Adaptive protection in active distribution networks using local information

This thesis proposes two adaptive protection approaches to protect MG/ADN in an autonomous way and without robust communication. The first approach presents an adaptive protection method based on an intelligent fault detector, which uses local measurements. Additionally, this solution was implemente...

Full description

Autores:
Marín Quintero, Juan Guillermo
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad del Norte
Repositorio:
Repositorio Uninorte
Idioma:
eng
OAI Identifier:
oai:manglar.uninorte.edu.co:10584/10763
Acceso en línea:
http://hdl.handle.net/10584/10763
Palabra clave:
Amplificadores (Electrónica)
Reguladores del voltaje
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id REPOUNORT2_6a71206958e6b977f4ed7743140aad5e
oai_identifier_str oai:manglar.uninorte.edu.co:10584/10763
network_acronym_str REPOUNORT2
network_name_str Repositorio Uninorte
repository_id_str
dc.title.es_ES.fl_str_mv Adaptive protection in active distribution networks using local information
title Adaptive protection in active distribution networks using local information
spellingShingle Adaptive protection in active distribution networks using local information
Amplificadores (Electrónica)
Reguladores del voltaje
title_short Adaptive protection in active distribution networks using local information
title_full Adaptive protection in active distribution networks using local information
title_fullStr Adaptive protection in active distribution networks using local information
title_full_unstemmed Adaptive protection in active distribution networks using local information
title_sort Adaptive protection in active distribution networks using local information
dc.creator.fl_str_mv Marín Quintero, Juan Guillermo
dc.contributor.advisor.none.fl_str_mv Vélez Díaz, Juan Carlos
Orozco Henao, Cesar Augusto
dc.contributor.author.none.fl_str_mv Marín Quintero, Juan Guillermo
dc.subject.lemb.none.fl_str_mv Amplificadores (Electrónica)
Reguladores del voltaje
topic Amplificadores (Electrónica)
Reguladores del voltaje
description This thesis proposes two adaptive protection approaches to protect MG/ADN in an autonomous way and without robust communication. The first approach presents an adaptive protection method based on an intelligent fault detector, which uses local measurements. Additionally, this solution was implemented in an online grid, where it used data-driven models running on Jetson Nano-system intended to run machine/deep learning loads at the edge. The second solution presents a decentralized adaptive protection scheme and introduces a data-driven and communication-less approach. The present solution uses an Artificial Neural Network to train Intelligent Electronic Devices as fault classifiers and brings backup protection to adjacent devices; also, it uses a cuckoo search metaheuristic to its quasi-optimal adjustment. The approaches were validated on several modified IEEE test feeders such as IEEE 13, IEEE 34, and IEEE 123. The results of the adaptive protection scheme show values of accuracy above 96% and dependability of 99%. In addition, the solution shows a correlation between the location and the combination of features and hyper-parameters. The implementation of the fault detector model into a physical low voltage network located at Universidad del Norte Colombia showed outstanding results. This test network is based on the IEEE-13 Node Test Feeder scaled to 220V.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-02T15:47:15Z
dc.date.available.none.fl_str_mv 2022-08-02T15:47:15Z
dc.date.issued.none.fl_str_mv 2022
dc.type.es_ES.fl_str_mv Trabajo de grado - Doctorado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_dc82b40f9837b551
dc.type.coar.es_ES.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.driver.es_ES.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.content.es_ES.fl_str_mv Text
format http://purl.org/coar/resource_type/c_db06
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10584/10763
url http://hdl.handle.net/10584/10763
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.es_ES.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.es_ES.fl_str_mv application/pdf
dc.format.extent.es_ES.fl_str_mv 132 páginas
dc.publisher.es_ES.fl_str_mv Universidad del Norte
dc.publisher.program.es_ES.fl_str_mv Doctorado en Ingeniería Eléctrica y Electrónica
dc.publisher.department.es_ES.fl_str_mv Departamento de eléctrica y electrónica
dc.publisher.place.es_ES.fl_str_mv Barranquilla, Colombia
institution Universidad del Norte
bitstream.url.fl_str_mv https://manglar.uninorte.edu.co/bitstream/10584/10763/1/1088248043.pdf
https://manglar.uninorte.edu.co/bitstream/10584/10763/2/license.txt
bitstream.checksum.fl_str_mv d7d5f2d923fb6ccc6c9f39473b30982f
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Digital de la Universidad del Norte
repository.mail.fl_str_mv mauribe@uninorte.edu.co
_version_ 1812183106684190720
spelling Vélez Díaz, Juan CarlosOrozco Henao, Cesar AugustoMarín Quintero, Juan Guillermo2022-08-02T15:47:15Z2022-08-02T15:47:15Z2022http://hdl.handle.net/10584/10763This thesis proposes two adaptive protection approaches to protect MG/ADN in an autonomous way and without robust communication. The first approach presents an adaptive protection method based on an intelligent fault detector, which uses local measurements. Additionally, this solution was implemented in an online grid, where it used data-driven models running on Jetson Nano-system intended to run machine/deep learning loads at the edge. The second solution presents a decentralized adaptive protection scheme and introduces a data-driven and communication-less approach. The present solution uses an Artificial Neural Network to train Intelligent Electronic Devices as fault classifiers and brings backup protection to adjacent devices; also, it uses a cuckoo search metaheuristic to its quasi-optimal adjustment. The approaches were validated on several modified IEEE test feeders such as IEEE 13, IEEE 34, and IEEE 123. The results of the adaptive protection scheme show values of accuracy above 96% and dependability of 99%. In addition, the solution shows a correlation between the location and the combination of features and hyper-parameters. The implementation of the fault detector model into a physical low voltage network located at Universidad del Norte Colombia showed outstanding results. This test network is based on the IEEE-13 Node Test Feeder scaled to 220V.DoctoradoDoctor en Ingeniería Eléctrica y Electrónicaapplication/pdf132 páginasengUniversidad del NorteDoctorado en Ingeniería Eléctrica y ElectrónicaDepartamento de eléctrica y electrónicaBarranquilla, ColombiaAdaptive protection in active distribution networks using local informationTrabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06info:eu-repo/semantics/doctoralThesisTexthttp://purl.org/coar/version/c_dc82b40f9837b551https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Amplificadores (Electrónica)Reguladores del voltajeEstudiantesDoctoradoORIGINAL1088248043.pdf1088248043.pdfapplication/pdf4710603https://manglar.uninorte.edu.co/bitstream/10584/10763/1/1088248043.pdfd7d5f2d923fb6ccc6c9f39473b30982fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://manglar.uninorte.edu.co/bitstream/10584/10763/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5210584/10763oai:manglar.uninorte.edu.co:10584/107632022-08-02 10:47:16.308Repositorio Digital de la Universidad del Nortemauribe@uninorte.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=