Diseño de un modelo estadístico para la predicción de los precios de bolsa de energía en Colombia
Desde la apertura económica colombiana en 1994, el comportamiento del precio de la energía en el país ha sido foco de investigación debido a su importancia para las organizaciones. La oferta de generadores de energía, la demanda de esta, además de factores hidrológicos y técnicos varios, influyen de...
- Autores:
-
García del Villar, Valeria
Verano Urueta, Nicolás
Ranauro Argumedo, Ramiro
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad del Norte
- Repositorio:
- Repositorio Uninorte
- Idioma:
- spa
- OAI Identifier:
- oai:manglar.uninorte.edu.co:10584/9283
- Acceso en línea:
- http://hdl.handle.net/10584/9283
- Palabra clave:
- Precio
Energía
Pronóstico
Price
Energy
Forecast
- Rights
- License
- Universidad del Norte
Summary: | Desde la apertura económica colombiana en 1994, el comportamiento del precio de la energía en el país ha sido foco de investigación debido a su importancia para las organizaciones. La oferta de generadores de energía, la demanda de esta, además de factores hidrológicos y técnicos varios, influyen de forma horaria en el precio de la energía. Es por ello que se requiere el diseño de un modelo estadístico predictivo para el precio de bolsa de la energía en Colombia que facilite las planeaciones que penden de la variación del precio, no sólo para las empresas directamente inmersas en la cadena de suministro sino también para aquellas en las que la energía es vital para su funcionamiento. Para lograrlo, se empleó la metodología conocida como Data Science Methodology de IBM, que mediante 5 etapas permitió llegar a un modelo viable teniendo en cuenta limitantes de tiempo por la brevedad del estudio, limitantes tecnológicas, entre otras. El primer acercamiento a la situación-problema fue determinar cuáles serían los objetivos de estudio; con ello, se estableció qué datos serían necesarios y se realizó la recopilación de estos; para luego en la tercera etapa, filtrar, preparar y estudiar las relaciones entre datos que se tenían hasta el momento y así determinar qué métodos estadísticos eran viables dada la naturaleza de los datos y las limitantes establecidas. Finalmente se dio el planteamiento de múltiples modelos (series de tiempo, regresión lineal, modelos TBATS, redes neuronales, etc.) los cuales se evaluaron respecto al cumplimiento de los supuestos del error y calidad de pronóstico. Como resultado del análisis anterior, se obtuvo un modelo de redes neuronales artificiales que subestimó los datos reales en promedio un 19%, pronosticando el precio promedio del día siguiente y ofreciendo así la mejor calidad de pronóstico entre los modelos desarrollados. Adicionalmente, se reconocieron variables influyentes en el precio de bolsa útiles para futuras investigaciones. |
---|