Diseño y simulación de un array de parches lineal en la banda de las microondas

En la actualidad la competencia por obtener productos eficientes toma cada vez una mayor relevancia en cada uno de los sectores de la industria, en cuanto a la industria satelital, aeroespacial y celular, requieren antenas con bajo peso, costo y facilidad de instalación, esto ha impulsado la necesid...

Full description

Autores:
Acuña Altahona, Aldair Andrés
Hurtado Vargas, Javier Andrés
Jusquini Tinoco, Carlos Alberto
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad del Norte
Repositorio:
Repositorio Uninorte
Idioma:
spa
OAI Identifier:
oai:manglar.uninorte.edu.co:10584/9645
Acceso en línea:
http://hdl.handle.net/10584/9645
Palabra clave:
broadside
antena
array
parche
Diagrama de radiación
microondas
microstrip
5G
antenna
patch
Radiation diagram
microwave
CST
Rights
License
Universidad del Norte
id REPOUNORT2_1cc844d12c692d5c89405ade358748da
oai_identifier_str oai:manglar.uninorte.edu.co:10584/9645
network_acronym_str REPOUNORT2
network_name_str Repositorio Uninorte
repository_id_str
dc.title.es_ES.fl_str_mv Diseño y simulación de un array de parches lineal en la banda de las microondas
dc.title.en_US.fl_str_mv Design and simulation of an lineal array of patches in the microwave band
title Diseño y simulación de un array de parches lineal en la banda de las microondas
spellingShingle Diseño y simulación de un array de parches lineal en la banda de las microondas
broadside
antena
array
parche
Diagrama de radiación
microondas
microstrip
5G
antenna
patch
Radiation diagram
microwave
CST
title_short Diseño y simulación de un array de parches lineal en la banda de las microondas
title_full Diseño y simulación de un array de parches lineal en la banda de las microondas
title_fullStr Diseño y simulación de un array de parches lineal en la banda de las microondas
title_full_unstemmed Diseño y simulación de un array de parches lineal en la banda de las microondas
title_sort Diseño y simulación de un array de parches lineal en la banda de las microondas
dc.creator.fl_str_mv Acuña Altahona, Aldair Andrés
Hurtado Vargas, Javier Andrés
Jusquini Tinoco, Carlos Alberto
dc.contributor.advisor.none.fl_str_mv Ripoll Solano, Lacides Antonio
dc.contributor.author.none.fl_str_mv Acuña Altahona, Aldair Andrés
Hurtado Vargas, Javier Andrés
Jusquini Tinoco, Carlos Alberto
dc.subject.es_ES.fl_str_mv broadside
antena
array
parche
Diagrama de radiación
microondas
microstrip
5G
topic broadside
antena
array
parche
Diagrama de radiación
microondas
microstrip
5G
antenna
patch
Radiation diagram
microwave
CST
dc.subject.en_US.fl_str_mv antenna
patch
Radiation diagram
microwave
CST
description En la actualidad la competencia por obtener productos eficientes toma cada vez una mayor relevancia en cada uno de los sectores de la industria, en cuanto a la industria satelital, aeroespacial y celular, requieren antenas con bajo peso, costo y facilidad de instalación, esto ha impulsado la necesidad de explorar la utilización de circuitos impresos que operan como líneas de transmisión y elementos radiantes. Se ha optado por proponer el diseño y simulación de un array lineal de parches microstrip para aplicaciones en la banda de las microondas, más específicamente a la frecuencia de 3.6 GHz con la intención de que pueda ser utilizada para aplicaciones de 5G, pues esta banda opera desde los 3.3 GHz hasta los 3.8 GHz aproximadamente. En este orden de ideas, para la implementación del arreglo se procedió a calcular las medidas óptimas de la antena. Para esto fue necesario tener en cuenta las características del substrato con el que se desea realizar el arreglo, luego se realizó el procedimiento respectivo para hallar las medidas óptimas. Una vez se obtienen estas medidas se simuló en MATLAB para tener un precedente teórico del comportamiento de la antena, donde se obtiene como base el diagrama de radiación tridimensional, el polar; donde destaca la radiación tipo broadside, y el cartesiano; donde destaca el NLPS. Posteriormente, para la simulación en condiciones reales se utilizó el software especializado en antenas CST-Microwave Studio, en donde se realizó el montaje de la primera antena, obteniendo unas pérdidas de retorno con un valor aproximado de -42 dB y una ganancia de 7 dBi; y finalmente, se replicó hasta obtener un arreglo de 16 antenas. En términos generales se logra evidenciar como con el uso de herramientas tales como antenas microstrip, software especializado son vitales para la resolución económica de problemas de distintos sectores industriales.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-21T14:22:42Z
dc.date.available.none.fl_str_mv 2021-06-21T14:22:42Z
dc.date.issued.none.fl_str_mv 2021-05-31
dc.type.es_ES.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10584/9645
url http://hdl.handle.net/10584/9645
dc.language.iso.es_ES.fl_str_mv spa
language spa
dc.rights.es_ES.fl_str_mv Universidad del Norte
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Universidad del Norte
http://purl.org/coar/access_right/c_abf2
dc.publisher.es_ES.fl_str_mv Barranquilla, Universidad del Norte, 2021
institution Universidad del Norte
bitstream.url.fl_str_mv https://manglar.uninorte.edu.co/bitstream/10584/9645/1/Array16antenas.jpg
https://manglar.uninorte.edu.co/bitstream/10584/9645/2/Array16antenas_PDF.pdf
https://manglar.uninorte.edu.co/bitstream/10584/9645/3/license.txt
bitstream.checksum.fl_str_mv 8cfdd19d6483c0e60422be714ff0e2ad
7cd8191e230b9455712cacba56c41895
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital de la Universidad del Norte
repository.mail.fl_str_mv mauribe@uninorte.edu.co
_version_ 1812183111769784320
spelling Ripoll Solano, Lacides AntonioAcuña Altahona, Aldair AndrésHurtado Vargas, Javier AndrésJusquini Tinoco, Carlos Alberto2021-06-21T14:22:42Z2021-06-21T14:22:42Z2021-05-31http://hdl.handle.net/10584/9645En la actualidad la competencia por obtener productos eficientes toma cada vez una mayor relevancia en cada uno de los sectores de la industria, en cuanto a la industria satelital, aeroespacial y celular, requieren antenas con bajo peso, costo y facilidad de instalación, esto ha impulsado la necesidad de explorar la utilización de circuitos impresos que operan como líneas de transmisión y elementos radiantes. Se ha optado por proponer el diseño y simulación de un array lineal de parches microstrip para aplicaciones en la banda de las microondas, más específicamente a la frecuencia de 3.6 GHz con la intención de que pueda ser utilizada para aplicaciones de 5G, pues esta banda opera desde los 3.3 GHz hasta los 3.8 GHz aproximadamente. En este orden de ideas, para la implementación del arreglo se procedió a calcular las medidas óptimas de la antena. Para esto fue necesario tener en cuenta las características del substrato con el que se desea realizar el arreglo, luego se realizó el procedimiento respectivo para hallar las medidas óptimas. Una vez se obtienen estas medidas se simuló en MATLAB para tener un precedente teórico del comportamiento de la antena, donde se obtiene como base el diagrama de radiación tridimensional, el polar; donde destaca la radiación tipo broadside, y el cartesiano; donde destaca el NLPS. Posteriormente, para la simulación en condiciones reales se utilizó el software especializado en antenas CST-Microwave Studio, en donde se realizó el montaje de la primera antena, obteniendo unas pérdidas de retorno con un valor aproximado de -42 dB y una ganancia de 7 dBi; y finalmente, se replicó hasta obtener un arreglo de 16 antenas. En términos generales se logra evidenciar como con el uso de herramientas tales como antenas microstrip, software especializado son vitales para la resolución económica de problemas de distintos sectores industriales.Nowadays the competition for efficient products takes more and more relevance in each of the industry sectors, as for the satellite, aerospace and cellular industry, they require antennas with low weight, cost and ease of installation, this has driven the need to explore the use of printed circuits that operate as transmission lines and radiating elements. We have chosen to propose the design and simulation of a microstrip patch linear array for applications in the microwave band, more specifically at the 3.6 GHz frequency with the intention that it can be used for 5G applications, as this band operates from approximately 3.3 GHz to 3.8 GHz. In this order of ideas, for the implementation of the array we proceeded to calculate the optimal antenna measurements. For this it was necessary to take into account the characteristics of the substrate with which the array is to be made, then the respective procedure was carried out to find the optimal measurements. Once these measurements were obtained, they were simulated in MATLAB to have a theoretical precedent of the antenna behavior, where the three-dimensional radiation pattern is obtained as a basis, the polar one; where the broadside radiation stands out, and the Cartesian one, where the NLPS stands out. Subsequently, for the simulation under real conditions, the specialized antenna software CST-Microwave Studio was used, where the first antenna was assembled, obtaining return losses with an approximate value of -42 dB and a gain of 7 dBi; and finally, it was replicated to obtain an array of 16 antennas. In general terms, it is possible to demonstrate how the use of tools such as microstrip antennas, specialized software is vital for the economic resolution of problems in different industrial sectors.spaBarranquilla, Universidad del Norte, 2021Universidad del Nortehttp://purl.org/coar/access_right/c_abf2broadsideantenaarrayparcheDiagrama de radiaciónmicroondasmicrostrip5GantennapatchRadiation diagrammicrowaveCSTDiseño y simulación de un array de parches lineal en la banda de las microondasDesign and simulation of an lineal array of patches in the microwave bandarticlehttp://purl.org/coar/resource_type/c_6501ORIGINALArray16antenas.jpgArray16antenas.jpgImagen del Proyectoimage/jpeg52275https://manglar.uninorte.edu.co/bitstream/10584/9645/1/Array16antenas.jpg8cfdd19d6483c0e60422be714ff0e2adMD51Array16antenas_PDF.pdfArray16antenas_PDF.pdfImagen del Proyecto en PDFapplication/pdf53442https://manglar.uninorte.edu.co/bitstream/10584/9645/2/Array16antenas_PDF.pdf7cd8191e230b9455712cacba56c41895MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://manglar.uninorte.edu.co/bitstream/10584/9645/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5310584/9645oai:manglar.uninorte.edu.co:10584/96452021-06-21 09:22:42.372Repositorio Digital de la Universidad del Nortemauribe@uninorte.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=