Acetylene and Ethylene Adsorption on a β-Mo2C(100) Surface: A Periodic DFT Study on the Role of C- and Mo-Terminations for Bonding and Hydrogenation Reactions

Mo2C catalysts are widely used in hydrogenation reactions; however, the role of the C and Mo terminations in these catalysts is not clear. Understanding the binding of adsorbates is key for explaining the activity of Mo2C. The adsorption of acetylene and ethylene, probe molecules representing alkyne...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4284
Acceso en línea:
http://hdl.handle.net/11407/4284
Palabra clave:
Acetylene
Adsorption
Bins
Catalyst activity
Catalysts
Chemical bonds
Density functional theory
Electronic properties
Ethylene
Hydrocarbons
Lighting
Catalytic potential
Chemical equations
Ethylene adsorption
Hydrogenation reactions
Mo-terminated surface
Orthorhombic systems
Periodic density functional theory
Unsaturated hydrocarbons
Hydrogenation
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_fbc836055805cdee237dd2de6922c9a2
oai_identifier_str oai:repository.udem.edu.co:11407/4284
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Acetylene and Ethylene Adsorption on a β-Mo2C(100) Surface: A Periodic DFT Study on the Role of C- and Mo-Terminations for Bonding and Hydrogenation Reactions
title Acetylene and Ethylene Adsorption on a β-Mo2C(100) Surface: A Periodic DFT Study on the Role of C- and Mo-Terminations for Bonding and Hydrogenation Reactions
spellingShingle Acetylene and Ethylene Adsorption on a β-Mo2C(100) Surface: A Periodic DFT Study on the Role of C- and Mo-Terminations for Bonding and Hydrogenation Reactions
Acetylene
Adsorption
Bins
Catalyst activity
Catalysts
Chemical bonds
Density functional theory
Electronic properties
Ethylene
Hydrocarbons
Lighting
Catalytic potential
Chemical equations
Ethylene adsorption
Hydrogenation reactions
Mo-terminated surface
Orthorhombic systems
Periodic density functional theory
Unsaturated hydrocarbons
Hydrogenation
title_short Acetylene and Ethylene Adsorption on a β-Mo2C(100) Surface: A Periodic DFT Study on the Role of C- and Mo-Terminations for Bonding and Hydrogenation Reactions
title_full Acetylene and Ethylene Adsorption on a β-Mo2C(100) Surface: A Periodic DFT Study on the Role of C- and Mo-Terminations for Bonding and Hydrogenation Reactions
title_fullStr Acetylene and Ethylene Adsorption on a β-Mo2C(100) Surface: A Periodic DFT Study on the Role of C- and Mo-Terminations for Bonding and Hydrogenation Reactions
title_full_unstemmed Acetylene and Ethylene Adsorption on a β-Mo2C(100) Surface: A Periodic DFT Study on the Role of C- and Mo-Terminations for Bonding and Hydrogenation Reactions
title_sort Acetylene and Ethylene Adsorption on a β-Mo2C(100) Surface: A Periodic DFT Study on the Role of C- and Mo-Terminations for Bonding and Hydrogenation Reactions
dc.contributor.affiliation.spa.fl_str_mv Jimenez-Orozco, C., Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
Florez, E., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No 30-65, Medellín, Colombia
Moreno, A., Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
Liu, P., Chemistry Department, Brookhaven National Laboratory, Upton, NY, United States
Rodriguez, J.A., Chemistry Department, Brookhaven National Laboratory, Upton, NY, United States
dc.subject.keyword.eng.fl_str_mv Acetylene
Adsorption
Bins
Catalyst activity
Catalysts
Chemical bonds
Density functional theory
Electronic properties
Ethylene
Hydrocarbons
Lighting
Catalytic potential
Chemical equations
Ethylene adsorption
Hydrogenation reactions
Mo-terminated surface
Orthorhombic systems
Periodic density functional theory
Unsaturated hydrocarbons
Hydrogenation
topic Acetylene
Adsorption
Bins
Catalyst activity
Catalysts
Chemical bonds
Density functional theory
Electronic properties
Ethylene
Hydrocarbons
Lighting
Catalytic potential
Chemical equations
Ethylene adsorption
Hydrogenation reactions
Mo-terminated surface
Orthorhombic systems
Periodic density functional theory
Unsaturated hydrocarbons
Hydrogenation
description Mo2C catalysts are widely used in hydrogenation reactions; however, the role of the C and Mo terminations in these catalysts is not clear. Understanding the binding of adsorbates is key for explaining the activity of Mo2C. The adsorption of acetylene and ethylene, probe molecules representing alkynes and olefins, respectively, was studied on a β-Mo2C(100) surface with C and Mo terminations using calculations based on periodic density functional theory. Moreover, the role of the C/Mo molar ratio was investigated to compare the catalytic potential of cubic (δ-MoC) and orthorhombic (β-Mo2C) surfaces. The geometry and electronic properties of the clean δ-MoC(001) and β-Mo2C(100) surfaces have a strong influence on the binding of unsaturated hydrocarbons. The adsorption of ethylene is weaker than that of acetylene on the surfaces of the cubic and orthorhombic systems; adsorption of the hydrocarbons was stronger on β-Mo2C(100) than on δ-MoC(001). The C termination in β-Mo2C(100) actively participates in both acetylene and ethylene adsorption and is not merely a spectator. The results of this work suggest that the β-Mo2C(100)-C surface could be the one responsible for the catalytic activity during the hydrogenation of unsaturated C≡C and C=C bonds, while the Mo-terminated surface could be poisoned or transformed by the strong adsorption of C and CHx fragments. (Chemical Equation Presented). © 2017 American Chemical Society.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-12-19T19:36:44Z
dc.date.available.none.fl_str_mv 2017-12-19T19:36:44Z
dc.date.created.none.fl_str_mv 2017
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 19327447
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4284
dc.identifier.doi.none.fl_str_mv 10.1021/acs.jpcc.7b05442
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad de Medellín
dc.identifier.instname.spa.fl_str_mv instname:Universidad de Medellín
identifier_str_mv 19327447
10.1021/acs.jpcc.7b05442
reponame:Repositorio Institucional Universidad de Medellín
instname:Universidad de Medellín
url http://hdl.handle.net/11407/4284
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029514849&doi=10.1021%2facs.jpcc.7b05442&partnerID=40&md5=e98cf75bdd9602a6f351521524d6b1f5
dc.relation.ispartofes.spa.fl_str_mv Journal of Physical Chemistry C
Journal of Physical Chemistry C Volume 121, Issue 36, 14 September 2017, Pages 19786-19795
dc.relation.references.spa.fl_str_mv Ardakani, S. J., Liu, X., & Smith, K. J. (2007). Hydrogenation and ring opening of naphthalene on bulk and supported Mo2C catalysts. Applied Catalysis A: General, 324(1-2), 9-19. doi:10.1016/j.apcata.2007.02.048
Choi, J. -., Bugli, G., & Djéga-Mariadassou, G. (2000). Influence of the degree of carburization on the density of sites and hydrogenating activity of molybdenum carbides. Journal of Catalysis, 193(2), 238-247. doi:10.1006/jcat.2000.2894
Christensen, A. N. (1977). A neutron diffraction investigation on a crystal of alpha-Mo2C. Acta Chem.Scand., 31, 509-511.
Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I. J., Refson, K., & Payne, M. C. (2005). First principles methods using CASTEP. Zeitschrift Fur Kristallographie, 220(5-6), 567-570. doi:10.1524/zkri.220.5.567.65075
Dhandapani, B., St. Clair, T., & Oyama, S. T. (1998). Simultaneous hydrodesulfurization, hydrodeoxygenation, and hydrogenation with molybdenum carbide. Applied Catalysis A: General, 168(2), 219-228.
Espinoza-Monjardín, Cruz-Reyes, J., Del Valle-Granados, M., Flores-Aquino, E., Avalos-Borja, M., & Fuentes-Moyado, S. (2008). Synthesis, characterization and catalytic activity in the hydrogenation of cyclohexene with molybdenum carbide. Catalysis Letters, 120(1-2), 137-142. doi:10.1007/s10562-007-9264-9
Florez, E., Gomez, T., Rodriguez, J. A., & Illas, F. (2011). On the dissociation of molecular hydrogen by au supported on transition metal carbides: Choice of the most active support. Physical Chemistry Chemical Physics, 13(15), 6865-6871. doi:10.1039/c0cp02882g
Frühberger, B., & Chen, J. G. (1996). Reaction of ethylene with clean and carbide-modified mo(110): Converting surface reactivities of molybdenum to pt-group metals. Journal of the American Chemical Society, 118(46), 11599-11609. doi:10.1021/ja960656l
Gallaway, W. S., & Barker, E. F. (1942). The infra-red absorption spectra of ethylene and tetra-deutero-ethylene under high resolution. The Journal of Chemical Physics, 10(2), 88-97.
Gao, F., Wang, Y., & Tysoe, W. T. (2006). Ethylene hydrogenation on mo(CO)6 derived model catalysts in ultrahigh vacuum: From oxycarbide to carbide to MoAl alloy. Journal of Molecular Catalysis A: Chemical, 249(1-2), 111-122. doi:10.1016/j.molcata.2006.01.016
Gomez, T., Florez, E., Rodriguez, J. A., & Illas, F. (2011). Reactivity of transition metals (pd, pt, cu, ag, au) toward molecular hydrogen dissociation: Extended surfaces versus particles supported on TiC(001) or small is not always better and large is not always bad. Journal of Physical Chemistry C, 115(23), 11666-11672. doi:10.1021/jp2024445
Govender, A., Curulla Ferré, D., & Niemantsverdriet, J. W. (2012). A density functional theory study on the effect of zero-point energy corrections on the methanation profile on fe(100). ChemPhysChem, 13(6), 1591-1596. doi:10.1002/cphc.201100733
Grev, R. S., Janssen, C. L., & Schaefer III, H. F. (1991). Concerning zero-point vibrational energy corrections to electronic energies. The Journal of Chemical Physics, 95(7), 5128-5132.
Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787-1799. doi:10.1002/jcc.20495
Herzberg, G., & Stoicheff, B. P. (1955). Carbon-carbon and carbon-hydrogen distances in simple polyatomic molecules [4]. Nature, 175(4445), 79-80. doi:10.1038/175079a0
Hou, R., Chang, K., Chen, J. G., & Wang, T. (2015). Top.Catal., 58, 240-246.
Hugosson, H. W., Eriksson, O., Nordström, L., Jansson, U., Fast, L., Delin, A., . . . Johansson, B. (1999). Theory of phase stabilities and bonding mechanisms in stoichiometric and substoichiometric molybdenum carbide. Journal of Applied Physics, 86(7), 3758-3767.
Hwu, H. H., & Chen, J. G. (2005). Surface chemistry of transition metal carbides. Chemical Reviews, 105(1), 185-212. doi:10.1021/cr0204606
Jimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., & Rodriguez, J. A. (2017). Acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces: A comprehensive periodic DFT study. Physical Chemistry Chemical Physics, 19(2) doi:10.1039/c6cp07400f
Jimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., & Rodriguez, J. A. (2016). Systematic theoretical study of ethylene adsorption on δ-MoC(001), TiC(001), and ZrC(001) surfaces. Journal of Physical Chemistry C, 120(25), 13531-13540. doi:10.1021/acs.jpcc.6b03106
Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B - Condensed Matter and Materials Physics, 54(16), 11169-11186.
Lee, J. S., Volpe, L., Ribeiro, F. H., & Boudart, M. (1988). Molybdenum carbide catalysts. II. topotactic synthesis of unsupported powders. Journal of Catalysis, 112(1), 44-53. doi:10.1016/0021-9517(88)90119-4
Liu, H., Zhu, J., Lai, Z., Zhao, R., & He, D. (2009). A first-principles study on structural and electronic properties of Mo2C. Scripta Materialia, 60(11), 949-952. doi:10.1016/j.scriptamat.2009.02.010
Liu, P., & Rodriguez, J. A. (2006). Water-gas-shift reaction on molybdenum carbide surfaces: Essential role of the oxycarbide. Journal of Physical Chemistry B, 110(39), 19418-19425. doi:10.1021/jp0621629
Luo, Q., Wang, T., Walther, G., Beller, M., & Jiao, H. (2014). Molybdenum carbide catalysed hydrogen production from formic acid - A density functional theory study. Journal of Power Sources, 246, 548-555. doi:10.1016/j.jpowsour.2013.07.102
Monkhorst, H. J., & Pack, J. D. (1976). Special points for brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/PhysRevB.13.5188
Oshikawa, K., Nagai, M., & Omi, S. (2001). Characterization of molybdenum carbides for methane reforming by TPR, XRD, and XPS. Journal of Physical Chemistry B, 105(38), 9124-9131. doi:10.1021/jp0111867
Oyama, S. T. (1996). The Chemistry of Transition Metal Carbides and Nitrides.
Parthe, E., & Sadagopan, V. (1963). The structure of dimolybdenum carbide by neutron diffraction technique. Acta Crystallogr. 16(3).
Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/PhysRevLett.77.3865
Politi, J. R. D. S., Viñes, F., Rodriguez, J. A., & Illas, F. (2013). Atomic and electronic structure of molybdenum carbide phases: Bulk and low miller-index surfaces. Physical Chemistry Chemical Physics, 15(30), 12617-12625. doi:10.1039/c3cp51389k
Posada-Pérez, S., Dos Santos Politi, J. R., Viñes, F., & Illas, F. (2015). Methane capture at room temperature: Adsorption on cubic δ-MoC and orthorhombic β-Mo2C molybdenum carbide (001) surfaces. RSC Advances, 5(43), 33737-33746. doi:10.1039/c4ra17225f
Posada-Pérez, S., Viñes, F., Ramirez, P. J., Vidal, A. B., Rodriguez, J. A., & Illas, F. (2014). The bending machine: CO2 activation and hydrogenation on δ-MoC(001) and β-Mo2C(001) surfaces. Physical Chemistry Chemical Physics, 16(28), 14912-14921. doi:10.1039/c4cp01943a
Posada-Pérez, S., Viñes, F., Rodriguez, J. A., & Illas, F. (2015). Fundamentals of methanol synthesis on metal carbide based catalysts: Activation of CO2 and H2. Topics in Catalysis, 58(2-3), 159-173. doi:10.1007/s11244-014-0355-8
Posada-Pérez, S., Viñes, F., Valero, R., Rodriguez, J. A., & Illas, F. (2017). Adsorption and dissociation of molecular hydrogen on orthorhombic β-Mo2C and cubic δ-MoC (001) surfaces. Surface Science, 656, 24-32. doi:10.1016/j.susc.2016.10.001
Qi, K. -., Wang, G. -., & Zheng, W. -. (2013). Structure-sensitivity of ethane hydrogenolysis over molybdenum carbides: A density functional theory study. Applied Surface Science, 276, 369-376. doi:10.1016/j.apsusc.2013.03.099
Rocha, A. S., Rocha, A. B., & da Silva, V. T. (2010). Benzene adsorption on Mo2C: A theoretical and experimental study. Applied Catalysis A: General, 379(1-2), 54-60. doi:10.1016/j.apcata.2010.02.032
Rodriguez, J. A., Dvorak, J., & Jirsak, T. (2000). Chemistry of thiophene on mo(110), MoCx and MoSx surfaces: Photoemission studies. Surface Science, 457(1), L413-L420. doi:10.1016/S0039-6028(00)00416-7
Schaidle, J. A., Blackburn, J., Farberow, C. A., Nash, C., Steirer, K. X., Clark, J., . . . Ruddy, D. A. (2016). Experimental and computational investigation of acetic acid deoxygenation over oxophilic molybdenum carbide: Surface chemistry and active site identity. ACS Catalysis, 6(2), 1181-1197. doi:10.1021/acscatal.5b01930
Schaidle, J. A., & Thompson, L. T. (2015). Fischer-tropsch synthesis over early transition metal carbides and nitrides: CO activation and chain growth. Journal of Catalysis, 329, 325-334. doi:10.1016/j.jcat.2015.05.020
Schweitzer, N. M., Schaidle, J. A., Ezekoye, O. K., Pan, X., Linic, S., & Thompson, L. T. (2011). High activity carbide supported catalysts for water gas shift. Journal of the American Chemical Society, 133(8), 2378-2381. doi:10.1021/ja110705a
Shi, X. -., Wang, S. -., Wang, H., Deng, C. -., Qin, Z., & Wang, J. (2009). Structure and stability of β-Mo2C bulk and surfaces: A density functional theory study. Surface Science, 603(6), 852-859. doi:10.1016/j.susc.2009.01.041
Shi, Y., Yang, Y., Li, Y. -., & Jiao, H. (2016). Activation mechanisms of H2, O2, H2O, CO2, CO, CH4 and C2Hx on metallic Mo2C(001) as well as Mo/C terminated Mo2C(101) from density functional theory computations. Applied Catalysis A: General, 524, 223-236. doi:10.1016/j.apcata.2016.07.003
Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41(11), 7892-7895. doi:10.1103/PhysRevB.41.7892
Viñes, F., Sousa, C., Illas, F., Liu, P., & Rodriguez, J. A. (2007). A systematic density functional study of molecular oxygen adsorption and dissociation on the (001) surface of group IV-VI transition metal carbides. Journal of Physical Chemistry C, 111(45), 16982-16989. doi:10.1021/jp0754987
Vines, F., Sousa, C., Liu, P., Rodriguez, J. A., & Illas, F. (2005). A systematic density functional theory study of the electronic structure of bulk and (001) surface of transition-metals carbides. Journal of Chemical Physics, 122(17) doi:10.1063/1.1888370
Vitale, G., Guzmán, H., Frauwallner, M. L., Scott, C. E., & Pereira-Almao, P. (2015). Synthesis of nanocrystalline molybdenum carbide materials and their characterization. Catalysis Today, 250, 123-133. doi:10.1016/j.cattod.2014.05.011
Wang, T., Li, Y. -., Wang, J., Beller, M., & Jiao, H. (2014). Dissociative hydrogen adsorption on the hexagonal Mo2C phase at high coverage. Journal of Physical Chemistry C, 118(15), 8079-8089. doi:10.1021/jp501471u
Wang, T., Li, Y. -., Wang, J., Beller, M., & Jiao, H. (2014). High coverage CO adsorption and dissociation on the orthorhombic mo 2C(100) surface. Journal of Physical Chemistry C, 118(6), 3162-3171. doi:10.1021/jp412067x
Wyvratt, B. M., Gaudet, J. R., & Thompson, L. T. (2015). Effects of passivation on synthesis, structure and composition of molybdenum carbide supported platinum water-gas shift catalysts. Journal of Catalysis, 330, 280-287. doi:10.1016/j.jcat.2015.07.023
Xu, W., Ramirez, P. J., Stacchiola, D., & Rodriguez, J. A. (2014). Synthesis of α-MoC1-x and β-MoCy catalysts for CO2 hydrogenation by thermal carburization of mo-oxide in hydrocarbon and hydrogen mixtures. Catalysis Letters, 144(8), 1418-1424. doi:10.1007/s10562-014-1278-5
Zhang, J., Wu, W., & Liu, S. (2014). In situ IR spectroscopic study on the hydrogenation of 1, 3-butadiene on fresh MO2C/γ-A1203 catalyst. China Petroleum Processing and Petrochemical Technology, 16(4), 32-37.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv American Chemical Society
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159148330254336
spelling 2017-12-19T19:36:44Z2017-12-19T19:36:44Z201719327447http://hdl.handle.net/11407/428410.1021/acs.jpcc.7b05442reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínMo2C catalysts are widely used in hydrogenation reactions; however, the role of the C and Mo terminations in these catalysts is not clear. Understanding the binding of adsorbates is key for explaining the activity of Mo2C. The adsorption of acetylene and ethylene, probe molecules representing alkynes and olefins, respectively, was studied on a β-Mo2C(100) surface with C and Mo terminations using calculations based on periodic density functional theory. Moreover, the role of the C/Mo molar ratio was investigated to compare the catalytic potential of cubic (δ-MoC) and orthorhombic (β-Mo2C) surfaces. The geometry and electronic properties of the clean δ-MoC(001) and β-Mo2C(100) surfaces have a strong influence on the binding of unsaturated hydrocarbons. The adsorption of ethylene is weaker than that of acetylene on the surfaces of the cubic and orthorhombic systems; adsorption of the hydrocarbons was stronger on β-Mo2C(100) than on δ-MoC(001). The C termination in β-Mo2C(100) actively participates in both acetylene and ethylene adsorption and is not merely a spectator. The results of this work suggest that the β-Mo2C(100)-C surface could be the one responsible for the catalytic activity during the hydrogenation of unsaturated C≡C and C=C bonds, while the Mo-terminated surface could be poisoned or transformed by the strong adsorption of C and CHx fragments. (Chemical Equation Presented). © 2017 American Chemical Society.engAmerican Chemical SocietyFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85029514849&doi=10.1021%2facs.jpcc.7b05442&partnerID=40&md5=e98cf75bdd9602a6f351521524d6b1f5Journal of Physical Chemistry CJournal of Physical Chemistry C Volume 121, Issue 36, 14 September 2017, Pages 19786-19795Ardakani, S. J., Liu, X., & Smith, K. J. (2007). Hydrogenation and ring opening of naphthalene on bulk and supported Mo2C catalysts. Applied Catalysis A: General, 324(1-2), 9-19. doi:10.1016/j.apcata.2007.02.048Choi, J. -., Bugli, G., & Djéga-Mariadassou, G. (2000). Influence of the degree of carburization on the density of sites and hydrogenating activity of molybdenum carbides. Journal of Catalysis, 193(2), 238-247. doi:10.1006/jcat.2000.2894Christensen, A. N. (1977). A neutron diffraction investigation on a crystal of alpha-Mo2C. Acta Chem.Scand., 31, 509-511.Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I. J., Refson, K., & Payne, M. C. (2005). First principles methods using CASTEP. Zeitschrift Fur Kristallographie, 220(5-6), 567-570. doi:10.1524/zkri.220.5.567.65075Dhandapani, B., St. Clair, T., & Oyama, S. T. (1998). Simultaneous hydrodesulfurization, hydrodeoxygenation, and hydrogenation with molybdenum carbide. Applied Catalysis A: General, 168(2), 219-228.Espinoza-Monjardín, Cruz-Reyes, J., Del Valle-Granados, M., Flores-Aquino, E., Avalos-Borja, M., & Fuentes-Moyado, S. (2008). Synthesis, characterization and catalytic activity in the hydrogenation of cyclohexene with molybdenum carbide. Catalysis Letters, 120(1-2), 137-142. doi:10.1007/s10562-007-9264-9Florez, E., Gomez, T., Rodriguez, J. A., & Illas, F. (2011). On the dissociation of molecular hydrogen by au supported on transition metal carbides: Choice of the most active support. Physical Chemistry Chemical Physics, 13(15), 6865-6871. doi:10.1039/c0cp02882gFrühberger, B., & Chen, J. G. (1996). Reaction of ethylene with clean and carbide-modified mo(110): Converting surface reactivities of molybdenum to pt-group metals. Journal of the American Chemical Society, 118(46), 11599-11609. doi:10.1021/ja960656lGallaway, W. S., & Barker, E. F. (1942). The infra-red absorption spectra of ethylene and tetra-deutero-ethylene under high resolution. The Journal of Chemical Physics, 10(2), 88-97.Gao, F., Wang, Y., & Tysoe, W. T. (2006). Ethylene hydrogenation on mo(CO)6 derived model catalysts in ultrahigh vacuum: From oxycarbide to carbide to MoAl alloy. Journal of Molecular Catalysis A: Chemical, 249(1-2), 111-122. doi:10.1016/j.molcata.2006.01.016Gomez, T., Florez, E., Rodriguez, J. A., & Illas, F. (2011). Reactivity of transition metals (pd, pt, cu, ag, au) toward molecular hydrogen dissociation: Extended surfaces versus particles supported on TiC(001) or small is not always better and large is not always bad. Journal of Physical Chemistry C, 115(23), 11666-11672. doi:10.1021/jp2024445Govender, A., Curulla Ferré, D., & Niemantsverdriet, J. W. (2012). A density functional theory study on the effect of zero-point energy corrections on the methanation profile on fe(100). ChemPhysChem, 13(6), 1591-1596. doi:10.1002/cphc.201100733Grev, R. S., Janssen, C. L., & Schaefer III, H. F. (1991). Concerning zero-point vibrational energy corrections to electronic energies. The Journal of Chemical Physics, 95(7), 5128-5132.Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787-1799. doi:10.1002/jcc.20495Herzberg, G., & Stoicheff, B. P. (1955). Carbon-carbon and carbon-hydrogen distances in simple polyatomic molecules [4]. Nature, 175(4445), 79-80. doi:10.1038/175079a0Hou, R., Chang, K., Chen, J. G., & Wang, T. (2015). Top.Catal., 58, 240-246.Hugosson, H. W., Eriksson, O., Nordström, L., Jansson, U., Fast, L., Delin, A., . . . Johansson, B. (1999). Theory of phase stabilities and bonding mechanisms in stoichiometric and substoichiometric molybdenum carbide. Journal of Applied Physics, 86(7), 3758-3767.Hwu, H. H., & Chen, J. G. (2005). Surface chemistry of transition metal carbides. Chemical Reviews, 105(1), 185-212. doi:10.1021/cr0204606Jimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., & Rodriguez, J. A. (2017). Acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces: A comprehensive periodic DFT study. Physical Chemistry Chemical Physics, 19(2) doi:10.1039/c6cp07400fJimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., & Rodriguez, J. A. (2016). Systematic theoretical study of ethylene adsorption on δ-MoC(001), TiC(001), and ZrC(001) surfaces. Journal of Physical Chemistry C, 120(25), 13531-13540. doi:10.1021/acs.jpcc.6b03106Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B - Condensed Matter and Materials Physics, 54(16), 11169-11186.Lee, J. S., Volpe, L., Ribeiro, F. H., & Boudart, M. (1988). Molybdenum carbide catalysts. II. topotactic synthesis of unsupported powders. Journal of Catalysis, 112(1), 44-53. doi:10.1016/0021-9517(88)90119-4Liu, H., Zhu, J., Lai, Z., Zhao, R., & He, D. (2009). A first-principles study on structural and electronic properties of Mo2C. Scripta Materialia, 60(11), 949-952. doi:10.1016/j.scriptamat.2009.02.010Liu, P., & Rodriguez, J. A. (2006). Water-gas-shift reaction on molybdenum carbide surfaces: Essential role of the oxycarbide. Journal of Physical Chemistry B, 110(39), 19418-19425. doi:10.1021/jp0621629Luo, Q., Wang, T., Walther, G., Beller, M., & Jiao, H. (2014). Molybdenum carbide catalysed hydrogen production from formic acid - A density functional theory study. Journal of Power Sources, 246, 548-555. doi:10.1016/j.jpowsour.2013.07.102Monkhorst, H. J., & Pack, J. D. (1976). Special points for brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/PhysRevB.13.5188Oshikawa, K., Nagai, M., & Omi, S. (2001). Characterization of molybdenum carbides for methane reforming by TPR, XRD, and XPS. Journal of Physical Chemistry B, 105(38), 9124-9131. doi:10.1021/jp0111867Oyama, S. T. (1996). The Chemistry of Transition Metal Carbides and Nitrides.Parthe, E., & Sadagopan, V. (1963). The structure of dimolybdenum carbide by neutron diffraction technique. Acta Crystallogr. 16(3).Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/PhysRevLett.77.3865Politi, J. R. D. S., Viñes, F., Rodriguez, J. A., & Illas, F. (2013). Atomic and electronic structure of molybdenum carbide phases: Bulk and low miller-index surfaces. Physical Chemistry Chemical Physics, 15(30), 12617-12625. doi:10.1039/c3cp51389kPosada-Pérez, S., Dos Santos Politi, J. R., Viñes, F., & Illas, F. (2015). Methane capture at room temperature: Adsorption on cubic δ-MoC and orthorhombic β-Mo2C molybdenum carbide (001) surfaces. RSC Advances, 5(43), 33737-33746. doi:10.1039/c4ra17225fPosada-Pérez, S., Viñes, F., Ramirez, P. J., Vidal, A. B., Rodriguez, J. A., & Illas, F. (2014). The bending machine: CO2 activation and hydrogenation on δ-MoC(001) and β-Mo2C(001) surfaces. Physical Chemistry Chemical Physics, 16(28), 14912-14921. doi:10.1039/c4cp01943aPosada-Pérez, S., Viñes, F., Rodriguez, J. A., & Illas, F. (2015). Fundamentals of methanol synthesis on metal carbide based catalysts: Activation of CO2 and H2. Topics in Catalysis, 58(2-3), 159-173. doi:10.1007/s11244-014-0355-8Posada-Pérez, S., Viñes, F., Valero, R., Rodriguez, J. A., & Illas, F. (2017). Adsorption and dissociation of molecular hydrogen on orthorhombic β-Mo2C and cubic δ-MoC (001) surfaces. Surface Science, 656, 24-32. doi:10.1016/j.susc.2016.10.001Qi, K. -., Wang, G. -., & Zheng, W. -. (2013). Structure-sensitivity of ethane hydrogenolysis over molybdenum carbides: A density functional theory study. Applied Surface Science, 276, 369-376. doi:10.1016/j.apsusc.2013.03.099Rocha, A. S., Rocha, A. B., & da Silva, V. T. (2010). Benzene adsorption on Mo2C: A theoretical and experimental study. Applied Catalysis A: General, 379(1-2), 54-60. doi:10.1016/j.apcata.2010.02.032Rodriguez, J. A., Dvorak, J., & Jirsak, T. (2000). Chemistry of thiophene on mo(110), MoCx and MoSx surfaces: Photoemission studies. Surface Science, 457(1), L413-L420. doi:10.1016/S0039-6028(00)00416-7Schaidle, J. A., Blackburn, J., Farberow, C. A., Nash, C., Steirer, K. X., Clark, J., . . . Ruddy, D. A. (2016). Experimental and computational investigation of acetic acid deoxygenation over oxophilic molybdenum carbide: Surface chemistry and active site identity. ACS Catalysis, 6(2), 1181-1197. doi:10.1021/acscatal.5b01930Schaidle, J. A., & Thompson, L. T. (2015). Fischer-tropsch synthesis over early transition metal carbides and nitrides: CO activation and chain growth. Journal of Catalysis, 329, 325-334. doi:10.1016/j.jcat.2015.05.020Schweitzer, N. M., Schaidle, J. A., Ezekoye, O. K., Pan, X., Linic, S., & Thompson, L. T. (2011). High activity carbide supported catalysts for water gas shift. Journal of the American Chemical Society, 133(8), 2378-2381. doi:10.1021/ja110705aShi, X. -., Wang, S. -., Wang, H., Deng, C. -., Qin, Z., & Wang, J. (2009). Structure and stability of β-Mo2C bulk and surfaces: A density functional theory study. Surface Science, 603(6), 852-859. doi:10.1016/j.susc.2009.01.041Shi, Y., Yang, Y., Li, Y. -., & Jiao, H. (2016). Activation mechanisms of H2, O2, H2O, CO2, CO, CH4 and C2Hx on metallic Mo2C(001) as well as Mo/C terminated Mo2C(101) from density functional theory computations. Applied Catalysis A: General, 524, 223-236. doi:10.1016/j.apcata.2016.07.003Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41(11), 7892-7895. doi:10.1103/PhysRevB.41.7892Viñes, F., Sousa, C., Illas, F., Liu, P., & Rodriguez, J. A. (2007). A systematic density functional study of molecular oxygen adsorption and dissociation on the (001) surface of group IV-VI transition metal carbides. Journal of Physical Chemistry C, 111(45), 16982-16989. doi:10.1021/jp0754987Vines, F., Sousa, C., Liu, P., Rodriguez, J. A., & Illas, F. (2005). A systematic density functional theory study of the electronic structure of bulk and (001) surface of transition-metals carbides. Journal of Chemical Physics, 122(17) doi:10.1063/1.1888370Vitale, G., Guzmán, H., Frauwallner, M. L., Scott, C. E., & Pereira-Almao, P. (2015). Synthesis of nanocrystalline molybdenum carbide materials and their characterization. Catalysis Today, 250, 123-133. doi:10.1016/j.cattod.2014.05.011Wang, T., Li, Y. -., Wang, J., Beller, M., & Jiao, H. (2014). Dissociative hydrogen adsorption on the hexagonal Mo2C phase at high coverage. Journal of Physical Chemistry C, 118(15), 8079-8089. doi:10.1021/jp501471uWang, T., Li, Y. -., Wang, J., Beller, M., & Jiao, H. (2014). High coverage CO adsorption and dissociation on the orthorhombic mo 2C(100) surface. Journal of Physical Chemistry C, 118(6), 3162-3171. doi:10.1021/jp412067xWyvratt, B. M., Gaudet, J. R., & Thompson, L. T. (2015). Effects of passivation on synthesis, structure and composition of molybdenum carbide supported platinum water-gas shift catalysts. Journal of Catalysis, 330, 280-287. doi:10.1016/j.jcat.2015.07.023Xu, W., Ramirez, P. J., Stacchiola, D., & Rodriguez, J. A. (2014). Synthesis of α-MoC1-x and β-MoCy catalysts for CO2 hydrogenation by thermal carburization of mo-oxide in hydrocarbon and hydrogen mixtures. Catalysis Letters, 144(8), 1418-1424. doi:10.1007/s10562-014-1278-5Zhang, J., Wu, W., & Liu, S. (2014). In situ IR spectroscopic study on the hydrogenation of 1, 3-butadiene on fresh MO2C/γ-A1203 catalyst. China Petroleum Processing and Petrochemical Technology, 16(4), 32-37.ScopusAcetylene and Ethylene Adsorption on a β-Mo2C(100) Surface: A Periodic DFT Study on the Role of C- and Mo-Terminations for Bonding and Hydrogenation ReactionsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Jimenez-Orozco, C., Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaFlorez, E., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No 30-65, Medellín, ColombiaMoreno, A., Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaLiu, P., Chemistry Department, Brookhaven National Laboratory, Upton, NY, United StatesRodriguez, J.A., Chemistry Department, Brookhaven National Laboratory, Upton, NY, United StatesJimenez-Orozco C.Florez E.Moreno A.Liu P.Rodriguez J.A.Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaDepartamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No 30-65, Medellín, ColombiaChemistry Department, Brookhaven National Laboratory, Upton, NY, United StatesAcetyleneAdsorptionBinsCatalyst activityCatalystsChemical bondsDensity functional theoryElectronic propertiesEthyleneHydrocarbonsLightingCatalytic potentialChemical equationsEthylene adsorptionHydrogenation reactionsMo-terminated surfaceOrthorhombic systemsPeriodic density functional theoryUnsaturated hydrocarbonsHydrogenationMo2C catalysts are widely used in hydrogenation reactions; however, the role of the C and Mo terminations in these catalysts is not clear. Understanding the binding of adsorbates is key for explaining the activity of Mo2C. The adsorption of acetylene and ethylene, probe molecules representing alkynes and olefins, respectively, was studied on a β-Mo2C(100) surface with C and Mo terminations using calculations based on periodic density functional theory. Moreover, the role of the C/Mo molar ratio was investigated to compare the catalytic potential of cubic (δ-MoC) and orthorhombic (β-Mo2C) surfaces. The geometry and electronic properties of the clean δ-MoC(001) and β-Mo2C(100) surfaces have a strong influence on the binding of unsaturated hydrocarbons. The adsorption of ethylene is weaker than that of acetylene on the surfaces of the cubic and orthorhombic systems; adsorption of the hydrocarbons was stronger on β-Mo2C(100) than on δ-MoC(001). The C termination in β-Mo2C(100) actively participates in both acetylene and ethylene adsorption and is not merely a spectator. The results of this work suggest that the β-Mo2C(100)-C surface could be the one responsible for the catalytic activity during the hydrogenation of unsaturated C≡C and C=C bonds, while the Mo-terminated surface could be poisoned or transformed by the strong adsorption of C and CHx fragments. (Chemical Equation Presented). © 2017 American Chemical Society.http://purl.org/coar/access_right/c_16ec11407/4284oai:repository.udem.edu.co:11407/42842020-05-27 16:30:46.807Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co