Diels-Alder Reactivity of a Chiral Anthracene Template with Symmetrical and Unsymmetrical Dienophiles: A DFT Study

In this work, we used Density Functional Theory calculations to assess the factors that control the reactivity of a chiral anthracene template with three sets of dienophiles including maleic anhydrides, maleimides and acetoxy lactones in the context of Diels-Alder cycloadditions. The results obtaine...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5940
Acceso en línea:
http://hdl.handle.net/11407/5940
Palabra clave:
activation strain model
charge transfer
chiral anthracenes
DFT calculations
Diels-Alder reactions
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_fa29a0cdf4794af57f7782655c650327
oai_identifier_str oai:repository.udem.edu.co:11407/5940
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Diels-Alder Reactivity of a Chiral Anthracene Template with Symmetrical and Unsymmetrical Dienophiles: A DFT Study
title Diels-Alder Reactivity of a Chiral Anthracene Template with Symmetrical and Unsymmetrical Dienophiles: A DFT Study
spellingShingle Diels-Alder Reactivity of a Chiral Anthracene Template with Symmetrical and Unsymmetrical Dienophiles: A DFT Study
activation strain model
charge transfer
chiral anthracenes
DFT calculations
Diels-Alder reactions
title_short Diels-Alder Reactivity of a Chiral Anthracene Template with Symmetrical and Unsymmetrical Dienophiles: A DFT Study
title_full Diels-Alder Reactivity of a Chiral Anthracene Template with Symmetrical and Unsymmetrical Dienophiles: A DFT Study
title_fullStr Diels-Alder Reactivity of a Chiral Anthracene Template with Symmetrical and Unsymmetrical Dienophiles: A DFT Study
title_full_unstemmed Diels-Alder Reactivity of a Chiral Anthracene Template with Symmetrical and Unsymmetrical Dienophiles: A DFT Study
title_sort Diels-Alder Reactivity of a Chiral Anthracene Template with Symmetrical and Unsymmetrical Dienophiles: A DFT Study
dc.subject.spa.fl_str_mv activation strain model
charge transfer
chiral anthracenes
DFT calculations
Diels-Alder reactions
topic activation strain model
charge transfer
chiral anthracenes
DFT calculations
Diels-Alder reactions
description In this work, we used Density Functional Theory calculations to assess the factors that control the reactivity of a chiral anthracene template with three sets of dienophiles including maleic anhydrides, maleimides and acetoxy lactones in the context of Diels-Alder cycloadditions. The results obtained here (at the M06-2X/6-311++G(d,p) level of theory) suggest that the activation energies for maleic anhydrides and acetoxy lactones are dependent on the nature of the substituent in the dienophile. Among all studied substituents, only −CN reduces the energy barrier of the cycloaddition. For maleimides, the activation energies are independent of the heteroatom of the dienophile and the R group attached to it. The analysis of frontier molecular orbitals, charge transfer and the activation strain model (at the M06-2X/TZVP level based on M06-2X/6-311++G(d,p) geometries) suggest that the activation energies in maleic anhydrides are mainly controlled by the amount of charge transfer from the diene to the dienophile during cycloaddition. For maleimides, there is a dual control of interaction and strain energies on the activation energies, whereas for the acetoxy lactones the activation energies seem to be controlled by the degree of template distortion at the transition state. Finally, calculations show that considering a catalyst on the studied cycloadditions changes the reaction mechanism from concerted to stepwise and proceed with much lower activation energies. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:58:07Z
dc.date.available.none.fl_str_mv 2021-02-05T14:58:07Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 21911363
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5940
dc.identifier.doi.none.fl_str_mv 10.1002/open.202000137
identifier_str_mv 21911363
10.1002/open.202000137
url http://hdl.handle.net/11407/5940
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088831022&doi=10.1002%2fopen.202000137&partnerID=40&md5=fdd21c1abeaf2fdd7f7370753745820c
dc.relation.citationvolume.none.fl_str_mv 9
dc.relation.citationissue.none.fl_str_mv 7
dc.relation.citationstartpage.none.fl_str_mv 748
dc.relation.citationendpage.none.fl_str_mv 761
dc.relation.references.none.fl_str_mv Fringuelli, F., Taticchi, A., (2002) The Diels-Alder Reaction: Selected Practical Methods, , Wiley, J. & S., Ed.,
John Wiley & Sons. Baffins Lane, Chichester
Houk, K.N., Gonzalez, J., Li, Y., (1995) Acc. Chem. Res., 28 (2), pp. 81-90
Brocksom, T.J., Nakamura, J., Ferreira, M.L., Brocksom, U., Braz, J., (2001) Chem. Soc., 12, pp. 597-622
Ess, D.H., Jones, G.O., Houk, K.N., (2006) Adv. Synth. Catal., 348, pp. 2337-2361
Funel, J.A., Abele, S., (2013) Angew. Chem. Int. Ed., 52, pp. 3822-3863
(2013) Angew. Chem., 125, pp. 3912-3955
Corbett, M.S., Liu, X., Sanyal, A., Snyder, J.K., (2003) Tetrahedron Lett., 44, pp. 931-935
Sanyal, A., Snyder, J.K., (2000) Org. Lett., 2, pp. 2527-2530
Akin, E.T., Erdogan, M., Dastan, A., Saracoglu, N., (2017) Tetrahedron, 73, pp. 5537-5546
Teixeira, M.G., Alvarenga, E.S., (2016) Magn. Reson. Chem., 54, pp. 623-631
Dewar, M.J.S., (1984) J. Am. Chem. Soc., 106, pp. 209-219
Linder, M., Brinck, T., (2012) J. Org. Chem., 77, pp. 6563-6573
Alcaide, B., Almendros, P., Aragoncillo, C., (2007) Chem. Rev., 107, pp. 4437-4492
Burgess, K.L., Lajkiewicz, N.J., Sanyal, A., Yan, W., Snyder, J.K., (2005) Org. Lett., 7, pp. 31-34
Adams, H., Elsunaki, T.M., Ojea-Jiménez, I., Jones, S., Meijer, A.J.H.M., (2010) J. Org. Chem., 75, pp. 6252-6262
Bawa, R.A., Gautier, F.M., Adams, H., Meijer, A.J.H.M., Jones, S., (2015) Org. Biomol. Chem., 13, pp. 10569-10577
Andrews, L.J., Keefer, R.M., (1955) J. Am. Chem. Soc., 77, pp. 6284-6289
Atherton, J.C.C., Jones, S., (2003) Tetrahedron, 46, pp. 9039-9057
Adams, H., Jones, S., Meijer, A.J.H.M., Najah, Z., Ojea-Jiménez, I., Reeder, A.T., (2011) Tetrahedron: Asymmetry, 22, pp. 1620-1625
Sanyal, A., Yuan, Q., Snyder, J.K., (2005) Tetrahedron Lett., 46, pp. 2475-2478
Çelebi-Ölçüm, N., Sanyal, A., Aviyente, V., (2009) J. Org. Chem., 74, pp. 2328-2336
Agopcan, S., Elebi-Ölüm, N., Üiik, M.N., Sanyal, A., Aviyente, V., (2011) Org. Biomol. Chem., 9, pp. 8079-8088
Fernández, I., Bickelhaupt, F.M., (2016) Chem. - An Asian J., 11, pp. 3297-3304
Bickelhaupt, F.M., Houk, K.N., (2017) Angew. Chem. Int. Ed., 56, pp. 10070-10086
(2017) Angew. Chem., 129, pp. 10204-10221
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Ortiz, J., (2013), Gaussian 09, Rev. D.01. Gaussian 09, Rev. D.01;Gaussian Inc.: Wallingford, CT. Gaussian Inc. Wallingford CT: Wallingford CT
Zhao, Y., Truhlar, D.G., (2008) Theor. Chem. Acc., 120, pp. 215-241
Krishnan, R.B.J.S., Binkley, J.S., Seeger, R., Pople, J.A., (1980) J. Chem. Phys., 72, pp. 650-654
Yepes, D., Valenzuela, J., Martínez-Araya, J.I., Pérez, P., Jaque, P., (2019) Phys. Chem. Chem. Phys., 21, pp. 7412-7428
Pieniazek, S.N., Clemente, F.R., Houk, K.N., (2008) Angew. Chem. Int. Ed., 47, pp. 7746-7749
(2008) Angew. Chem., 120, pp. 7860-7863
Jensen, F., (2007) Introduction to Computational Chemistry, , 2a edition., Wiley, J. & S., Ed., The Atrium, Southern Gate, Chichester
Schäfer, A., Horn, H., Ahlrichs, R., (1992) J. Chem. Phys., 97, pp. 2571-2577
Reed, A.E., Weinhold, F., (1983) J. Chem. Phys., 78, pp. 4066-4073
Reed, A.E., Weinstock, R.B., Weinhold, F., (1985) J. Chem. Phys., 83, pp. 735-746
Lu, T., Chen, F., (2012) J. Comput. Chem., 33, pp. 580-592
Morokuma, K., (1971) J. Chem. Phys., 55, pp. 1236-1244
Ziegler, T., Rauk, A., (1977) Theor. Chim. Acta, 46, pp. 1-10
Bickelhaupt, F.M., Baerends, E.J., (2000) Reviews in Computational Chemistry, p. 15. , Lipkowitz, K. B., Boyd, D. B., Eds.,
Weinheim
Wise, K.E., Wheeler, R.A., (1999) J. Phys. Chem. A, 103, pp. 8279-8287
Jones, G.O., Guner, V.A., Houk, K.N., (2006) J. Phys. Chem. A, 110, pp. 1216-1224
Liao, M.S., Lu, Y., Scheiner, S., (2003) J. Comput. Chem., 24, pp. 623-631
Howard, M.H., Alexander, V., Marshall, W.J., Roe, D.C., Zheng, Y.J., (2003) Synthesis (Stuttg)., 68, pp. 120-129
Frey, J.E., Andrews, A.M., Combs, S.D., Edens, S.P., Puckett, J.J., Seagle, R.E., Torreano, L.A., (1992) J. Org. Chem., 57, pp. 6460-6466
Kiselev, V.D., Miller, J.G., (1975) J. Am. Chem. Soc., 97, pp. 4036-4039
Sustmann, R., Dern, M., Kasten, R., Sicking, W., (1987) Chem. Ber., 120, pp. 1315-1322
Sustmann, R., Korth, H.-G., Nüchter, U., Siangouri-Feulner, J., Sicking, W., (1991) Chem. Ber., 124, pp. 2811-2817
Suárez, D., Sordo, J.A., (1998) Chem. Commun., pp. 385-386
Berionni, G., Bertelle, P.A., Marrot, J., Goumont, R., (2009) J. Am. Chem. Soc., 131, pp. 18224-18225
Handoo, K.L., Lu, Y., Parker, V.D., (2003) J. Am. Chem. Soc., 125, pp. 9381-9387
Yoshida, Z., Kobayashi, T., (1970) Tetrahedron, 26, pp. 267-271
Frey, J.E., Andrews, A.M., Ankoviac, D.G., Beaman, D.N., Du Pont, L.E., Elsner, T.E., Lang, S.R., Seagle, R.E., (1990) J. Org. Chem., 55, pp. 606-624
Domingo, L.R., Sáez, J.A., (2009) Org. Biomol. Chem., 7, pp. 3576-3583
Levandowski, B.J., Houk, K.N., (2015) J. Org. Chem., 80, pp. 3530-3537
Evans, M.G., Polanyi, M., (1936) Trans. Faraday Soc., pp. 1333-1360. , pp
McBee, E.T., Hsu, C.G., Pierce, O.R., Roberts, C.W., (1955) J. Am. Chem. Soc., 77, pp. 915-917
Essers, M., Mück-Lichtenfeld, C., Haufe, G., (2002) J. Org. Chem., 67, pp. 4715-4721
Merzoud, L., Saal, A., Moussaoui, R., Ouamerali, O., Morell, C., Chermette, H., (2018) Phys. Chem. Chem. Phys., 20, pp. 16102-16116
Shibatomi, K., Futatsugi, K., Kobayashi, F., Iwasa, S., Yamamoto, H., (2010) J. Am. Chem. Soc., 132, pp. 5625-5627
Sarotti, A.M., Spanevello, R.A., Suárez, A.G., (2011) Tetrahedron Lett., 52, pp. 4145-4148
Sauer, J., Wiest, H., Mielert, A., (1964) Chem. Ber., 97, pp. 3183-3207
Houk, K.N., Loncharich, R.J., Blake, J.F., Jorgensen, W.L., (1989) J. Am. Chem. Soc., 111, pp. 9172-9176
Yepes, D., Donoso-Tauda, O., Pérez, P., Murray, J.S., Politzer, P., Jaque, P., (2013) Phys. Chem. Chem. Phys., 15, pp. 7311-7320
Dewar, M.J.S., Stewart, J.J.P., Olivella, S., (1986) J. Am. Chem. Soc., 108, pp. 5771-5779
Brown, P., Cookson, R.C., (1965) Tetrahedron, 21, pp. 1993-1998
Levandowski, B.J., Hamlin, T.A., Bickelhaupt, F.M., Houk, K.N., (2017) J. Org. Chem., 82, pp. 8668-8675
Corey, E.J., (2002) Angew. Chem. Int. Ed., 41, pp. 1650-1667
(2002) Angew. Chem., 114, pp. 1724-1741
Salavati-Fard, T., Caratzoulas, S., Doren, D.J., (2015) J. Phys. Chem. A, 119, pp. 9834-9843
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Wiley-VCH Verlag
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Wiley-VCH Verlag
dc.source.none.fl_str_mv ChemistryOpen
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159176525414400
spelling 20202021-02-05T14:58:07Z2021-02-05T14:58:07Z21911363http://hdl.handle.net/11407/594010.1002/open.202000137In this work, we used Density Functional Theory calculations to assess the factors that control the reactivity of a chiral anthracene template with three sets of dienophiles including maleic anhydrides, maleimides and acetoxy lactones in the context of Diels-Alder cycloadditions. The results obtained here (at the M06-2X/6-311++G(d,p) level of theory) suggest that the activation energies for maleic anhydrides and acetoxy lactones are dependent on the nature of the substituent in the dienophile. Among all studied substituents, only −CN reduces the energy barrier of the cycloaddition. For maleimides, the activation energies are independent of the heteroatom of the dienophile and the R group attached to it. The analysis of frontier molecular orbitals, charge transfer and the activation strain model (at the M06-2X/TZVP level based on M06-2X/6-311++G(d,p) geometries) suggest that the activation energies in maleic anhydrides are mainly controlled by the amount of charge transfer from the diene to the dienophile during cycloaddition. For maleimides, there is a dual control of interaction and strain energies on the activation energies, whereas for the acetoxy lactones the activation energies seem to be controlled by the degree of template distortion at the transition state. Finally, calculations show that considering a catalyst on the studied cycloadditions changes the reaction mechanism from concerted to stepwise and proceed with much lower activation energies. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.engWiley-VCH VerlagFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85088831022&doi=10.1002%2fopen.202000137&partnerID=40&md5=fdd21c1abeaf2fdd7f7370753745820c97748761Fringuelli, F., Taticchi, A., (2002) The Diels-Alder Reaction: Selected Practical Methods, , Wiley, J. & S., Ed.,John Wiley & Sons. Baffins Lane, ChichesterHouk, K.N., Gonzalez, J., Li, Y., (1995) Acc. Chem. Res., 28 (2), pp. 81-90Brocksom, T.J., Nakamura, J., Ferreira, M.L., Brocksom, U., Braz, J., (2001) Chem. Soc., 12, pp. 597-622Ess, D.H., Jones, G.O., Houk, K.N., (2006) Adv. Synth. Catal., 348, pp. 2337-2361Funel, J.A., Abele, S., (2013) Angew. Chem. Int. Ed., 52, pp. 3822-3863(2013) Angew. Chem., 125, pp. 3912-3955Corbett, M.S., Liu, X., Sanyal, A., Snyder, J.K., (2003) Tetrahedron Lett., 44, pp. 931-935Sanyal, A., Snyder, J.K., (2000) Org. Lett., 2, pp. 2527-2530Akin, E.T., Erdogan, M., Dastan, A., Saracoglu, N., (2017) Tetrahedron, 73, pp. 5537-5546Teixeira, M.G., Alvarenga, E.S., (2016) Magn. Reson. Chem., 54, pp. 623-631Dewar, M.J.S., (1984) J. Am. Chem. Soc., 106, pp. 209-219Linder, M., Brinck, T., (2012) J. Org. Chem., 77, pp. 6563-6573Alcaide, B., Almendros, P., Aragoncillo, C., (2007) Chem. Rev., 107, pp. 4437-4492Burgess, K.L., Lajkiewicz, N.J., Sanyal, A., Yan, W., Snyder, J.K., (2005) Org. Lett., 7, pp. 31-34Adams, H., Elsunaki, T.M., Ojea-Jiménez, I., Jones, S., Meijer, A.J.H.M., (2010) J. Org. Chem., 75, pp. 6252-6262Bawa, R.A., Gautier, F.M., Adams, H., Meijer, A.J.H.M., Jones, S., (2015) Org. Biomol. Chem., 13, pp. 10569-10577Andrews, L.J., Keefer, R.M., (1955) J. Am. Chem. Soc., 77, pp. 6284-6289Atherton, J.C.C., Jones, S., (2003) Tetrahedron, 46, pp. 9039-9057Adams, H., Jones, S., Meijer, A.J.H.M., Najah, Z., Ojea-Jiménez, I., Reeder, A.T., (2011) Tetrahedron: Asymmetry, 22, pp. 1620-1625Sanyal, A., Yuan, Q., Snyder, J.K., (2005) Tetrahedron Lett., 46, pp. 2475-2478Çelebi-Ölçüm, N., Sanyal, A., Aviyente, V., (2009) J. Org. Chem., 74, pp. 2328-2336Agopcan, S., Elebi-Ölüm, N., Üiik, M.N., Sanyal, A., Aviyente, V., (2011) Org. Biomol. Chem., 9, pp. 8079-8088Fernández, I., Bickelhaupt, F.M., (2016) Chem. - An Asian J., 11, pp. 3297-3304Bickelhaupt, F.M., Houk, K.N., (2017) Angew. Chem. Int. Ed., 56, pp. 10070-10086(2017) Angew. Chem., 129, pp. 10204-10221Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Ortiz, J., (2013), Gaussian 09, Rev. D.01. Gaussian 09, Rev. D.01;Gaussian Inc.: Wallingford, CT. Gaussian Inc. Wallingford CT: Wallingford CTZhao, Y., Truhlar, D.G., (2008) Theor. Chem. Acc., 120, pp. 215-241Krishnan, R.B.J.S., Binkley, J.S., Seeger, R., Pople, J.A., (1980) J. Chem. Phys., 72, pp. 650-654Yepes, D., Valenzuela, J., Martínez-Araya, J.I., Pérez, P., Jaque, P., (2019) Phys. Chem. Chem. Phys., 21, pp. 7412-7428Pieniazek, S.N., Clemente, F.R., Houk, K.N., (2008) Angew. Chem. Int. Ed., 47, pp. 7746-7749(2008) Angew. Chem., 120, pp. 7860-7863Jensen, F., (2007) Introduction to Computational Chemistry, , 2a edition., Wiley, J. & S., Ed., The Atrium, Southern Gate, ChichesterSchäfer, A., Horn, H., Ahlrichs, R., (1992) J. Chem. Phys., 97, pp. 2571-2577Reed, A.E., Weinhold, F., (1983) J. Chem. Phys., 78, pp. 4066-4073Reed, A.E., Weinstock, R.B., Weinhold, F., (1985) J. Chem. Phys., 83, pp. 735-746Lu, T., Chen, F., (2012) J. Comput. Chem., 33, pp. 580-592Morokuma, K., (1971) J. Chem. Phys., 55, pp. 1236-1244Ziegler, T., Rauk, A., (1977) Theor. Chim. Acta, 46, pp. 1-10Bickelhaupt, F.M., Baerends, E.J., (2000) Reviews in Computational Chemistry, p. 15. , Lipkowitz, K. B., Boyd, D. B., Eds.,WeinheimWise, K.E., Wheeler, R.A., (1999) J. Phys. Chem. A, 103, pp. 8279-8287Jones, G.O., Guner, V.A., Houk, K.N., (2006) J. Phys. Chem. A, 110, pp. 1216-1224Liao, M.S., Lu, Y., Scheiner, S., (2003) J. Comput. Chem., 24, pp. 623-631Howard, M.H., Alexander, V., Marshall, W.J., Roe, D.C., Zheng, Y.J., (2003) Synthesis (Stuttg)., 68, pp. 120-129Frey, J.E., Andrews, A.M., Combs, S.D., Edens, S.P., Puckett, J.J., Seagle, R.E., Torreano, L.A., (1992) J. Org. Chem., 57, pp. 6460-6466Kiselev, V.D., Miller, J.G., (1975) J. Am. Chem. Soc., 97, pp. 4036-4039Sustmann, R., Dern, M., Kasten, R., Sicking, W., (1987) Chem. Ber., 120, pp. 1315-1322Sustmann, R., Korth, H.-G., Nüchter, U., Siangouri-Feulner, J., Sicking, W., (1991) Chem. Ber., 124, pp. 2811-2817Suárez, D., Sordo, J.A., (1998) Chem. Commun., pp. 385-386Berionni, G., Bertelle, P.A., Marrot, J., Goumont, R., (2009) J. Am. Chem. Soc., 131, pp. 18224-18225Handoo, K.L., Lu, Y., Parker, V.D., (2003) J. Am. Chem. Soc., 125, pp. 9381-9387Yoshida, Z., Kobayashi, T., (1970) Tetrahedron, 26, pp. 267-271Frey, J.E., Andrews, A.M., Ankoviac, D.G., Beaman, D.N., Du Pont, L.E., Elsner, T.E., Lang, S.R., Seagle, R.E., (1990) J. Org. Chem., 55, pp. 606-624Domingo, L.R., Sáez, J.A., (2009) Org. Biomol. Chem., 7, pp. 3576-3583Levandowski, B.J., Houk, K.N., (2015) J. Org. Chem., 80, pp. 3530-3537Evans, M.G., Polanyi, M., (1936) Trans. Faraday Soc., pp. 1333-1360. , ppMcBee, E.T., Hsu, C.G., Pierce, O.R., Roberts, C.W., (1955) J. Am. Chem. Soc., 77, pp. 915-917Essers, M., Mück-Lichtenfeld, C., Haufe, G., (2002) J. Org. Chem., 67, pp. 4715-4721Merzoud, L., Saal, A., Moussaoui, R., Ouamerali, O., Morell, C., Chermette, H., (2018) Phys. Chem. Chem. Phys., 20, pp. 16102-16116Shibatomi, K., Futatsugi, K., Kobayashi, F., Iwasa, S., Yamamoto, H., (2010) J. Am. Chem. Soc., 132, pp. 5625-5627Sarotti, A.M., Spanevello, R.A., Suárez, A.G., (2011) Tetrahedron Lett., 52, pp. 4145-4148Sauer, J., Wiest, H., Mielert, A., (1964) Chem. Ber., 97, pp. 3183-3207Houk, K.N., Loncharich, R.J., Blake, J.F., Jorgensen, W.L., (1989) J. Am. Chem. Soc., 111, pp. 9172-9176Yepes, D., Donoso-Tauda, O., Pérez, P., Murray, J.S., Politzer, P., Jaque, P., (2013) Phys. Chem. Chem. Phys., 15, pp. 7311-7320Dewar, M.J.S., Stewart, J.J.P., Olivella, S., (1986) J. Am. Chem. Soc., 108, pp. 5771-5779Brown, P., Cookson, R.C., (1965) Tetrahedron, 21, pp. 1993-1998Levandowski, B.J., Hamlin, T.A., Bickelhaupt, F.M., Houk, K.N., (2017) J. Org. Chem., 82, pp. 8668-8675Corey, E.J., (2002) Angew. Chem. Int. Ed., 41, pp. 1650-1667(2002) Angew. Chem., 114, pp. 1724-1741Salavati-Fard, T., Caratzoulas, S., Doren, D.J., (2015) J. Phys. Chem. A, 119, pp. 9834-9843ChemistryOpenactivation strain modelcharge transferchiral anthracenesDFT calculationsDiels-Alder reactionsDiels-Alder Reactivity of a Chiral Anthracene Template with Symmetrical and Unsymmetrical Dienophiles: A DFT StudyArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Hernández-Mancera, J.P., Grupo de Química Cuántica y Teórica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Campus San Pablo, Cartagena, 130015, ColombiaNúñez-Zarur, F., Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 N° 30–65, Medellín, 050026, ColombiaVivas-Reyes, R., Grupo de Química Cuántica y Teórica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Campus San Pablo, Cartagena, 130015, Colombia, Grupo CipTec, Fundación Universitaria, Tecnológico de Comfenalco, Facultad de Ingenierías Cartagena de Indias, Bolívar, 130001, Colombiahttp://purl.org/coar/access_right/c_16ecHernández-Mancera J.P.Núñez-Zarur F.Vivas-Reyes R.11407/5940oai:repository.udem.edu.co:11407/59402021-02-05 09:58:07.044Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co