The Infinite within Descartes’ Mathematical Physics

Descartes’ philosophy contains an intriguing notion of the infinite, a concept labeled by the philosopher as indefinite. Even though Descartes clearly defined this term on several occasions in the correspondence with his contemporaries, as well as in his Principles of Philosophy, numerous problems a...

Full description

Autores:
Francoise Monnoyeur Broitman; Prof. Dr. Françoise Monnoyeur-Broitman Philosophy Department IKK, Linköping University SE-581 83 Linköping, Sweden
Tipo de recurso:
Fecha de publicación:
2013
Institución:
Universidad del Norte
Repositorio:
Repositorio Uninorte
Idioma:
eng
OAI Identifier:
oai:manglar.uninorte.edu.co:10584/2838
Acceso en línea:
http://rcientificas.uninorte.edu.co/index.php/eidos/article/view/4129
http://hdl.handle.net/10584/2838
Palabra clave:
Philosophy; History of Philosophy
Descartes, infinity , mathematical physics , space , matter
Infinity; Descartes
Rights
License
http://purl.org/coar/access_right/c_abf2
id REPOUNORT2_1456c3d4d72702be016d8f87f26918c5
oai_identifier_str oai:manglar.uninorte.edu.co:10584/2838
network_acronym_str REPOUNORT2
network_name_str Repositorio Uninorte
repository_id_str
dc.title.none.fl_str_mv The Infinite within Descartes’ Mathematical Physics
Lo indefinido en la física matemática de Descartes [Inglés]
title The Infinite within Descartes’ Mathematical Physics
spellingShingle The Infinite within Descartes’ Mathematical Physics
Philosophy; History of Philosophy
Descartes, infinity , mathematical physics , space , matter
Infinity; Descartes
title_short The Infinite within Descartes’ Mathematical Physics
title_full The Infinite within Descartes’ Mathematical Physics
title_fullStr The Infinite within Descartes’ Mathematical Physics
title_full_unstemmed The Infinite within Descartes’ Mathematical Physics
title_sort The Infinite within Descartes’ Mathematical Physics
dc.creator.fl_str_mv Francoise Monnoyeur Broitman; Prof. Dr. Françoise Monnoyeur-Broitman Philosophy Department IKK, Linköping University SE-581 83 Linköping, Sweden
dc.contributor.author.none.fl_str_mv Francoise Monnoyeur Broitman; Prof. Dr. Françoise Monnoyeur-Broitman Philosophy Department IKK, Linköping University SE-581 83 Linköping, Sweden
dc.subject.none.fl_str_mv Philosophy; History of Philosophy
Descartes, infinity , mathematical physics , space , matter
Infinity; Descartes
topic Philosophy; History of Philosophy
Descartes, infinity , mathematical physics , space , matter
Infinity; Descartes
description Descartes’ philosophy contains an intriguing notion of the infinite, a concept labeled by the philosopher as indefinite. Even though Descartes clearly defined this term on several occasions in the correspondence with his contemporaries, as well as in his Principles of Philosophy, numerous problems about its meaning have arisen over the years. Most commentators reject the view that the indefinite could mean a real thing and, instead, identify it with an Aristotelian potential infinite. In the first part of this article, I show why there is no numerical infinity in Cartesian mathematics, as such a concept would be inconsistent with the main fundamental attribute of numbers: to be comparable with each other. In the second part, I analyze the indefinite in the context of Descartes’ mathematical physics. It is my contention that, even with no trace of infinite in his mathematics, Descartes does refer to an actual indefinite because of its application to the material world within the system of his physics. This fact underlines a discrepancy between his mathematics and physics of the infinite, but does not lead a difficulty in his mathematical physics. Thus, in Descartes’ physics, the indefinite refers to an actual dimension of the world rather than to an Aristotelian mathematical potential infinity. In fact, Descartes establishes the reality and limitlessness of the extension of the cosmos and, by extension, the actual nature of his indefinite world. This indefinite has a physical dimension, even if it is not measurable.
publishDate 2013
dc.date.accessioned.none.fl_str_mv 2013-08-31T23:00:19Z
dc.date.available.none.fl_str_mv 2013-08-31T23:00:19Z
dc.date.issued.none.fl_str_mv 2013-06-15
dc.type.none.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.hasVersion.none.fl_str_mv publishedVersion
dc.identifier.other.none.fl_str_mv http://rcientificas.uninorte.edu.co/index.php/eidos/article/view/4129
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10584/2838
url http://rcientificas.uninorte.edu.co/index.php/eidos/article/view/4129
http://hdl.handle.net/10584/2838
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Eidos; No. 19: July-December, 2013; 107-122
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.coverage.spatial.none.fl_str_mv Colombia
dc.publisher.none.fl_str_mv Universidad del Norte
publisher.none.fl_str_mv Universidad del Norte
dc.source.none.fl_str_mv instname:Universidad del Norte
reponame:Repositorio Digital de la Universidad del Norte
instname_str Universidad del Norte
institution Universidad del Norte
reponame_str Repositorio Digital de la Universidad del Norte
collection Repositorio Digital de la Universidad del Norte
repository.name.fl_str_mv Repositorio Digital de la Universidad del Norte
repository.mail.fl_str_mv mauribe@uninorte.edu.co
_version_ 1812183092305068032
spelling Francoise Monnoyeur Broitman; Prof. Dr. Françoise Monnoyeur-Broitman Philosophy Department IKK, Linköping University SE-581 83 Linköping, SwedenColombia2013-08-31T23:00:19Z2013-08-31T23:00:19Z2013-06-15http://rcientificas.uninorte.edu.co/index.php/eidos/article/view/4129http://hdl.handle.net/10584/2838Descartes’ philosophy contains an intriguing notion of the infinite, a concept labeled by the philosopher as indefinite. Even though Descartes clearly defined this term on several occasions in the correspondence with his contemporaries, as well as in his Principles of Philosophy, numerous problems about its meaning have arisen over the years. Most commentators reject the view that the indefinite could mean a real thing and, instead, identify it with an Aristotelian potential infinite. In the first part of this article, I show why there is no numerical infinity in Cartesian mathematics, as such a concept would be inconsistent with the main fundamental attribute of numbers: to be comparable with each other. In the second part, I analyze the indefinite in the context of Descartes’ mathematical physics. It is my contention that, even with no trace of infinite in his mathematics, Descartes does refer to an actual indefinite because of its application to the material world within the system of his physics. This fact underlines a discrepancy between his mathematics and physics of the infinite, but does not lead a difficulty in his mathematical physics. Thus, in Descartes’ physics, the indefinite refers to an actual dimension of the world rather than to an Aristotelian mathematical potential infinity. In fact, Descartes establishes the reality and limitlessness of the extension of the cosmos and, by extension, the actual nature of his indefinite world. This indefinite has a physical dimension, even if it is not measurable.La filosofía de Descartes contiene una noción intrigante de lo infinito, un concepto nombrado por el filósofo como indefinido. Aunque en varias ocasiones Descartes definió claramente este término en su correspondencia con sus contemporáneos y en sus Principios de filosofía, han surgido muchos problemas acerca de su significado a lo largo de los años. La mayoría de comentaristas rechaza la idea de que indefinido podría significar una cosa real y, en cambio, la identifica con un infinito potencial aristotélico. En la primera parte de este artículo muestro por qué no hay infinito numérico en las matemáticas cartesianas, en la medida en que tal concepto sería inconsistente con el principal atributo fundamental de los números: ser comparables entre sí. En la segunda parte analizo lo indefinido en el contexto de la física matemática de Descartes. Mi argumento es que, aunque no hay rastro de infinito en sus matemáticas, Descartes se refiere a un indefinido real a causa de sus aplicaciones al mundo material dentro del sistema de su física. Este hecho subraya una discrepancia entre sus matemáticas y su física de lo infinito, pero no implica ninguna dificultad en su física matemática. Así pues, en la física de Descartes, lo indefinido se refiere a una dimensión real del mundo más que a una infinitud potencial matemática aristotélica. De hecho, Descartes establece la realidad e infinitud de la extensión del cosmos y, por extensión, la naturaleza real de su mundo indefinido. Esta indefinición tiene una dimensión física aunque no sea medible.application/pdfapplication/pdfengUniversidad del NorteEidos; No. 19: July-December, 2013; 107-122Authors who publish with this journal agree to the following terms:1. The Author retains copyright in the Work, where the term "Work" shall include all digital objects that may result in subsequent electronic publication or distribution.2. Upon acceptance of the Work, the author shall grant to the Publisher the right of first publication of the Work.The Author shall grant to the Publisher a nonexclusive perpetual right and license to publish, archive, and make accessible the Work in whole or in part in all forms of media now or hereafter known under a Creative Commons 3.0 License Attribution-NonCommercial 3.0 Unported CC BY-NC 3.0, or its equivalent, which, for the avoidance of doubt, allows others to copy, distribute, and transmit the Work under the following conditions: (a) Attribution: Other users must attribute the Work in the manner specified by the author as indicated on the journal Web site;(b) Noncommercial: Other users (including Publisher) may not use this Work for commercial purposes;4. The Author is able to enter into separate, additional contractual arrangements for the nonexclusive distribution of the journal's published version of the Work (e.g., post it to an institutional repository or publish it in a book), as long as there is provided in the document an acknowledgement of its initial publication in this journal.5. Authors are permitted, and Eidos promotes, to post online the preprint manuscript of the Work in institutional repositories or on their Websites prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see The Effect of Open Access). Any such posting made before acceptance and publication of the Work is expected be updated upon publication to include a reference to the Eidos's assigned URL to the Article and its final published version in Eidos.Los autores que publican en Eidos acuerdan los siguientes términos:1. El Autor retiene el copyright del "Artículo", por el cual se entiende todos los objetos digitales que pueden resultar de la subsiguiente publicación o distribución electrónica.2. En conformidad con los términos de este acuerdo, el autor garantizará a Eidos como Editor el derecho de la primera publicación del artículo.3. El Autor le concederá al Editor un derecho perpetuo y no-exclusivo, así como una licencia de la misma clase, de publicar, archivar y hacer accesible el Artículo parcial o totalmente en todos los medios conocidos o por conocerse, derecho y licencia que se conocen como Creative Commons License Deed. Atribución-NoComercial 3.0 Unported CC BY-NC 3.0 o su equivalente que para efectos de eliminar toda duda, le permite a otros copiar, distribuir, y transmitir el Artículo bajo las siguientes condiciones: (a) Atribución: Se deben reconocer los créditos de la obra de la manera especificada por el Autor a Eidos, pero no de una manera que sugiera que tiene su apoyo o que apoyan el uso que hace de su obra. (b) No Comercial: No se puede utilizar el Artículo para fines comerciales.4. El Autor puede realizar otros acuerdos contractuales no comerciales para la distribución no exclusiva de la versión publicada del Artículo (v. gr. ponerlo en un repositorio institucional o publicarlo en un libro) con la condición de que haga el debido reconocimiento de su publicación original en Eidos.5. A los Autores se les permite y Eidos promueve publicar en línea (online) la versión pre-impresa del Artículo en repositorios institucionales o en sus páginas web, antes y durante la publicación, por cuanto que puede producir intercambios académicos productivos, así como una mayor citación del Artículo publicado (ver The Effect of Open Access). Dicha publicación durante el proceso de producción y en la publicación del Artículo se espera que se actualice al momento de salir la versión final, incluyendo una referencia a la URL de Eidos.http://purl.org/coar/access_right/c_abf2instname:Universidad del Nortereponame:Repositorio Digital de la Universidad del NortePhilosophy; History of PhilosophyDescartes, infinity , mathematical physics , space , matterInfinity; DescartesThe Infinite within Descartes’ Mathematical PhysicsLo indefinido en la física matemática de Descartes [Inglés]articlepublishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_650110584/2838oai:172.16.14.36:10584/28382015-10-07 01:48:42.386Repositorio Digital de la Universidad del Nortemauribe@uninorte.edu.co