Adaptive protection in active distribution networks using local information
This thesis proposes two adaptive protection approaches to protect MG/ADN in an autonomous way and without robust communication. The first approach presents an adaptive protection method based on an intelligent fault detector, which uses local measurements. Additionally, this solution was implemente...
- Autores:
-
Marín Quintero, Juan Guillermo
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2022
- Institución:
- Universidad del Norte
- Repositorio:
- Repositorio Uninorte
- Idioma:
- eng
- OAI Identifier:
- oai:manglar.uninorte.edu.co:10584/10763
- Acceso en línea:
- http://hdl.handle.net/10584/10763
- Palabra clave:
- Amplificadores (Electrónica)
Reguladores del voltaje
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by/4.0/
id |
REPOUNORT2_6a71206958e6b977f4ed7743140aad5e |
---|---|
oai_identifier_str |
oai:manglar.uninorte.edu.co:10584/10763 |
network_acronym_str |
REPOUNORT2 |
network_name_str |
Repositorio Uninorte |
repository_id_str |
|
dc.title.es_ES.fl_str_mv |
Adaptive protection in active distribution networks using local information |
title |
Adaptive protection in active distribution networks using local information |
spellingShingle |
Adaptive protection in active distribution networks using local information Amplificadores (Electrónica) Reguladores del voltaje |
title_short |
Adaptive protection in active distribution networks using local information |
title_full |
Adaptive protection in active distribution networks using local information |
title_fullStr |
Adaptive protection in active distribution networks using local information |
title_full_unstemmed |
Adaptive protection in active distribution networks using local information |
title_sort |
Adaptive protection in active distribution networks using local information |
dc.creator.fl_str_mv |
Marín Quintero, Juan Guillermo |
dc.contributor.advisor.none.fl_str_mv |
Vélez Díaz, Juan Carlos Orozco Henao, Cesar Augusto |
dc.contributor.author.none.fl_str_mv |
Marín Quintero, Juan Guillermo |
dc.subject.lemb.none.fl_str_mv |
Amplificadores (Electrónica) Reguladores del voltaje |
topic |
Amplificadores (Electrónica) Reguladores del voltaje |
description |
This thesis proposes two adaptive protection approaches to protect MG/ADN in an autonomous way and without robust communication. The first approach presents an adaptive protection method based on an intelligent fault detector, which uses local measurements. Additionally, this solution was implemented in an online grid, where it used data-driven models running on Jetson Nano-system intended to run machine/deep learning loads at the edge. The second solution presents a decentralized adaptive protection scheme and introduces a data-driven and communication-less approach. The present solution uses an Artificial Neural Network to train Intelligent Electronic Devices as fault classifiers and brings backup protection to adjacent devices; also, it uses a cuckoo search metaheuristic to its quasi-optimal adjustment. The approaches were validated on several modified IEEE test feeders such as IEEE 13, IEEE 34, and IEEE 123. The results of the adaptive protection scheme show values of accuracy above 96% and dependability of 99%. In addition, the solution shows a correlation between the location and the combination of features and hyper-parameters. The implementation of the fault detector model into a physical low voltage network located at Universidad del Norte Colombia showed outstanding results. This test network is based on the IEEE-13 Node Test Feeder scaled to 220V. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-08-02T15:47:15Z |
dc.date.available.none.fl_str_mv |
2022-08-02T15:47:15Z |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.es_ES.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_dc82b40f9837b551 |
dc.type.coar.es_ES.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.driver.es_ES.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.content.es_ES.fl_str_mv |
Text |
format |
http://purl.org/coar/resource_type/c_db06 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10584/10763 |
url |
http://hdl.handle.net/10584/10763 |
dc.language.iso.es_ES.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.es_ES.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.es_ES.fl_str_mv |
application/pdf |
dc.format.extent.es_ES.fl_str_mv |
132 páginas |
dc.publisher.es_ES.fl_str_mv |
Universidad del Norte |
dc.publisher.program.es_ES.fl_str_mv |
Doctorado en Ingeniería Eléctrica y Electrónica |
dc.publisher.department.es_ES.fl_str_mv |
Departamento de eléctrica y electrónica |
dc.publisher.place.es_ES.fl_str_mv |
Barranquilla, Colombia |
institution |
Universidad del Norte |
bitstream.url.fl_str_mv |
https://manglar.uninorte.edu.co/bitstream/10584/10763/1/1088248043.pdf https://manglar.uninorte.edu.co/bitstream/10584/10763/2/license.txt |
bitstream.checksum.fl_str_mv |
d7d5f2d923fb6ccc6c9f39473b30982f 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital de la Universidad del Norte |
repository.mail.fl_str_mv |
mauribe@uninorte.edu.co |
_version_ |
1812183106684190720 |
spelling |
Vélez Díaz, Juan CarlosOrozco Henao, Cesar AugustoMarín Quintero, Juan Guillermo2022-08-02T15:47:15Z2022-08-02T15:47:15Z2022http://hdl.handle.net/10584/10763This thesis proposes two adaptive protection approaches to protect MG/ADN in an autonomous way and without robust communication. The first approach presents an adaptive protection method based on an intelligent fault detector, which uses local measurements. Additionally, this solution was implemented in an online grid, where it used data-driven models running on Jetson Nano-system intended to run machine/deep learning loads at the edge. The second solution presents a decentralized adaptive protection scheme and introduces a data-driven and communication-less approach. The present solution uses an Artificial Neural Network to train Intelligent Electronic Devices as fault classifiers and brings backup protection to adjacent devices; also, it uses a cuckoo search metaheuristic to its quasi-optimal adjustment. The approaches were validated on several modified IEEE test feeders such as IEEE 13, IEEE 34, and IEEE 123. The results of the adaptive protection scheme show values of accuracy above 96% and dependability of 99%. In addition, the solution shows a correlation between the location and the combination of features and hyper-parameters. The implementation of the fault detector model into a physical low voltage network located at Universidad del Norte Colombia showed outstanding results. This test network is based on the IEEE-13 Node Test Feeder scaled to 220V.DoctoradoDoctor en Ingeniería Eléctrica y Electrónicaapplication/pdf132 páginasengUniversidad del NorteDoctorado en Ingeniería Eléctrica y ElectrónicaDepartamento de eléctrica y electrónicaBarranquilla, ColombiaAdaptive protection in active distribution networks using local informationTrabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06info:eu-repo/semantics/doctoralThesisTexthttp://purl.org/coar/version/c_dc82b40f9837b551https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Amplificadores (Electrónica)Reguladores del voltajeEstudiantesDoctoradoORIGINAL1088248043.pdf1088248043.pdfapplication/pdf4710603https://manglar.uninorte.edu.co/bitstream/10584/10763/1/1088248043.pdfd7d5f2d923fb6ccc6c9f39473b30982fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://manglar.uninorte.edu.co/bitstream/10584/10763/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5210584/10763oai:manglar.uninorte.edu.co:10584/107632022-08-02 10:47:16.308Repositorio Digital de la Universidad del Nortemauribe@uninorte.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |