Control preventivo de sigatoka negra en cultivo banano apoyado en redes convolucionales

his work focuses on solving the problem of classification and detection of black Sigatoka disease in banana plants, in terms of improving the process used in Colombia and reducing costs for the disease control process, based on the use of neural networks with the VGG19 Architecture. An automated too...

Full description

Autores:
Pallares, Carlos Jorge
Lallemand, Keneth Stive
Visbal, Fernando David
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad del Norte
Repositorio:
Repositorio Uninorte
Idioma:
spa
OAI Identifier:
oai:manglar.uninorte.edu.co:10584/9533
Acceso en línea:
http://hdl.handle.net/10584/9533
Palabra clave:
Machine learning
Fourè
Segmentación
redes neuronales convolucionales
Sigatoka negra
enfermedad
foliar
preventivo
fitosanitario
agricultura de precisión
reducción de costos
Rights
License
Universidad del Norte
id REPOUNORT2_2e1f01b47592aaf3dbe4b3954318c899
oai_identifier_str oai:manglar.uninorte.edu.co:10584/9533
network_acronym_str REPOUNORT2
network_name_str Repositorio Uninorte
repository_id_str
dc.title.es_ES.fl_str_mv Control preventivo de sigatoka negra en cultivo banano apoyado en redes convolucionales
title Control preventivo de sigatoka negra en cultivo banano apoyado en redes convolucionales
spellingShingle Control preventivo de sigatoka negra en cultivo banano apoyado en redes convolucionales
Machine learning
Fourè
Segmentación
redes neuronales convolucionales
Sigatoka negra
enfermedad
foliar
preventivo
fitosanitario
agricultura de precisión
reducción de costos
title_short Control preventivo de sigatoka negra en cultivo banano apoyado en redes convolucionales
title_full Control preventivo de sigatoka negra en cultivo banano apoyado en redes convolucionales
title_fullStr Control preventivo de sigatoka negra en cultivo banano apoyado en redes convolucionales
title_full_unstemmed Control preventivo de sigatoka negra en cultivo banano apoyado en redes convolucionales
title_sort Control preventivo de sigatoka negra en cultivo banano apoyado en redes convolucionales
dc.creator.fl_str_mv Pallares, Carlos Jorge
Lallemand, Keneth Stive
Visbal, Fernando David
dc.contributor.advisor.none.fl_str_mv Zurek, Eduardo
dc.contributor.author.none.fl_str_mv Pallares, Carlos Jorge
Lallemand, Keneth Stive
Visbal, Fernando David
dc.subject.es_ES.fl_str_mv Machine learning
Fourè
Segmentación
redes neuronales convolucionales
Sigatoka negra
enfermedad
foliar
preventivo
fitosanitario
agricultura de precisión
reducción de costos
topic Machine learning
Fourè
Segmentación
redes neuronales convolucionales
Sigatoka negra
enfermedad
foliar
preventivo
fitosanitario
agricultura de precisión
reducción de costos
description his work focuses on solving the problem of classification and detection of black Sigatoka disease in banana plants, in terms of improving the process used in Colombia and reducing costs for the disease control process, based on the use of neural networks with the VGG19 Architecture. An automated tool is proposed for analysis, control and monitoring of Black Sigatoka. The analysis, control and monitoring will be done thanks to the reports as the final result of our tool, which will seek to be as explicit as possible for the end user in terms of location, severity and visualization of results classified in fields. The development of this project will base the use of tools for automation of processes in agriculture in Magdalena as it is based on real data and current deep learning techniques, exposing a vision of the use of precision agriculture as a set of techniques where the technology will begin to base decisions for the improvement of crops in terms of control, analysis and phytosanitary monitoring of diseases and associated fungi.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-05-31T13:18:00Z
dc.date.available.none.fl_str_mv 2021-05-31T13:18:00Z
dc.date.issued.none.fl_str_mv 2021-05-28
dc.type.es_ES.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10584/9533
url http://hdl.handle.net/10584/9533
dc.language.iso.es_ES.fl_str_mv spa
language spa
dc.rights.es_ES.fl_str_mv Universidad del Norte
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Universidad del Norte
http://purl.org/coar/access_right/c_abf2
dc.publisher.es_ES.fl_str_mv Barranquilla, Universidad del Norte, 2021
institution Universidad del Norte
bitstream.url.fl_str_mv https://manglar.uninorte.edu.co/bitstream/10584/9533/1/Paper%20Proyecto%20de%20Grado.docx%20%287%29.pdf
https://manglar.uninorte.edu.co/bitstream/10584/9533/2/license.txt
bitstream.checksum.fl_str_mv 622baebb9838c49a2bd63b079f5c9482
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Digital de la Universidad del Norte
repository.mail.fl_str_mv mauribe@uninorte.edu.co
_version_ 1812183098824065024
spelling Zurek, EduardoPallares, Carlos JorgeLallemand, Keneth StiveVisbal, Fernando David2021-05-31T13:18:00Z2021-05-31T13:18:00Z2021-05-28http://hdl.handle.net/10584/9533his work focuses on solving the problem of classification and detection of black Sigatoka disease in banana plants, in terms of improving the process used in Colombia and reducing costs for the disease control process, based on the use of neural networks with the VGG19 Architecture. An automated tool is proposed for analysis, control and monitoring of Black Sigatoka. The analysis, control and monitoring will be done thanks to the reports as the final result of our tool, which will seek to be as explicit as possible for the end user in terms of location, severity and visualization of results classified in fields. The development of this project will base the use of tools for automation of processes in agriculture in Magdalena as it is based on real data and current deep learning techniques, exposing a vision of the use of precision agriculture as a set of techniques where the technology will begin to base decisions for the improvement of crops in terms of control, analysis and phytosanitary monitoring of diseases and associated fungi.spaBarranquilla, Universidad del Norte, 2021Universidad del Nortehttp://purl.org/coar/access_right/c_abf2Machine learningFourèSegmentaciónredes neuronales convolucionalesSigatoka negraenfermedadfoliarpreventivofitosanitarioagricultura de precisiónreducción de costosControl preventivo de sigatoka negra en cultivo banano apoyado en redes convolucionalesarticlehttp://purl.org/coar/resource_type/c_6501ORIGINALPaper Proyecto de Grado.docx (7).pdfPaper Proyecto de Grado.docx (7).pdfapplication/pdf2667797https://manglar.uninorte.edu.co/bitstream/10584/9533/1/Paper%20Proyecto%20de%20Grado.docx%20%287%29.pdf622baebb9838c49a2bd63b079f5c9482MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://manglar.uninorte.edu.co/bitstream/10584/9533/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5210584/9533oai:manglar.uninorte.edu.co:10584/95332021-05-31 08:18:00.576Repositorio Digital de la Universidad del Nortemauribe@uninorte.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=