Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity

The synthesis of nanomaterials is currently one of the most active in nanoscience branches; especially those help improve the human quality life. Silver nanoparticles (AgNPs) are an example of this as it is known to have inhibitory and bactericidal effects. In this work, we report the synthesis of s...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4382
Acceso en línea:
http://hdl.handle.net/11407/4382
Palabra clave:
Antibacterial Activity
mesophilic bacteria
nanomaterial synthesis
Silver Nanoparticules
Bacteria
Bactericides
Ionic liquids
Metal nanoparticles
Nanoparticles
Nanostructured materials
Particle size
Scanning electron microscopy
Solutions
Surface plasmon resonance
Synthesis (chemical)
Ultraviolet visible spectroscopy
Anti-bacterial activity
Bactericidal activity
Chemical reduction methods
Mesophilic bacteria
Nanoparticules
Silver nanoparticles
Silver nanoparticles (AgNps)
UV visible spectroscopy
Silver
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_fab17a80af759e88e509a5c24bbc71a4
oai_identifier_str oai:repository.udem.edu.co:11407/4382
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity
title Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity
spellingShingle Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity
Antibacterial Activity
mesophilic bacteria
nanomaterial synthesis
Silver Nanoparticules
Bacteria
Bactericides
Ionic liquids
Metal nanoparticles
Nanoparticles
Nanostructured materials
Particle size
Scanning electron microscopy
Solutions
Surface plasmon resonance
Synthesis (chemical)
Ultraviolet visible spectroscopy
Anti-bacterial activity
Bactericidal activity
Chemical reduction methods
Mesophilic bacteria
Nanoparticules
Silver nanoparticles
Silver nanoparticles (AgNps)
UV visible spectroscopy
Silver
title_short Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity
title_full Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity
title_fullStr Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity
title_full_unstemmed Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity
title_sort Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity
dc.contributor.affiliation.spa.fl_str_mv Gloria, E.C., Departamento de Facultad de Ciencias Básicas, Grapo de Materials Nanoestracturados y Biomodelación, MATBIOM, Universidad de Medellín, Colombia
Ederley, V., Departamento de Facultad de Ciencias Básicas, Grapo de Materials Nanoestracturados y Biomodelación, MATBIOM, Universidad de Medellín, Colombia
Gladis, M., Facultad de Ingenierías, Grupo de Investigaciones y Mediciones Ambientales - GEMA, Universidad de Medellín, Medellín, Colombia
César, H., Departamento de Facultad de Ciencias Básicas, Grapo de Materials Nanoestracturados y Biomodelación, MATBIOM, Universidad de Medellín, Colombia
Jaime, O., Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
Oscar, A., Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
José, I.U., Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
Franklin, J., Centro de Investigación, Innovación y Desarrollo de Materiales - CIDEMAT, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
dc.subject.keyword.eng.fl_str_mv Antibacterial Activity
mesophilic bacteria
nanomaterial synthesis
Silver Nanoparticules
Bacteria
Bactericides
Ionic liquids
Metal nanoparticles
Nanoparticles
Nanostructured materials
Particle size
Scanning electron microscopy
Solutions
Surface plasmon resonance
Synthesis (chemical)
Ultraviolet visible spectroscopy
Anti-bacterial activity
Bactericidal activity
Chemical reduction methods
Mesophilic bacteria
Nanoparticules
Silver nanoparticles
Silver nanoparticles (AgNps)
UV visible spectroscopy
Silver
topic Antibacterial Activity
mesophilic bacteria
nanomaterial synthesis
Silver Nanoparticules
Bacteria
Bactericides
Ionic liquids
Metal nanoparticles
Nanoparticles
Nanostructured materials
Particle size
Scanning electron microscopy
Solutions
Surface plasmon resonance
Synthesis (chemical)
Ultraviolet visible spectroscopy
Anti-bacterial activity
Bactericidal activity
Chemical reduction methods
Mesophilic bacteria
Nanoparticules
Silver nanoparticles
Silver nanoparticles (AgNps)
UV visible spectroscopy
Silver
description The synthesis of nanomaterials is currently one of the most active in nanoscience branches; especially those help improve the human quality life. Silver nanoparticles (AgNPs) are an example of this as it is known to have inhibitory and bactericidal effects. In this work, we report the synthesis of silver nanoparticles by chemical reduction method of silver nitrate (AgNO3) from aqueous solution, using a mix of polivinyl pyrrolidone (PVP) - Aloe Vera as reducing agent and for stabilization and control of particle size. Silver nanoparticles obtained were characterized by Scanning Electron Microscopy (SEM), UV-visible spectroscopy and measurements using Zetasizer Nano ZS were applied to size estimation. The existence of surface plasmon resonance peak at λmax ∼ 420 nm is evidence of silver nanoparticles formation. It was possible to standardize an appropriate protocol for the evaluation of bactericidal activity of the nanoparticles, for mesophilic microorganisms. Bactericidal activity above 90% against these kinds of bacteria was demonstrated. © Published under licence by IOP Publishing Ltd.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-12-19T19:36:52Z
dc.date.available.none.fl_str_mv 2017-12-19T19:36:52Z
dc.date.created.none.fl_str_mv 2017
dc.type.eng.fl_str_mv Conference Paper
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.identifier.issn.none.fl_str_mv 17426588
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4382
dc.identifier.doi.none.fl_str_mv 10.1088/1742-6596/850/1/012023
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad de Medellín
dc.identifier.instname.spa.fl_str_mv instname:Universidad de Medellín
identifier_str_mv 17426588
10.1088/1742-6596/850/1/012023
reponame:Repositorio Institucional Universidad de Medellín
instname:Universidad de Medellín
url http://hdl.handle.net/11407/4382
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021887156&doi=10.1088%2f1742-6596%2f850%2f1%2f012023&partnerID=40&md5=79ecba148e8d8ca3472a80e6fcc9d807
dc.relation.ispartofes.spa.fl_str_mv Journal of Physics: Conference Series
Journal of Physics: Conference Series Volume 850, Issue 1, 13 June 2017
dc.relation.references.spa.fl_str_mv Contescu, C. I., & Putyera, K. (2009). Dekker Encyclopedia of Nanoscience and Nanotechnology, 1-6.
Dang, T. M. D., Le, T. T. T., Fribourg-Blanc, E., & Dang, M. C. (2011). Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2(1) doi:10.1088/2043-6262/2/1/015009
Guzmán, M. G., Dille, J., & Godet, S. (2009). Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int.J.Chem.Biol.Eng., 2(3), 104-111.
Kuisma, M., Sakko, A., Rossi, T. P., Larsen, A. H., Enkovaara, J., Lehtovaara, L., & Rantala, T. T. (2015). Localized surface plasmon resonance in silver nanoparticles: Atomistic first-principles time-dependent density-functional theory calculations. Physical Review B - Condensed Matter and Materials Physics, 91(11) doi:10.1103/PhysRevB.91.115431
Link, S., & El-Sayed, M. A. (2000). Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. International Reviews in Physical Chemistry, 19(3), 409-453. doi:10.1080/01442350050034180
Marambio-Jones, C., & Hoek, E. M. V. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 12(5), 1531-1551. doi:10.1007/s11051-010-9900-y
Saion, E., Gharibshahi, E., & Naghavi, K. (2013). Size-controlled and optical properties of monodispersed silver nanoparticles synthesized by the radiolytic reduction method. International Journal of Molecular Sciences, 14(4), 7880-7896. doi:10.3390/ijms14047880
Shenashen, M. A., El-Safty, S. A., & Elshehy, E. A. (2014). Synthesis, morphological control, and properties of silver nanoparticles in potential applications. Particle and Particle Systems Characterization, 31(3), 293-316. doi:10.1002/ppsc.201300181
Siegert, I., & Banks, C. (2005). The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochemistry, 40(11), 3412-3418. doi:10.1016/j.procbio.2005.01.025
Wang, J. -., Wen, L. -., Wang, Z. -., & Chen, J. -. (2006). Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effects. Materials Chemistry and Physics, 96(1), 90-97. doi:10.1016/j.matchemphys.2005.06.045
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Institute of Physics Publishing
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
Facultad de Ciencias Básicas
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
bitstream.url.fl_str_mv http://repository.udem.edu.co/bitstream/11407/4382/2/3.%20Synthesis%20of%20Silver%20nanoparticles%20AgNPs%20with%20Antibacterial%20Activity.pdf.jpg
http://repository.udem.edu.co/bitstream/11407/4382/1/3.%20Synthesis%20of%20Silver%20nanoparticles%20AgNPs%20with%20Antibacterial%20Activity.pdf
bitstream.checksum.fl_str_mv 2497eec5d8a6c9aabaef0d64a67ba4e3
bcbb815aa4e58edd7be857ae4207ce37
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159191969890304
spelling 2017-12-19T19:36:52Z2017-12-19T19:36:52Z201717426588http://hdl.handle.net/11407/438210.1088/1742-6596/850/1/012023reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínThe synthesis of nanomaterials is currently one of the most active in nanoscience branches; especially those help improve the human quality life. Silver nanoparticles (AgNPs) are an example of this as it is known to have inhibitory and bactericidal effects. In this work, we report the synthesis of silver nanoparticles by chemical reduction method of silver nitrate (AgNO3) from aqueous solution, using a mix of polivinyl pyrrolidone (PVP) - Aloe Vera as reducing agent and for stabilization and control of particle size. Silver nanoparticles obtained were characterized by Scanning Electron Microscopy (SEM), UV-visible spectroscopy and measurements using Zetasizer Nano ZS were applied to size estimation. The existence of surface plasmon resonance peak at λmax ∼ 420 nm is evidence of silver nanoparticles formation. It was possible to standardize an appropriate protocol for the evaluation of bactericidal activity of the nanoparticles, for mesophilic microorganisms. Bactericidal activity above 90% against these kinds of bacteria was demonstrated. © Published under licence by IOP Publishing Ltd.engInstitute of Physics PublishingFacultad de IngenieríasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85021887156&doi=10.1088%2f1742-6596%2f850%2f1%2f012023&partnerID=40&md5=79ecba148e8d8ca3472a80e6fcc9d807Journal of Physics: Conference SeriesJournal of Physics: Conference Series Volume 850, Issue 1, 13 June 2017Contescu, C. I., & Putyera, K. (2009). Dekker Encyclopedia of Nanoscience and Nanotechnology, 1-6.Dang, T. M. D., Le, T. T. T., Fribourg-Blanc, E., & Dang, M. C. (2011). Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2(1) doi:10.1088/2043-6262/2/1/015009Guzmán, M. G., Dille, J., & Godet, S. (2009). Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int.J.Chem.Biol.Eng., 2(3), 104-111.Kuisma, M., Sakko, A., Rossi, T. P., Larsen, A. H., Enkovaara, J., Lehtovaara, L., & Rantala, T. T. (2015). Localized surface plasmon resonance in silver nanoparticles: Atomistic first-principles time-dependent density-functional theory calculations. Physical Review B - Condensed Matter and Materials Physics, 91(11) doi:10.1103/PhysRevB.91.115431Link, S., & El-Sayed, M. A. (2000). Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. International Reviews in Physical Chemistry, 19(3), 409-453. doi:10.1080/01442350050034180Marambio-Jones, C., & Hoek, E. M. V. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 12(5), 1531-1551. doi:10.1007/s11051-010-9900-ySaion, E., Gharibshahi, E., & Naghavi, K. (2013). Size-controlled and optical properties of monodispersed silver nanoparticles synthesized by the radiolytic reduction method. International Journal of Molecular Sciences, 14(4), 7880-7896. doi:10.3390/ijms14047880Shenashen, M. A., El-Safty, S. A., & Elshehy, E. A. (2014). Synthesis, morphological control, and properties of silver nanoparticles in potential applications. Particle and Particle Systems Characterization, 31(3), 293-316. doi:10.1002/ppsc.201300181Siegert, I., & Banks, C. (2005). The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochemistry, 40(11), 3412-3418. doi:10.1016/j.procbio.2005.01.025Wang, J. -., Wen, L. -., Wang, Z. -., & Chen, J. -. (2006). Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effects. Materials Chemistry and Physics, 96(1), 90-97. doi:10.1016/j.matchemphys.2005.06.045ScopusSynthesis of Silver nanoparticles (AgNPs) with Antibacterial ActivityConference Paperinfo:eu-repo/semantics/conferenceObjecthttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fGloria, E.C., Departamento de Facultad de Ciencias Básicas, Grapo de Materials Nanoestracturados y Biomodelación, MATBIOM, Universidad de Medellín, ColombiaEderley, V., Departamento de Facultad de Ciencias Básicas, Grapo de Materials Nanoestracturados y Biomodelación, MATBIOM, Universidad de Medellín, ColombiaGladis, M., Facultad de Ingenierías, Grupo de Investigaciones y Mediciones Ambientales - GEMA, Universidad de Medellín, Medellín, ColombiaCésar, H., Departamento de Facultad de Ciencias Básicas, Grapo de Materials Nanoestracturados y Biomodelación, MATBIOM, Universidad de Medellín, ColombiaJaime, O., Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, ColombiaOscar, A., Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, ColombiaJosé, I.U., Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, ColombiaFranklin, J., Centro de Investigación, Innovación y Desarrollo de Materiales - CIDEMAT, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, ColombiaGloria E.C.Ederley V.Gladis M.César H.Jaime O.Oscar A.José I.U.Franklin J.Departamento de Facultad de Ciencias Básicas, Grapo de Materials Nanoestracturados y Biomodelación, MATBIOM, Universidad de Medellín, ColombiaFacultad de Ingenierías, Grupo de Investigaciones y Mediciones Ambientales - GEMA, Universidad de Medellín, Medellín, ColombiaInstituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, ColombiaCentro de Investigación, Innovación y Desarrollo de Materiales - CIDEMAT, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, ColombiaAntibacterial Activitymesophilic bacteriananomaterial synthesisSilver NanoparticulesBacteriaBactericidesIonic liquidsMetal nanoparticlesNanoparticlesNanostructured materialsParticle sizeScanning electron microscopySolutionsSurface plasmon resonanceSynthesis (chemical)Ultraviolet visible spectroscopyAnti-bacterial activityBactericidal activityChemical reduction methodsMesophilic bacteriaNanoparticulesSilver nanoparticlesSilver nanoparticles (AgNps)UV visible spectroscopySilverThe synthesis of nanomaterials is currently one of the most active in nanoscience branches; especially those help improve the human quality life. Silver nanoparticles (AgNPs) are an example of this as it is known to have inhibitory and bactericidal effects. In this work, we report the synthesis of silver nanoparticles by chemical reduction method of silver nitrate (AgNO3) from aqueous solution, using a mix of polivinyl pyrrolidone (PVP) - Aloe Vera as reducing agent and for stabilization and control of particle size. Silver nanoparticles obtained were characterized by Scanning Electron Microscopy (SEM), UV-visible spectroscopy and measurements using Zetasizer Nano ZS were applied to size estimation. The existence of surface plasmon resonance peak at λmax ∼ 420 nm is evidence of silver nanoparticles formation. It was possible to standardize an appropriate protocol for the evaluation of bactericidal activity of the nanoparticles, for mesophilic microorganisms. Bactericidal activity above 90% against these kinds of bacteria was demonstrated. © Published under licence by IOP Publishing Ltd.http://purl.org/coar/access_right/c_16ecTHUMBNAIL3. Synthesis of Silver nanoparticles AgNPs with Antibacterial Activity.pdf.jpg3. Synthesis of Silver nanoparticles AgNPs with Antibacterial Activity.pdf.jpgIM Thumbnailimage/jpeg4385http://repository.udem.edu.co/bitstream/11407/4382/2/3.%20Synthesis%20of%20Silver%20nanoparticles%20AgNPs%20with%20Antibacterial%20Activity.pdf.jpg2497eec5d8a6c9aabaef0d64a67ba4e3MD52ORIGINAL3. Synthesis of Silver nanoparticles AgNPs with Antibacterial Activity.pdf3. Synthesis of Silver nanoparticles AgNPs with Antibacterial Activity.pdfapplication/pdf528269http://repository.udem.edu.co/bitstream/11407/4382/1/3.%20Synthesis%20of%20Silver%20nanoparticles%20AgNPs%20with%20Antibacterial%20Activity.pdfbcbb815aa4e58edd7be857ae4207ce37MD5111407/4382oai:repository.udem.edu.co:11407/43822020-05-27 17:52:22.258Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co