Diels-Alder Reactivity of a Chiral Anthracene Template with Symmetrical and Unsymmetrical Dienophiles: A DFT Study
In this work, we used Density Functional Theory calculations to assess the factors that control the reactivity of a chiral anthracene template with three sets of dienophiles including maleic anhydrides, maleimides and acetoxy lactones in the context of Diels-Alder cycloadditions. The results obtaine...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5940
- Acceso en línea:
- http://hdl.handle.net/11407/5940
- Palabra clave:
- activation strain model
charge transfer
chiral anthracenes
DFT calculations
Diels-Alder reactions
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_fa29a0cdf4794af57f7782655c650327 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5940 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Diels-Alder Reactivity of a Chiral Anthracene Template with Symmetrical and Unsymmetrical Dienophiles: A DFT Study |
title |
Diels-Alder Reactivity of a Chiral Anthracene Template with Symmetrical and Unsymmetrical Dienophiles: A DFT Study |
spellingShingle |
Diels-Alder Reactivity of a Chiral Anthracene Template with Symmetrical and Unsymmetrical Dienophiles: A DFT Study activation strain model charge transfer chiral anthracenes DFT calculations Diels-Alder reactions |
title_short |
Diels-Alder Reactivity of a Chiral Anthracene Template with Symmetrical and Unsymmetrical Dienophiles: A DFT Study |
title_full |
Diels-Alder Reactivity of a Chiral Anthracene Template with Symmetrical and Unsymmetrical Dienophiles: A DFT Study |
title_fullStr |
Diels-Alder Reactivity of a Chiral Anthracene Template with Symmetrical and Unsymmetrical Dienophiles: A DFT Study |
title_full_unstemmed |
Diels-Alder Reactivity of a Chiral Anthracene Template with Symmetrical and Unsymmetrical Dienophiles: A DFT Study |
title_sort |
Diels-Alder Reactivity of a Chiral Anthracene Template with Symmetrical and Unsymmetrical Dienophiles: A DFT Study |
dc.subject.spa.fl_str_mv |
activation strain model charge transfer chiral anthracenes DFT calculations Diels-Alder reactions |
topic |
activation strain model charge transfer chiral anthracenes DFT calculations Diels-Alder reactions |
description |
In this work, we used Density Functional Theory calculations to assess the factors that control the reactivity of a chiral anthracene template with three sets of dienophiles including maleic anhydrides, maleimides and acetoxy lactones in the context of Diels-Alder cycloadditions. The results obtained here (at the M06-2X/6-311++G(d,p) level of theory) suggest that the activation energies for maleic anhydrides and acetoxy lactones are dependent on the nature of the substituent in the dienophile. Among all studied substituents, only −CN reduces the energy barrier of the cycloaddition. For maleimides, the activation energies are independent of the heteroatom of the dienophile and the R group attached to it. The analysis of frontier molecular orbitals, charge transfer and the activation strain model (at the M06-2X/TZVP level based on M06-2X/6-311++G(d,p) geometries) suggest that the activation energies in maleic anhydrides are mainly controlled by the amount of charge transfer from the diene to the dienophile during cycloaddition. For maleimides, there is a dual control of interaction and strain energies on the activation energies, whereas for the acetoxy lactones the activation energies seem to be controlled by the degree of template distortion at the transition state. Finally, calculations show that considering a catalyst on the studied cycloadditions changes the reaction mechanism from concerted to stepwise and proceed with much lower activation energies. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:58:07Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:58:07Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
21911363 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5940 |
dc.identifier.doi.none.fl_str_mv |
10.1002/open.202000137 |
identifier_str_mv |
21911363 10.1002/open.202000137 |
url |
http://hdl.handle.net/11407/5940 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088831022&doi=10.1002%2fopen.202000137&partnerID=40&md5=fdd21c1abeaf2fdd7f7370753745820c |
dc.relation.citationvolume.none.fl_str_mv |
9 |
dc.relation.citationissue.none.fl_str_mv |
7 |
dc.relation.citationstartpage.none.fl_str_mv |
748 |
dc.relation.citationendpage.none.fl_str_mv |
761 |
dc.relation.references.none.fl_str_mv |
Fringuelli, F., Taticchi, A., (2002) The Diels-Alder Reaction: Selected Practical Methods, , Wiley, J. & S., Ed., John Wiley & Sons. Baffins Lane, Chichester Houk, K.N., Gonzalez, J., Li, Y., (1995) Acc. Chem. Res., 28 (2), pp. 81-90 Brocksom, T.J., Nakamura, J., Ferreira, M.L., Brocksom, U., Braz, J., (2001) Chem. Soc., 12, pp. 597-622 Ess, D.H., Jones, G.O., Houk, K.N., (2006) Adv. Synth. Catal., 348, pp. 2337-2361 Funel, J.A., Abele, S., (2013) Angew. Chem. Int. Ed., 52, pp. 3822-3863 (2013) Angew. Chem., 125, pp. 3912-3955 Corbett, M.S., Liu, X., Sanyal, A., Snyder, J.K., (2003) Tetrahedron Lett., 44, pp. 931-935 Sanyal, A., Snyder, J.K., (2000) Org. Lett., 2, pp. 2527-2530 Akin, E.T., Erdogan, M., Dastan, A., Saracoglu, N., (2017) Tetrahedron, 73, pp. 5537-5546 Teixeira, M.G., Alvarenga, E.S., (2016) Magn. Reson. Chem., 54, pp. 623-631 Dewar, M.J.S., (1984) J. Am. Chem. Soc., 106, pp. 209-219 Linder, M., Brinck, T., (2012) J. Org. Chem., 77, pp. 6563-6573 Alcaide, B., Almendros, P., Aragoncillo, C., (2007) Chem. Rev., 107, pp. 4437-4492 Burgess, K.L., Lajkiewicz, N.J., Sanyal, A., Yan, W., Snyder, J.K., (2005) Org. Lett., 7, pp. 31-34 Adams, H., Elsunaki, T.M., Ojea-Jiménez, I., Jones, S., Meijer, A.J.H.M., (2010) J. Org. Chem., 75, pp. 6252-6262 Bawa, R.A., Gautier, F.M., Adams, H., Meijer, A.J.H.M., Jones, S., (2015) Org. Biomol. Chem., 13, pp. 10569-10577 Andrews, L.J., Keefer, R.M., (1955) J. Am. Chem. Soc., 77, pp. 6284-6289 Atherton, J.C.C., Jones, S., (2003) Tetrahedron, 46, pp. 9039-9057 Adams, H., Jones, S., Meijer, A.J.H.M., Najah, Z., Ojea-Jiménez, I., Reeder, A.T., (2011) Tetrahedron: Asymmetry, 22, pp. 1620-1625 Sanyal, A., Yuan, Q., Snyder, J.K., (2005) Tetrahedron Lett., 46, pp. 2475-2478 Çelebi-Ölçüm, N., Sanyal, A., Aviyente, V., (2009) J. Org. Chem., 74, pp. 2328-2336 Agopcan, S., Elebi-Ölüm, N., Üiik, M.N., Sanyal, A., Aviyente, V., (2011) Org. Biomol. Chem., 9, pp. 8079-8088 Fernández, I., Bickelhaupt, F.M., (2016) Chem. - An Asian J., 11, pp. 3297-3304 Bickelhaupt, F.M., Houk, K.N., (2017) Angew. Chem. Int. Ed., 56, pp. 10070-10086 (2017) Angew. Chem., 129, pp. 10204-10221 Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Ortiz, J., (2013), Gaussian 09, Rev. D.01. Gaussian 09, Rev. D.01;Gaussian Inc.: Wallingford, CT. Gaussian Inc. Wallingford CT: Wallingford CT Zhao, Y., Truhlar, D.G., (2008) Theor. Chem. Acc., 120, pp. 215-241 Krishnan, R.B.J.S., Binkley, J.S., Seeger, R., Pople, J.A., (1980) J. Chem. Phys., 72, pp. 650-654 Yepes, D., Valenzuela, J., Martínez-Araya, J.I., Pérez, P., Jaque, P., (2019) Phys. Chem. Chem. Phys., 21, pp. 7412-7428 Pieniazek, S.N., Clemente, F.R., Houk, K.N., (2008) Angew. Chem. Int. Ed., 47, pp. 7746-7749 (2008) Angew. Chem., 120, pp. 7860-7863 Jensen, F., (2007) Introduction to Computational Chemistry, , 2a edition., Wiley, J. & S., Ed., The Atrium, Southern Gate, Chichester Schäfer, A., Horn, H., Ahlrichs, R., (1992) J. Chem. Phys., 97, pp. 2571-2577 Reed, A.E., Weinhold, F., (1983) J. Chem. Phys., 78, pp. 4066-4073 Reed, A.E., Weinstock, R.B., Weinhold, F., (1985) J. Chem. Phys., 83, pp. 735-746 Lu, T., Chen, F., (2012) J. Comput. Chem., 33, pp. 580-592 Morokuma, K., (1971) J. Chem. Phys., 55, pp. 1236-1244 Ziegler, T., Rauk, A., (1977) Theor. Chim. Acta, 46, pp. 1-10 Bickelhaupt, F.M., Baerends, E.J., (2000) Reviews in Computational Chemistry, p. 15. , Lipkowitz, K. B., Boyd, D. B., Eds., Weinheim Wise, K.E., Wheeler, R.A., (1999) J. Phys. Chem. A, 103, pp. 8279-8287 Jones, G.O., Guner, V.A., Houk, K.N., (2006) J. Phys. Chem. A, 110, pp. 1216-1224 Liao, M.S., Lu, Y., Scheiner, S., (2003) J. Comput. Chem., 24, pp. 623-631 Howard, M.H., Alexander, V., Marshall, W.J., Roe, D.C., Zheng, Y.J., (2003) Synthesis (Stuttg)., 68, pp. 120-129 Frey, J.E., Andrews, A.M., Combs, S.D., Edens, S.P., Puckett, J.J., Seagle, R.E., Torreano, L.A., (1992) J. Org. Chem., 57, pp. 6460-6466 Kiselev, V.D., Miller, J.G., (1975) J. Am. Chem. Soc., 97, pp. 4036-4039 Sustmann, R., Dern, M., Kasten, R., Sicking, W., (1987) Chem. Ber., 120, pp. 1315-1322 Sustmann, R., Korth, H.-G., Nüchter, U., Siangouri-Feulner, J., Sicking, W., (1991) Chem. Ber., 124, pp. 2811-2817 Suárez, D., Sordo, J.A., (1998) Chem. Commun., pp. 385-386 Berionni, G., Bertelle, P.A., Marrot, J., Goumont, R., (2009) J. Am. Chem. Soc., 131, pp. 18224-18225 Handoo, K.L., Lu, Y., Parker, V.D., (2003) J. Am. Chem. Soc., 125, pp. 9381-9387 Yoshida, Z., Kobayashi, T., (1970) Tetrahedron, 26, pp. 267-271 Frey, J.E., Andrews, A.M., Ankoviac, D.G., Beaman, D.N., Du Pont, L.E., Elsner, T.E., Lang, S.R., Seagle, R.E., (1990) J. Org. Chem., 55, pp. 606-624 Domingo, L.R., Sáez, J.A., (2009) Org. Biomol. Chem., 7, pp. 3576-3583 Levandowski, B.J., Houk, K.N., (2015) J. Org. Chem., 80, pp. 3530-3537 Evans, M.G., Polanyi, M., (1936) Trans. Faraday Soc., pp. 1333-1360. , pp McBee, E.T., Hsu, C.G., Pierce, O.R., Roberts, C.W., (1955) J. Am. Chem. Soc., 77, pp. 915-917 Essers, M., Mück-Lichtenfeld, C., Haufe, G., (2002) J. Org. Chem., 67, pp. 4715-4721 Merzoud, L., Saal, A., Moussaoui, R., Ouamerali, O., Morell, C., Chermette, H., (2018) Phys. Chem. Chem. Phys., 20, pp. 16102-16116 Shibatomi, K., Futatsugi, K., Kobayashi, F., Iwasa, S., Yamamoto, H., (2010) J. Am. Chem. Soc., 132, pp. 5625-5627 Sarotti, A.M., Spanevello, R.A., Suárez, A.G., (2011) Tetrahedron Lett., 52, pp. 4145-4148 Sauer, J., Wiest, H., Mielert, A., (1964) Chem. Ber., 97, pp. 3183-3207 Houk, K.N., Loncharich, R.J., Blake, J.F., Jorgensen, W.L., (1989) J. Am. Chem. Soc., 111, pp. 9172-9176 Yepes, D., Donoso-Tauda, O., Pérez, P., Murray, J.S., Politzer, P., Jaque, P., (2013) Phys. Chem. Chem. Phys., 15, pp. 7311-7320 Dewar, M.J.S., Stewart, J.J.P., Olivella, S., (1986) J. Am. Chem. Soc., 108, pp. 5771-5779 Brown, P., Cookson, R.C., (1965) Tetrahedron, 21, pp. 1993-1998 Levandowski, B.J., Hamlin, T.A., Bickelhaupt, F.M., Houk, K.N., (2017) J. Org. Chem., 82, pp. 8668-8675 Corey, E.J., (2002) Angew. Chem. Int. Ed., 41, pp. 1650-1667 (2002) Angew. Chem., 114, pp. 1724-1741 Salavati-Fard, T., Caratzoulas, S., Doren, D.J., (2015) J. Phys. Chem. A, 119, pp. 9834-9843 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Wiley-VCH Verlag |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
Wiley-VCH Verlag |
dc.source.none.fl_str_mv |
ChemistryOpen |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159176525414400 |
spelling |
20202021-02-05T14:58:07Z2021-02-05T14:58:07Z21911363http://hdl.handle.net/11407/594010.1002/open.202000137In this work, we used Density Functional Theory calculations to assess the factors that control the reactivity of a chiral anthracene template with three sets of dienophiles including maleic anhydrides, maleimides and acetoxy lactones in the context of Diels-Alder cycloadditions. The results obtained here (at the M06-2X/6-311++G(d,p) level of theory) suggest that the activation energies for maleic anhydrides and acetoxy lactones are dependent on the nature of the substituent in the dienophile. Among all studied substituents, only −CN reduces the energy barrier of the cycloaddition. For maleimides, the activation energies are independent of the heteroatom of the dienophile and the R group attached to it. The analysis of frontier molecular orbitals, charge transfer and the activation strain model (at the M06-2X/TZVP level based on M06-2X/6-311++G(d,p) geometries) suggest that the activation energies in maleic anhydrides are mainly controlled by the amount of charge transfer from the diene to the dienophile during cycloaddition. For maleimides, there is a dual control of interaction and strain energies on the activation energies, whereas for the acetoxy lactones the activation energies seem to be controlled by the degree of template distortion at the transition state. Finally, calculations show that considering a catalyst on the studied cycloadditions changes the reaction mechanism from concerted to stepwise and proceed with much lower activation energies. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.engWiley-VCH VerlagFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85088831022&doi=10.1002%2fopen.202000137&partnerID=40&md5=fdd21c1abeaf2fdd7f7370753745820c97748761Fringuelli, F., Taticchi, A., (2002) The Diels-Alder Reaction: Selected Practical Methods, , Wiley, J. & S., Ed.,John Wiley & Sons. Baffins Lane, ChichesterHouk, K.N., Gonzalez, J., Li, Y., (1995) Acc. Chem. Res., 28 (2), pp. 81-90Brocksom, T.J., Nakamura, J., Ferreira, M.L., Brocksom, U., Braz, J., (2001) Chem. Soc., 12, pp. 597-622Ess, D.H., Jones, G.O., Houk, K.N., (2006) Adv. Synth. Catal., 348, pp. 2337-2361Funel, J.A., Abele, S., (2013) Angew. Chem. Int. Ed., 52, pp. 3822-3863(2013) Angew. Chem., 125, pp. 3912-3955Corbett, M.S., Liu, X., Sanyal, A., Snyder, J.K., (2003) Tetrahedron Lett., 44, pp. 931-935Sanyal, A., Snyder, J.K., (2000) Org. Lett., 2, pp. 2527-2530Akin, E.T., Erdogan, M., Dastan, A., Saracoglu, N., (2017) Tetrahedron, 73, pp. 5537-5546Teixeira, M.G., Alvarenga, E.S., (2016) Magn. Reson. Chem., 54, pp. 623-631Dewar, M.J.S., (1984) J. Am. Chem. Soc., 106, pp. 209-219Linder, M., Brinck, T., (2012) J. Org. Chem., 77, pp. 6563-6573Alcaide, B., Almendros, P., Aragoncillo, C., (2007) Chem. Rev., 107, pp. 4437-4492Burgess, K.L., Lajkiewicz, N.J., Sanyal, A., Yan, W., Snyder, J.K., (2005) Org. Lett., 7, pp. 31-34Adams, H., Elsunaki, T.M., Ojea-Jiménez, I., Jones, S., Meijer, A.J.H.M., (2010) J. Org. Chem., 75, pp. 6252-6262Bawa, R.A., Gautier, F.M., Adams, H., Meijer, A.J.H.M., Jones, S., (2015) Org. Biomol. Chem., 13, pp. 10569-10577Andrews, L.J., Keefer, R.M., (1955) J. Am. Chem. Soc., 77, pp. 6284-6289Atherton, J.C.C., Jones, S., (2003) Tetrahedron, 46, pp. 9039-9057Adams, H., Jones, S., Meijer, A.J.H.M., Najah, Z., Ojea-Jiménez, I., Reeder, A.T., (2011) Tetrahedron: Asymmetry, 22, pp. 1620-1625Sanyal, A., Yuan, Q., Snyder, J.K., (2005) Tetrahedron Lett., 46, pp. 2475-2478Çelebi-Ölçüm, N., Sanyal, A., Aviyente, V., (2009) J. Org. Chem., 74, pp. 2328-2336Agopcan, S., Elebi-Ölüm, N., Üiik, M.N., Sanyal, A., Aviyente, V., (2011) Org. Biomol. Chem., 9, pp. 8079-8088Fernández, I., Bickelhaupt, F.M., (2016) Chem. - An Asian J., 11, pp. 3297-3304Bickelhaupt, F.M., Houk, K.N., (2017) Angew. Chem. Int. Ed., 56, pp. 10070-10086(2017) Angew. Chem., 129, pp. 10204-10221Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Ortiz, J., (2013), Gaussian 09, Rev. D.01. Gaussian 09, Rev. D.01;Gaussian Inc.: Wallingford, CT. Gaussian Inc. Wallingford CT: Wallingford CTZhao, Y., Truhlar, D.G., (2008) Theor. Chem. Acc., 120, pp. 215-241Krishnan, R.B.J.S., Binkley, J.S., Seeger, R., Pople, J.A., (1980) J. Chem. Phys., 72, pp. 650-654Yepes, D., Valenzuela, J., Martínez-Araya, J.I., Pérez, P., Jaque, P., (2019) Phys. Chem. Chem. Phys., 21, pp. 7412-7428Pieniazek, S.N., Clemente, F.R., Houk, K.N., (2008) Angew. Chem. Int. Ed., 47, pp. 7746-7749(2008) Angew. Chem., 120, pp. 7860-7863Jensen, F., (2007) Introduction to Computational Chemistry, , 2a edition., Wiley, J. & S., Ed., The Atrium, Southern Gate, ChichesterSchäfer, A., Horn, H., Ahlrichs, R., (1992) J. Chem. Phys., 97, pp. 2571-2577Reed, A.E., Weinhold, F., (1983) J. Chem. Phys., 78, pp. 4066-4073Reed, A.E., Weinstock, R.B., Weinhold, F., (1985) J. Chem. Phys., 83, pp. 735-746Lu, T., Chen, F., (2012) J. Comput. Chem., 33, pp. 580-592Morokuma, K., (1971) J. Chem. Phys., 55, pp. 1236-1244Ziegler, T., Rauk, A., (1977) Theor. Chim. Acta, 46, pp. 1-10Bickelhaupt, F.M., Baerends, E.J., (2000) Reviews in Computational Chemistry, p. 15. , Lipkowitz, K. B., Boyd, D. B., Eds.,WeinheimWise, K.E., Wheeler, R.A., (1999) J. Phys. Chem. A, 103, pp. 8279-8287Jones, G.O., Guner, V.A., Houk, K.N., (2006) J. Phys. Chem. A, 110, pp. 1216-1224Liao, M.S., Lu, Y., Scheiner, S., (2003) J. Comput. Chem., 24, pp. 623-631Howard, M.H., Alexander, V., Marshall, W.J., Roe, D.C., Zheng, Y.J., (2003) Synthesis (Stuttg)., 68, pp. 120-129Frey, J.E., Andrews, A.M., Combs, S.D., Edens, S.P., Puckett, J.J., Seagle, R.E., Torreano, L.A., (1992) J. Org. Chem., 57, pp. 6460-6466Kiselev, V.D., Miller, J.G., (1975) J. Am. Chem. Soc., 97, pp. 4036-4039Sustmann, R., Dern, M., Kasten, R., Sicking, W., (1987) Chem. Ber., 120, pp. 1315-1322Sustmann, R., Korth, H.-G., Nüchter, U., Siangouri-Feulner, J., Sicking, W., (1991) Chem. Ber., 124, pp. 2811-2817Suárez, D., Sordo, J.A., (1998) Chem. Commun., pp. 385-386Berionni, G., Bertelle, P.A., Marrot, J., Goumont, R., (2009) J. Am. Chem. Soc., 131, pp. 18224-18225Handoo, K.L., Lu, Y., Parker, V.D., (2003) J. Am. Chem. Soc., 125, pp. 9381-9387Yoshida, Z., Kobayashi, T., (1970) Tetrahedron, 26, pp. 267-271Frey, J.E., Andrews, A.M., Ankoviac, D.G., Beaman, D.N., Du Pont, L.E., Elsner, T.E., Lang, S.R., Seagle, R.E., (1990) J. Org. Chem., 55, pp. 606-624Domingo, L.R., Sáez, J.A., (2009) Org. Biomol. Chem., 7, pp. 3576-3583Levandowski, B.J., Houk, K.N., (2015) J. Org. Chem., 80, pp. 3530-3537Evans, M.G., Polanyi, M., (1936) Trans. Faraday Soc., pp. 1333-1360. , ppMcBee, E.T., Hsu, C.G., Pierce, O.R., Roberts, C.W., (1955) J. Am. Chem. Soc., 77, pp. 915-917Essers, M., Mück-Lichtenfeld, C., Haufe, G., (2002) J. Org. Chem., 67, pp. 4715-4721Merzoud, L., Saal, A., Moussaoui, R., Ouamerali, O., Morell, C., Chermette, H., (2018) Phys. Chem. Chem. Phys., 20, pp. 16102-16116Shibatomi, K., Futatsugi, K., Kobayashi, F., Iwasa, S., Yamamoto, H., (2010) J. Am. Chem. Soc., 132, pp. 5625-5627Sarotti, A.M., Spanevello, R.A., Suárez, A.G., (2011) Tetrahedron Lett., 52, pp. 4145-4148Sauer, J., Wiest, H., Mielert, A., (1964) Chem. Ber., 97, pp. 3183-3207Houk, K.N., Loncharich, R.J., Blake, J.F., Jorgensen, W.L., (1989) J. Am. Chem. Soc., 111, pp. 9172-9176Yepes, D., Donoso-Tauda, O., Pérez, P., Murray, J.S., Politzer, P., Jaque, P., (2013) Phys. Chem. Chem. Phys., 15, pp. 7311-7320Dewar, M.J.S., Stewart, J.J.P., Olivella, S., (1986) J. Am. Chem. Soc., 108, pp. 5771-5779Brown, P., Cookson, R.C., (1965) Tetrahedron, 21, pp. 1993-1998Levandowski, B.J., Hamlin, T.A., Bickelhaupt, F.M., Houk, K.N., (2017) J. Org. Chem., 82, pp. 8668-8675Corey, E.J., (2002) Angew. Chem. Int. Ed., 41, pp. 1650-1667(2002) Angew. Chem., 114, pp. 1724-1741Salavati-Fard, T., Caratzoulas, S., Doren, D.J., (2015) J. Phys. Chem. A, 119, pp. 9834-9843ChemistryOpenactivation strain modelcharge transferchiral anthracenesDFT calculationsDiels-Alder reactionsDiels-Alder Reactivity of a Chiral Anthracene Template with Symmetrical and Unsymmetrical Dienophiles: A DFT StudyArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Hernández-Mancera, J.P., Grupo de Química Cuántica y Teórica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Campus San Pablo, Cartagena, 130015, ColombiaNúñez-Zarur, F., Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 N° 30–65, Medellín, 050026, ColombiaVivas-Reyes, R., Grupo de Química Cuántica y Teórica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Campus San Pablo, Cartagena, 130015, Colombia, Grupo CipTec, Fundación Universitaria, Tecnológico de Comfenalco, Facultad de Ingenierías Cartagena de Indias, Bolívar, 130001, Colombiahttp://purl.org/coar/access_right/c_16ecHernández-Mancera J.P.Núñez-Zarur F.Vivas-Reyes R.11407/5940oai:repository.udem.edu.co:11407/59402021-02-05 09:58:07.044Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |