Financial anomalies in the electricity market: Empirical analysis of spot prices [Anomalías Financieras en el Mercado de Electricidad: Análisis empririco de los precios spot]

A key element that must consider the electricity generators in their operation planning process is the electricity price forecasting. Thus, for this task it is fundamental to identify a forecasting tool. In this direction, this paper presents forecast models for the price of electricity in the Colom...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
spa
OAI Identifier:
oai:repository.udem.edu.co:11407/4860
Acceso en línea:
http://hdl.handle.net/11407/4860
Palabra clave:
Efficiency hypothesis
Electricity markets
Market anomalies
SARIMA-GARCH
Seasonality
Commerce
Costs
Efficiency
Financial data processing
Forecasting
Information systems
Information use
Asymmetric volatility
Conditional autoregressive
Electricity generators
Electricity price forecasting
Empirical analysis
SARIMA-GARCH
Seasonal autoregressive models
Seasonality
Power markets
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_fb0fede381d6fbebc7ebbb813bbbd7a5
oai_identifier_str oai:repository.udem.edu.co:11407/4860
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Financial anomalies in the electricity market: Empirical analysis of spot prices [Anomalías Financieras en el Mercado de Electricidad: Análisis empririco de los precios spot]
title Financial anomalies in the electricity market: Empirical analysis of spot prices [Anomalías Financieras en el Mercado de Electricidad: Análisis empririco de los precios spot]
spellingShingle Financial anomalies in the electricity market: Empirical analysis of spot prices [Anomalías Financieras en el Mercado de Electricidad: Análisis empririco de los precios spot]
Efficiency hypothesis
Electricity markets
Market anomalies
SARIMA-GARCH
Seasonality
Commerce
Costs
Efficiency
Financial data processing
Forecasting
Information systems
Information use
Asymmetric volatility
Conditional autoregressive
Electricity generators
Electricity price forecasting
Empirical analysis
SARIMA-GARCH
Seasonal autoregressive models
Seasonality
Power markets
title_short Financial anomalies in the electricity market: Empirical analysis of spot prices [Anomalías Financieras en el Mercado de Electricidad: Análisis empririco de los precios spot]
title_full Financial anomalies in the electricity market: Empirical analysis of spot prices [Anomalías Financieras en el Mercado de Electricidad: Análisis empririco de los precios spot]
title_fullStr Financial anomalies in the electricity market: Empirical analysis of spot prices [Anomalías Financieras en el Mercado de Electricidad: Análisis empririco de los precios spot]
title_full_unstemmed Financial anomalies in the electricity market: Empirical analysis of spot prices [Anomalías Financieras en el Mercado de Electricidad: Análisis empririco de los precios spot]
title_sort Financial anomalies in the electricity market: Empirical analysis of spot prices [Anomalías Financieras en el Mercado de Electricidad: Análisis empririco de los precios spot]
dc.contributor.affiliation.spa.fl_str_mv Monica, A.A.A., Universidad de Medellín; Universidad Nacional de Colombia;Botero, S.B., Universidad Nacional de Colombia;Jaime, H.H.B., Universidad de Medellín
dc.subject.spa.fl_str_mv Efficiency hypothesis
Electricity markets
Market anomalies
SARIMA-GARCH
Seasonality
Commerce
Costs
Efficiency
Financial data processing
Forecasting
Information systems
Information use
Asymmetric volatility
Conditional autoregressive
Electricity generators
Electricity price forecasting
Empirical analysis
SARIMA-GARCH
Seasonal autoregressive models
Seasonality
Power markets
topic Efficiency hypothesis
Electricity markets
Market anomalies
SARIMA-GARCH
Seasonality
Commerce
Costs
Efficiency
Financial data processing
Forecasting
Information systems
Information use
Asymmetric volatility
Conditional autoregressive
Electricity generators
Electricity price forecasting
Empirical analysis
SARIMA-GARCH
Seasonal autoregressive models
Seasonality
Power markets
description A key element that must consider the electricity generators in their operation planning process is the electricity price forecasting. Thus, for this task it is fundamental to identify a forecasting tool. In this direction, this paper presents forecast models for the price of electricity in the Colombian market. The different models are based in different schemes such as: autoregressive mobile media, generalized processes of conditional autoregressive heteroscedasticity (ARMA-GARCH), seasonal autoregressive models with mobile average and exogenous regressors (SARIMAX-GARCH). Likewise, using the theory of markets efficiency hypothesis the results show the presence of monthly calendar effects and the presence of nonlinear and asymmetric volatility which changes over time together with an inverse leverage effect. © 2018 AISTI.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-10-31T13:44:18Z
dc.date.available.none.fl_str_mv 2018-10-31T13:44:18Z
dc.date.created.none.fl_str_mv 2018
dc.type.eng.fl_str_mv Conference Paper
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.identifier.isbn.none.fl_str_mv 9789899843486
dc.identifier.issn.none.fl_str_mv 21660727
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4860
dc.identifier.doi.none.fl_str_mv 10.23919/CISTI.2018.8398640
identifier_str_mv 9789899843486
21660727
10.23919/CISTI.2018.8398640
url http://hdl.handle.net/11407/4860
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049904209&doi=10.23919%2fCISTI.2018.8398640&partnerID=40&md5=0471dfa9e306cb7ac14511098248de5c
dc.relation.citationvolume.spa.fl_str_mv 2018-June
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationendpage.spa.fl_str_mv 7
dc.relation.ispartofes.spa.fl_str_mv Iberian Conference on Information Systems and Technologies, CISTI
dc.relation.references.spa.fl_str_mv Weron, R., Misiorek, A., Forecasting spot electricity prices: A comparison of parametric and semiparametric time series models (2008) Int. J. Forecast., 24 (4), pp. 744-763. , Oct;Haugom, E., Ullrich, C.J., Market efficiency and risk premia in short-term forward prices (2012) Energy Econ., 34 (6), pp. 1931-1941. , Nov;Cifter, A., Forecasting electricity price volatility with the Markovswitching GARCH model: Evidence from the Nordic electric power market (2013) Electr. Power Syst. Res., 102, pp. 61-67. , Sep;Luo, C., Seco, L., Wu, L.-L.B., Portfolio optimization in hedge funds by OGARCH and Markov Switching Model (2015) Omega, 57, pp. 34-39. , Dec;Manera, M., Nicolini, M., Vignati, I., Modelling futures price volatility in energy markets: Is there a role for financial speculation (2014) Energy Econ., , Jul;Charfeddine, L., True or spurious long memory in volatility: Further evidence on the energy futures markets (2014) Energy Policy, 71, pp. 76-93. , Aug;Wang, Y., Wu, C., Yang, L., Forecasting crude oil market volatility: A Markov switching multifractal volatility approach (2016) Int. J. Forecast., 32 (1), pp. 1-9. , Jan;Nowotarski, J., Raviv, E., Trück, S., Weron, R., An empirical comparison of alternative schemes for combining electricity spot price forecasts (2014) Energy Econ., 46, pp. 395-412. , Nov;Shrivastava, N.A., Panigrahi, B.K., A hybrid wavelet-ELM based short term price forecasting for electricity markets (2014) Int. J. Electr. Power Energy Syst., 55, pp. 41-50. , Feb;Nojavan, S., Zare, K., Ashpazi, M.A., A hybrid approach based on IGDT-MPSO method for optimal bidding strategy of price-taker generation station in day-ahead electricity market (2015) Int. J. Electr. Power Energy Syst., 69, pp. 335-343. , Jul;Yang, Z., Ce, L., Lian, L., Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernelbased extreme learning machine methods (2017) Appl. Energy, 190, pp. 291-305;Kriechbaumer, T., Angus, A., Parsons, D., Rivas Casado, M., An improved wavelet-ARIMA approach for forecasting metal prices (2014) Resour. Policy, 39, pp. 32-41. , Mar;Raviv, E., Bouwman, K.E., Van Dijk, D., Forecasting day-ahead electricity prices: Utilizing hourly prices (2015) Energy Econ., 50, pp. 227-239. , Jul;Hamzacebi, C., Es, H.A., Forecasting the annual electricity consumption of Turkey using an optimized grey model (2014) Energy, 70, pp. 165-171. , Jun;Nowotarski, J., Tomczyk, J., Weron, R., Robust estimation and forecasting of the long-term seasonal component of electricity spot prices (2013) Energy Econ., 39, pp. 13-27. , Sep;Anderson, E.J., Cau, T.D.H., Implicit collusion and individual market power in electricity markets (2011) Eur. J. Oper. Res., 211 (2), pp. 403-414. , Jun;Hickey, E., Loomis, D.G., Mohammadi, H., Forecasting hourly electricity prices using ARMAX-GARCH models: An application to MISO hubs (2012) Energy Econ., 34 (1), pp. 307-315. , Jan;Islyaev, S., Date, P., Electricity futures price models: Calibration and forecasting (2015) Eur. J. Oper. Res., , May;Liu, H., Shi, J., Applying ARMA-GARCH approaches to forecasting short-term electricity prices (2013) Energy Econ., 37, pp. 152-166. , May;Lund, P.D., Lindgren, J., Mikkola, J., Salpakari, J., Review of energy system flexibility measures to enable high levels of variable renewable electricity (2015) Renew. Sustain. Energy Rev., 45, pp. 785-807. , May;Paraschiv, F., Fleten, S.-E., Schürle, M., A spot-forward model for electricity prices with regime shifts (2015) Energy Econ., 47, pp. 142-153. , Jan;Sigauke, C., Chikobvu, D., Prediction of daily peak electricity demand in South Africa using volatility forecasting models (2011) Energy Econ., 33 (5), pp. 882-888. , Sep;Suganthi, L., Samuel, A.A., Energy models for demand forecasting-A review (2012) Renew. Sustain. Energy Rev., 16 (2), pp. 1223-1240. , Feb;Tan, Z., Zhang, J., Wang, J., Xu, J., Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models (2010) Appl. Energy, 87 (11), pp. 3606-3610. , Nov;Ziel, F., Steinert, R., Husmann, S., Efficient modeling and forecasting of electricity spot prices (2015) Energy Econ., 47, pp. 98-111. , Jan;Uritskaya, O.Y., Uritsky, V.M., Predictability of price movements in deregulated electricity markets (2015) Energy Econ., 49, pp. 72-81. , May;Efimova, O., Serletis, A., Energy markets volatility modelling using GARCH (2014) Energy Econ., 43, pp. 264-273. , May;Engle, R., Bollerslev, T., Modelling the persistence of conditional variances (1986) Econometric Reviews, 5 (1), pp. 1-50
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv IEEE Computer Society
dc.publisher.program.spa.fl_str_mv Ingeniería Financiera;Ciencias Básicas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías;Facultad de Ciencias Básicas
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159178526097408
spelling 2018-10-31T13:44:18Z2018-10-31T13:44:18Z2018978989984348621660727http://hdl.handle.net/11407/486010.23919/CISTI.2018.8398640A key element that must consider the electricity generators in their operation planning process is the electricity price forecasting. Thus, for this task it is fundamental to identify a forecasting tool. In this direction, this paper presents forecast models for the price of electricity in the Colombian market. The different models are based in different schemes such as: autoregressive mobile media, generalized processes of conditional autoregressive heteroscedasticity (ARMA-GARCH), seasonal autoregressive models with mobile average and exogenous regressors (SARIMAX-GARCH). Likewise, using the theory of markets efficiency hypothesis the results show the presence of monthly calendar effects and the presence of nonlinear and asymmetric volatility which changes over time together with an inverse leverage effect. © 2018 AISTI.spaIEEE Computer SocietyIngeniería Financiera;Ciencias BásicasFacultad de Ingenierías;Facultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85049904209&doi=10.23919%2fCISTI.2018.8398640&partnerID=40&md5=0471dfa9e306cb7ac14511098248de5c2018-June17Iberian Conference on Information Systems and Technologies, CISTIWeron, R., Misiorek, A., Forecasting spot electricity prices: A comparison of parametric and semiparametric time series models (2008) Int. J. Forecast., 24 (4), pp. 744-763. , Oct;Haugom, E., Ullrich, C.J., Market efficiency and risk premia in short-term forward prices (2012) Energy Econ., 34 (6), pp. 1931-1941. , Nov;Cifter, A., Forecasting electricity price volatility with the Markovswitching GARCH model: Evidence from the Nordic electric power market (2013) Electr. Power Syst. Res., 102, pp. 61-67. , Sep;Luo, C., Seco, L., Wu, L.-L.B., Portfolio optimization in hedge funds by OGARCH and Markov Switching Model (2015) Omega, 57, pp. 34-39. , Dec;Manera, M., Nicolini, M., Vignati, I., Modelling futures price volatility in energy markets: Is there a role for financial speculation (2014) Energy Econ., , Jul;Charfeddine, L., True or spurious long memory in volatility: Further evidence on the energy futures markets (2014) Energy Policy, 71, pp. 76-93. , Aug;Wang, Y., Wu, C., Yang, L., Forecasting crude oil market volatility: A Markov switching multifractal volatility approach (2016) Int. J. Forecast., 32 (1), pp. 1-9. , Jan;Nowotarski, J., Raviv, E., Trück, S., Weron, R., An empirical comparison of alternative schemes for combining electricity spot price forecasts (2014) Energy Econ., 46, pp. 395-412. , Nov;Shrivastava, N.A., Panigrahi, B.K., A hybrid wavelet-ELM based short term price forecasting for electricity markets (2014) Int. J. Electr. Power Energy Syst., 55, pp. 41-50. , Feb;Nojavan, S., Zare, K., Ashpazi, M.A., A hybrid approach based on IGDT-MPSO method for optimal bidding strategy of price-taker generation station in day-ahead electricity market (2015) Int. J. Electr. Power Energy Syst., 69, pp. 335-343. , Jul;Yang, Z., Ce, L., Lian, L., Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernelbased extreme learning machine methods (2017) Appl. Energy, 190, pp. 291-305;Kriechbaumer, T., Angus, A., Parsons, D., Rivas Casado, M., An improved wavelet-ARIMA approach for forecasting metal prices (2014) Resour. Policy, 39, pp. 32-41. , Mar;Raviv, E., Bouwman, K.E., Van Dijk, D., Forecasting day-ahead electricity prices: Utilizing hourly prices (2015) Energy Econ., 50, pp. 227-239. , Jul;Hamzacebi, C., Es, H.A., Forecasting the annual electricity consumption of Turkey using an optimized grey model (2014) Energy, 70, pp. 165-171. , Jun;Nowotarski, J., Tomczyk, J., Weron, R., Robust estimation and forecasting of the long-term seasonal component of electricity spot prices (2013) Energy Econ., 39, pp. 13-27. , Sep;Anderson, E.J., Cau, T.D.H., Implicit collusion and individual market power in electricity markets (2011) Eur. J. Oper. Res., 211 (2), pp. 403-414. , Jun;Hickey, E., Loomis, D.G., Mohammadi, H., Forecasting hourly electricity prices using ARMAX-GARCH models: An application to MISO hubs (2012) Energy Econ., 34 (1), pp. 307-315. , Jan;Islyaev, S., Date, P., Electricity futures price models: Calibration and forecasting (2015) Eur. J. Oper. Res., , May;Liu, H., Shi, J., Applying ARMA-GARCH approaches to forecasting short-term electricity prices (2013) Energy Econ., 37, pp. 152-166. , May;Lund, P.D., Lindgren, J., Mikkola, J., Salpakari, J., Review of energy system flexibility measures to enable high levels of variable renewable electricity (2015) Renew. Sustain. Energy Rev., 45, pp. 785-807. , May;Paraschiv, F., Fleten, S.-E., Schürle, M., A spot-forward model for electricity prices with regime shifts (2015) Energy Econ., 47, pp. 142-153. , Jan;Sigauke, C., Chikobvu, D., Prediction of daily peak electricity demand in South Africa using volatility forecasting models (2011) Energy Econ., 33 (5), pp. 882-888. , Sep;Suganthi, L., Samuel, A.A., Energy models for demand forecasting-A review (2012) Renew. Sustain. Energy Rev., 16 (2), pp. 1223-1240. , Feb;Tan, Z., Zhang, J., Wang, J., Xu, J., Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models (2010) Appl. Energy, 87 (11), pp. 3606-3610. , Nov;Ziel, F., Steinert, R., Husmann, S., Efficient modeling and forecasting of electricity spot prices (2015) Energy Econ., 47, pp. 98-111. , Jan;Uritskaya, O.Y., Uritsky, V.M., Predictability of price movements in deregulated electricity markets (2015) Energy Econ., 49, pp. 72-81. , May;Efimova, O., Serletis, A., Energy markets volatility modelling using GARCH (2014) Energy Econ., 43, pp. 264-273. , May;Engle, R., Bollerslev, T., Modelling the persistence of conditional variances (1986) Econometric Reviews, 5 (1), pp. 1-50ScopusEfficiency hypothesisElectricity marketsMarket anomaliesSARIMA-GARCHSeasonalityCommerceCostsEfficiencyFinancial data processingForecastingInformation systemsInformation useAsymmetric volatilityConditional autoregressiveElectricity generatorsElectricity price forecastingEmpirical analysisSARIMA-GARCHSeasonal autoregressive modelsSeasonalityPower marketsFinancial anomalies in the electricity market: Empirical analysis of spot prices [Anomalías Financieras en el Mercado de Electricidad: Análisis empririco de los precios spot]Conference Paperinfo:eu-repo/semantics/conferenceObjecthttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fMonica, A.A.A., Universidad de Medellín; Universidad Nacional de Colombia;Botero, S.B., Universidad Nacional de Colombia;Jaime, H.H.B., Universidad de MedellínMonica A.A.A.Botero S.B.Jaime H.H.B.http://purl.org/coar/access_right/c_16ec11407/4860oai:repository.udem.edu.co:11407/48602020-05-27 17:45:28.714Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co