Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity
The synthesis of nanomaterials is currently one of the most active in nanoscience branches; especially those help improve the human quality life. Silver nanoparticles (AgNPs) are an example of this as it is known to have inhibitory and bactericidal effects. In this work, we report the synthesis of s...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/4382
- Acceso en línea:
- http://hdl.handle.net/11407/4382
- Palabra clave:
- Antibacterial Activity
mesophilic bacteria
nanomaterial synthesis
Silver Nanoparticules
Bacteria
Bactericides
Ionic liquids
Metal nanoparticles
Nanoparticles
Nanostructured materials
Particle size
Scanning electron microscopy
Solutions
Surface plasmon resonance
Synthesis (chemical)
Ultraviolet visible spectroscopy
Anti-bacterial activity
Bactericidal activity
Chemical reduction methods
Mesophilic bacteria
Nanoparticules
Silver nanoparticles
Silver nanoparticles (AgNps)
UV visible spectroscopy
Silver
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_fab17a80af759e88e509a5c24bbc71a4 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/4382 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity |
title |
Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity |
spellingShingle |
Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity Antibacterial Activity mesophilic bacteria nanomaterial synthesis Silver Nanoparticules Bacteria Bactericides Ionic liquids Metal nanoparticles Nanoparticles Nanostructured materials Particle size Scanning electron microscopy Solutions Surface plasmon resonance Synthesis (chemical) Ultraviolet visible spectroscopy Anti-bacterial activity Bactericidal activity Chemical reduction methods Mesophilic bacteria Nanoparticules Silver nanoparticles Silver nanoparticles (AgNps) UV visible spectroscopy Silver |
title_short |
Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity |
title_full |
Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity |
title_fullStr |
Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity |
title_full_unstemmed |
Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity |
title_sort |
Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity |
dc.contributor.affiliation.spa.fl_str_mv |
Gloria, E.C., Departamento de Facultad de Ciencias Básicas, Grapo de Materials Nanoestracturados y Biomodelación, MATBIOM, Universidad de Medellín, Colombia Ederley, V., Departamento de Facultad de Ciencias Básicas, Grapo de Materials Nanoestracturados y Biomodelación, MATBIOM, Universidad de Medellín, Colombia Gladis, M., Facultad de Ingenierías, Grupo de Investigaciones y Mediciones Ambientales - GEMA, Universidad de Medellín, Medellín, Colombia César, H., Departamento de Facultad de Ciencias Básicas, Grapo de Materials Nanoestracturados y Biomodelación, MATBIOM, Universidad de Medellín, Colombia Jaime, O., Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia Oscar, A., Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia José, I.U., Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia Franklin, J., Centro de Investigación, Innovación y Desarrollo de Materiales - CIDEMAT, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia |
dc.subject.keyword.eng.fl_str_mv |
Antibacterial Activity mesophilic bacteria nanomaterial synthesis Silver Nanoparticules Bacteria Bactericides Ionic liquids Metal nanoparticles Nanoparticles Nanostructured materials Particle size Scanning electron microscopy Solutions Surface plasmon resonance Synthesis (chemical) Ultraviolet visible spectroscopy Anti-bacterial activity Bactericidal activity Chemical reduction methods Mesophilic bacteria Nanoparticules Silver nanoparticles Silver nanoparticles (AgNps) UV visible spectroscopy Silver |
topic |
Antibacterial Activity mesophilic bacteria nanomaterial synthesis Silver Nanoparticules Bacteria Bactericides Ionic liquids Metal nanoparticles Nanoparticles Nanostructured materials Particle size Scanning electron microscopy Solutions Surface plasmon resonance Synthesis (chemical) Ultraviolet visible spectroscopy Anti-bacterial activity Bactericidal activity Chemical reduction methods Mesophilic bacteria Nanoparticules Silver nanoparticles Silver nanoparticles (AgNps) UV visible spectroscopy Silver |
description |
The synthesis of nanomaterials is currently one of the most active in nanoscience branches; especially those help improve the human quality life. Silver nanoparticles (AgNPs) are an example of this as it is known to have inhibitory and bactericidal effects. In this work, we report the synthesis of silver nanoparticles by chemical reduction method of silver nitrate (AgNO3) from aqueous solution, using a mix of polivinyl pyrrolidone (PVP) - Aloe Vera as reducing agent and for stabilization and control of particle size. Silver nanoparticles obtained were characterized by Scanning Electron Microscopy (SEM), UV-visible spectroscopy and measurements using Zetasizer Nano ZS were applied to size estimation. The existence of surface plasmon resonance peak at λmax ∼ 420 nm is evidence of silver nanoparticles formation. It was possible to standardize an appropriate protocol for the evaluation of bactericidal activity of the nanoparticles, for mesophilic microorganisms. Bactericidal activity above 90% against these kinds of bacteria was demonstrated. © Published under licence by IOP Publishing Ltd. |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2017-12-19T19:36:52Z |
dc.date.available.none.fl_str_mv |
2017-12-19T19:36:52Z |
dc.date.created.none.fl_str_mv |
2017 |
dc.type.eng.fl_str_mv |
Conference Paper |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.identifier.issn.none.fl_str_mv |
17426588 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/4382 |
dc.identifier.doi.none.fl_str_mv |
10.1088/1742-6596/850/1/012023 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad de Medellín |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de Medellín |
identifier_str_mv |
17426588 10.1088/1742-6596/850/1/012023 reponame:Repositorio Institucional Universidad de Medellín instname:Universidad de Medellín |
url |
http://hdl.handle.net/11407/4382 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021887156&doi=10.1088%2f1742-6596%2f850%2f1%2f012023&partnerID=40&md5=79ecba148e8d8ca3472a80e6fcc9d807 |
dc.relation.ispartofes.spa.fl_str_mv |
Journal of Physics: Conference Series Journal of Physics: Conference Series Volume 850, Issue 1, 13 June 2017 |
dc.relation.references.spa.fl_str_mv |
Contescu, C. I., & Putyera, K. (2009). Dekker Encyclopedia of Nanoscience and Nanotechnology, 1-6. Dang, T. M. D., Le, T. T. T., Fribourg-Blanc, E., & Dang, M. C. (2011). Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2(1) doi:10.1088/2043-6262/2/1/015009 Guzmán, M. G., Dille, J., & Godet, S. (2009). Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int.J.Chem.Biol.Eng., 2(3), 104-111. Kuisma, M., Sakko, A., Rossi, T. P., Larsen, A. H., Enkovaara, J., Lehtovaara, L., & Rantala, T. T. (2015). Localized surface plasmon resonance in silver nanoparticles: Atomistic first-principles time-dependent density-functional theory calculations. Physical Review B - Condensed Matter and Materials Physics, 91(11) doi:10.1103/PhysRevB.91.115431 Link, S., & El-Sayed, M. A. (2000). Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. International Reviews in Physical Chemistry, 19(3), 409-453. doi:10.1080/01442350050034180 Marambio-Jones, C., & Hoek, E. M. V. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 12(5), 1531-1551. doi:10.1007/s11051-010-9900-y Saion, E., Gharibshahi, E., & Naghavi, K. (2013). Size-controlled and optical properties of monodispersed silver nanoparticles synthesized by the radiolytic reduction method. International Journal of Molecular Sciences, 14(4), 7880-7896. doi:10.3390/ijms14047880 Shenashen, M. A., El-Safty, S. A., & Elshehy, E. A. (2014). Synthesis, morphological control, and properties of silver nanoparticles in potential applications. Particle and Particle Systems Characterization, 31(3), 293-316. doi:10.1002/ppsc.201300181 Siegert, I., & Banks, C. (2005). The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochemistry, 40(11), 3412-3418. doi:10.1016/j.procbio.2005.01.025 Wang, J. -., Wen, L. -., Wang, Z. -., & Chen, J. -. (2006). Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effects. Materials Chemistry and Physics, 96(1), 90-97. doi:10.1016/j.matchemphys.2005.06.045 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
Institute of Physics Publishing |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías Facultad de Ciencias Básicas |
dc.source.spa.fl_str_mv |
Scopus |
institution |
Universidad de Medellín |
bitstream.url.fl_str_mv |
http://repository.udem.edu.co/bitstream/11407/4382/2/3.%20Synthesis%20of%20Silver%20nanoparticles%20AgNPs%20with%20Antibacterial%20Activity.pdf.jpg http://repository.udem.edu.co/bitstream/11407/4382/1/3.%20Synthesis%20of%20Silver%20nanoparticles%20AgNPs%20with%20Antibacterial%20Activity.pdf |
bitstream.checksum.fl_str_mv |
2497eec5d8a6c9aabaef0d64a67ba4e3 bcbb815aa4e58edd7be857ae4207ce37 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159191969890304 |
spelling |
2017-12-19T19:36:52Z2017-12-19T19:36:52Z201717426588http://hdl.handle.net/11407/438210.1088/1742-6596/850/1/012023reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínThe synthesis of nanomaterials is currently one of the most active in nanoscience branches; especially those help improve the human quality life. Silver nanoparticles (AgNPs) are an example of this as it is known to have inhibitory and bactericidal effects. In this work, we report the synthesis of silver nanoparticles by chemical reduction method of silver nitrate (AgNO3) from aqueous solution, using a mix of polivinyl pyrrolidone (PVP) - Aloe Vera as reducing agent and for stabilization and control of particle size. Silver nanoparticles obtained were characterized by Scanning Electron Microscopy (SEM), UV-visible spectroscopy and measurements using Zetasizer Nano ZS were applied to size estimation. The existence of surface plasmon resonance peak at λmax ∼ 420 nm is evidence of silver nanoparticles formation. It was possible to standardize an appropriate protocol for the evaluation of bactericidal activity of the nanoparticles, for mesophilic microorganisms. Bactericidal activity above 90% against these kinds of bacteria was demonstrated. © Published under licence by IOP Publishing Ltd.engInstitute of Physics PublishingFacultad de IngenieríasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85021887156&doi=10.1088%2f1742-6596%2f850%2f1%2f012023&partnerID=40&md5=79ecba148e8d8ca3472a80e6fcc9d807Journal of Physics: Conference SeriesJournal of Physics: Conference Series Volume 850, Issue 1, 13 June 2017Contescu, C. I., & Putyera, K. (2009). Dekker Encyclopedia of Nanoscience and Nanotechnology, 1-6.Dang, T. M. D., Le, T. T. T., Fribourg-Blanc, E., & Dang, M. C. (2011). Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2(1) doi:10.1088/2043-6262/2/1/015009Guzmán, M. G., Dille, J., & Godet, S. (2009). Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int.J.Chem.Biol.Eng., 2(3), 104-111.Kuisma, M., Sakko, A., Rossi, T. P., Larsen, A. H., Enkovaara, J., Lehtovaara, L., & Rantala, T. T. (2015). Localized surface plasmon resonance in silver nanoparticles: Atomistic first-principles time-dependent density-functional theory calculations. Physical Review B - Condensed Matter and Materials Physics, 91(11) doi:10.1103/PhysRevB.91.115431Link, S., & El-Sayed, M. A. (2000). Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. International Reviews in Physical Chemistry, 19(3), 409-453. doi:10.1080/01442350050034180Marambio-Jones, C., & Hoek, E. M. V. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 12(5), 1531-1551. doi:10.1007/s11051-010-9900-ySaion, E., Gharibshahi, E., & Naghavi, K. (2013). Size-controlled and optical properties of monodispersed silver nanoparticles synthesized by the radiolytic reduction method. International Journal of Molecular Sciences, 14(4), 7880-7896. doi:10.3390/ijms14047880Shenashen, M. A., El-Safty, S. A., & Elshehy, E. A. (2014). Synthesis, morphological control, and properties of silver nanoparticles in potential applications. Particle and Particle Systems Characterization, 31(3), 293-316. doi:10.1002/ppsc.201300181Siegert, I., & Banks, C. (2005). The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochemistry, 40(11), 3412-3418. doi:10.1016/j.procbio.2005.01.025Wang, J. -., Wen, L. -., Wang, Z. -., & Chen, J. -. (2006). Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effects. Materials Chemistry and Physics, 96(1), 90-97. doi:10.1016/j.matchemphys.2005.06.045ScopusSynthesis of Silver nanoparticles (AgNPs) with Antibacterial ActivityConference Paperinfo:eu-repo/semantics/conferenceObjecthttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fGloria, E.C., Departamento de Facultad de Ciencias Básicas, Grapo de Materials Nanoestracturados y Biomodelación, MATBIOM, Universidad de Medellín, ColombiaEderley, V., Departamento de Facultad de Ciencias Básicas, Grapo de Materials Nanoestracturados y Biomodelación, MATBIOM, Universidad de Medellín, ColombiaGladis, M., Facultad de Ingenierías, Grupo de Investigaciones y Mediciones Ambientales - GEMA, Universidad de Medellín, Medellín, ColombiaCésar, H., Departamento de Facultad de Ciencias Básicas, Grapo de Materials Nanoestracturados y Biomodelación, MATBIOM, Universidad de Medellín, ColombiaJaime, O., Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, ColombiaOscar, A., Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, ColombiaJosé, I.U., Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, ColombiaFranklin, J., Centro de Investigación, Innovación y Desarrollo de Materiales - CIDEMAT, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, ColombiaGloria E.C.Ederley V.Gladis M.César H.Jaime O.Oscar A.José I.U.Franklin J.Departamento de Facultad de Ciencias Básicas, Grapo de Materials Nanoestracturados y Biomodelación, MATBIOM, Universidad de Medellín, ColombiaFacultad de Ingenierías, Grupo de Investigaciones y Mediciones Ambientales - GEMA, Universidad de Medellín, Medellín, ColombiaInstituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, ColombiaCentro de Investigación, Innovación y Desarrollo de Materiales - CIDEMAT, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, ColombiaAntibacterial Activitymesophilic bacteriananomaterial synthesisSilver NanoparticulesBacteriaBactericidesIonic liquidsMetal nanoparticlesNanoparticlesNanostructured materialsParticle sizeScanning electron microscopySolutionsSurface plasmon resonanceSynthesis (chemical)Ultraviolet visible spectroscopyAnti-bacterial activityBactericidal activityChemical reduction methodsMesophilic bacteriaNanoparticulesSilver nanoparticlesSilver nanoparticles (AgNps)UV visible spectroscopySilverThe synthesis of nanomaterials is currently one of the most active in nanoscience branches; especially those help improve the human quality life. Silver nanoparticles (AgNPs) are an example of this as it is known to have inhibitory and bactericidal effects. In this work, we report the synthesis of silver nanoparticles by chemical reduction method of silver nitrate (AgNO3) from aqueous solution, using a mix of polivinyl pyrrolidone (PVP) - Aloe Vera as reducing agent and for stabilization and control of particle size. Silver nanoparticles obtained were characterized by Scanning Electron Microscopy (SEM), UV-visible spectroscopy and measurements using Zetasizer Nano ZS were applied to size estimation. The existence of surface plasmon resonance peak at λmax ∼ 420 nm is evidence of silver nanoparticles formation. It was possible to standardize an appropriate protocol for the evaluation of bactericidal activity of the nanoparticles, for mesophilic microorganisms. Bactericidal activity above 90% against these kinds of bacteria was demonstrated. © Published under licence by IOP Publishing Ltd.http://purl.org/coar/access_right/c_16ecTHUMBNAIL3. Synthesis of Silver nanoparticles AgNPs with Antibacterial Activity.pdf.jpg3. Synthesis of Silver nanoparticles AgNPs with Antibacterial Activity.pdf.jpgIM Thumbnailimage/jpeg4385http://repository.udem.edu.co/bitstream/11407/4382/2/3.%20Synthesis%20of%20Silver%20nanoparticles%20AgNPs%20with%20Antibacterial%20Activity.pdf.jpg2497eec5d8a6c9aabaef0d64a67ba4e3MD52ORIGINAL3. Synthesis of Silver nanoparticles AgNPs with Antibacterial Activity.pdf3. Synthesis of Silver nanoparticles AgNPs with Antibacterial Activity.pdfapplication/pdf528269http://repository.udem.edu.co/bitstream/11407/4382/1/3.%20Synthesis%20of%20Silver%20nanoparticles%20AgNPs%20with%20Antibacterial%20Activity.pdfbcbb815aa4e58edd7be857ae4207ce37MD5111407/4382oai:repository.udem.edu.co:11407/43822020-05-27 17:52:22.258Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |