BCI applications based on artificial intelligence oriented to deep learning techniques
A Brain-Computer Interface, BCI, can decode the brain signals corresponding to the intentions of individuals who have lost neuromuscular connection, to reestablish communication to control external devices. To this aim, BCI acquires brain signals as Electroencephalography (EEG) or Electrocorticograp...
- Autores:
-
Cancino Suárez, Sandra Liliana
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad del Norte
- Repositorio:
- Repositorio Uninorte
- Idioma:
- eng
- OAI Identifier:
- oai:manglar.uninorte.edu.co:10584/11701
- Acceso en línea:
- http://hdl.handle.net/10584/11701
- Palabra clave:
- Inteligencia artificial
Procesamiento de señales
Redes neurales (Computadores)
Electroencefalografía
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by/4.0/
id |
REPOUNORT2_319f442f935a16979b23bc286328c4bb |
---|---|
oai_identifier_str |
oai:manglar.uninorte.edu.co:10584/11701 |
network_acronym_str |
REPOUNORT2 |
network_name_str |
Repositorio Uninorte |
repository_id_str |
|
dc.title.en_US.fl_str_mv |
BCI applications based on artificial intelligence oriented to deep learning techniques |
title |
BCI applications based on artificial intelligence oriented to deep learning techniques |
spellingShingle |
BCI applications based on artificial intelligence oriented to deep learning techniques Inteligencia artificial Procesamiento de señales Redes neurales (Computadores) Electroencefalografía |
title_short |
BCI applications based on artificial intelligence oriented to deep learning techniques |
title_full |
BCI applications based on artificial intelligence oriented to deep learning techniques |
title_fullStr |
BCI applications based on artificial intelligence oriented to deep learning techniques |
title_full_unstemmed |
BCI applications based on artificial intelligence oriented to deep learning techniques |
title_sort |
BCI applications based on artificial intelligence oriented to deep learning techniques |
dc.creator.fl_str_mv |
Cancino Suárez, Sandra Liliana |
dc.contributor.advisor.none.fl_str_mv |
Schettini, Norelli Delgado Saa, Jaime Fernando |
dc.contributor.author.none.fl_str_mv |
Cancino Suárez, Sandra Liliana |
dc.subject.lemb.none.fl_str_mv |
Inteligencia artificial Procesamiento de señales Redes neurales (Computadores) Electroencefalografía |
topic |
Inteligencia artificial Procesamiento de señales Redes neurales (Computadores) Electroencefalografía |
description |
A Brain-Computer Interface, BCI, can decode the brain signals corresponding to the intentions of individuals who have lost neuromuscular connection, to reestablish communication to control external devices. To this aim, BCI acquires brain signals as Electroencephalography (EEG) or Electrocorticography (ECoG), uses signal processing techniques and extracts features to train classifiers for providing proper control instructions. BCI development has increased in the last decades, improving its performance through the use of different signal processing techniques for feature extraction and artificial intelligence approaches for classification, such as deep learning-oriented classifiers. All of these can assure more accurate assistive systems but also can enable an analysis of the learning process of signal characteristics for the classification task. Initially, this work proposes the use of a priori knowledge and a correlation measure to select the most discriminative ECoG signal electrodes. Then, signals are processed using spatial filtering and three different types of temporal filtering, followed by a classifier made of stacked autoencoders and a softmax layer to discriminate between ECoG signals from two types of visual stimuli. Results show that the average accuracy obtained is 97% (+/- 0.02%), which is similar to state-of-the-art techniques, nevertheless, this method uses minimal prior physiological and an automated statistical technique to select some electrodes to train the classifier. Also, this work presents classifier analysis, figuring out which are the most relevant signal features useful for visual stimuli classification. The features and physiological information such as the brain areas involved are compared. Finally, this research uses Convolutional Neural Networks (CNN) or Convnets to classify 5 categories of motor tasks EEG signals. Movement-related cortical potentials (MRCPs) are used as a priori information to improve the processing of time-frequency representation of EEG signals. Results show an increase of more than 25% in average accuracy compared to a state-of-the-art method that uses the same database. In addition, an analysis of CNN or ConvNets filters and feature maps is done to and the most relevant signal characteristics that can help classify the five types of motor tasks. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-09-28T18:51:10Z |
dc.date.available.none.fl_str_mv |
2023-09-28T18:51:10Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.es_ES.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_71e4c1898caa6e32 |
dc.type.coar.es_ES.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.driver.es_ES.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.content.es_ES.fl_str_mv |
Text |
format |
http://purl.org/coar/resource_type/c_db06 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10584/11701 |
url |
http://hdl.handle.net/10584/11701 |
dc.language.iso.es_ES.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.es_ES.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.es_ES.fl_str_mv |
application/pdf |
dc.format.extent.es_ES.fl_str_mv |
67 páginas |
dc.publisher.es_ES.fl_str_mv |
Universidad del Norte |
dc.publisher.program.es_ES.fl_str_mv |
Doctorado en Ingeniería Eléctrica y Electrónica |
dc.publisher.department.es_ES.fl_str_mv |
Departamento de eléctrica y electrónica |
dc.publisher.place.es_ES.fl_str_mv |
Barranquilla, Colombia |
institution |
Universidad del Norte |
bitstream.url.fl_str_mv |
https://manglar.uninorte.edu.co/bitstream/10584/11701/1/52691849.pdf https://manglar.uninorte.edu.co/bitstream/10584/11701/2/license.txt |
bitstream.checksum.fl_str_mv |
c3a634b695e053a5ac4af99ba47273c4 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital de la Universidad del Norte |
repository.mail.fl_str_mv |
mauribe@uninorte.edu.co |
_version_ |
1812183111815921664 |
spelling |
Schettini, NorelliDelgado Saa, Jaime FernandoCancino Suárez, Sandra Liliana2023-09-28T18:51:10Z2023-09-28T18:51:10Z2023http://hdl.handle.net/10584/11701A Brain-Computer Interface, BCI, can decode the brain signals corresponding to the intentions of individuals who have lost neuromuscular connection, to reestablish communication to control external devices. To this aim, BCI acquires brain signals as Electroencephalography (EEG) or Electrocorticography (ECoG), uses signal processing techniques and extracts features to train classifiers for providing proper control instructions. BCI development has increased in the last decades, improving its performance through the use of different signal processing techniques for feature extraction and artificial intelligence approaches for classification, such as deep learning-oriented classifiers. All of these can assure more accurate assistive systems but also can enable an analysis of the learning process of signal characteristics for the classification task. Initially, this work proposes the use of a priori knowledge and a correlation measure to select the most discriminative ECoG signal electrodes. Then, signals are processed using spatial filtering and three different types of temporal filtering, followed by a classifier made of stacked autoencoders and a softmax layer to discriminate between ECoG signals from two types of visual stimuli. Results show that the average accuracy obtained is 97% (+/- 0.02%), which is similar to state-of-the-art techniques, nevertheless, this method uses minimal prior physiological and an automated statistical technique to select some electrodes to train the classifier. Also, this work presents classifier analysis, figuring out which are the most relevant signal features useful for visual stimuli classification. The features and physiological information such as the brain areas involved are compared. Finally, this research uses Convolutional Neural Networks (CNN) or Convnets to classify 5 categories of motor tasks EEG signals. Movement-related cortical potentials (MRCPs) are used as a priori information to improve the processing of time-frequency representation of EEG signals. Results show an increase of more than 25% in average accuracy compared to a state-of-the-art method that uses the same database. In addition, an analysis of CNN or ConvNets filters and feature maps is done to and the most relevant signal characteristics that can help classify the five types of motor tasks.DoctoradoDoctor en Ingeniería Eléctrica y Electrónicaapplication/pdf67 páginasengUniversidad del NorteDoctorado en Ingeniería Eléctrica y ElectrónicaDepartamento de eléctrica y electrónicaBarranquilla, ColombiaBCI applications based on artificial intelligence oriented to deep learning techniquesTrabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06info:eu-repo/semantics/doctoralThesisTexthttp://purl.org/coar/version/c_71e4c1898caa6e32https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Inteligencia artificialProcesamiento de señalesRedes neurales (Computadores)ElectroencefalografíaEstudiantesDoctoradoORIGINAL52691849.pdf52691849.pdfapplication/pdf786677https://manglar.uninorte.edu.co/bitstream/10584/11701/1/52691849.pdfc3a634b695e053a5ac4af99ba47273c4MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://manglar.uninorte.edu.co/bitstream/10584/11701/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5210584/11701oai:manglar.uninorte.edu.co:10584/117012023-09-28 13:51:10.554Repositorio Digital de la Universidad del Nortemauribe@uninorte.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |