baMD5110584/11004oai:manglar.uninorte.edu.co:10584/110042022-09-06 11:01:15.468Repositorio Digital de la Universidad del Nortemauribe@uninorte.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=