Influence of deposition temperature on WTiN coatings tribological performance

WTiN films were grown on silicon and stainless-steel substrates using the DC magnetron sputtering technique. The substrate temperature was varied taking values of 100 °C, 200 °C, 300 °C, and 400 °C. X-ray diffraction analysis allowed us to identify a rock salt-type face centered cubic (FCC) structur...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4288
Acceso en línea:
http://hdl.handle.net/11407/4288
Palabra clave:
AFM
Chemical composition
Coefficient of friction
Microstructure
Roughness
Ternary coatings
Wear
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_f86a2d6dc879785ba4eaa6ac26c055bf
oai_identifier_str oai:repository.udem.edu.co:11407/4288
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Influence of deposition temperature on WTiN coatings tribological performance
title Influence of deposition temperature on WTiN coatings tribological performance
spellingShingle Influence of deposition temperature on WTiN coatings tribological performance
AFM
Chemical composition
Coefficient of friction
Microstructure
Roughness
Ternary coatings
Wear
title_short Influence of deposition temperature on WTiN coatings tribological performance
title_full Influence of deposition temperature on WTiN coatings tribological performance
title_fullStr Influence of deposition temperature on WTiN coatings tribological performance
title_full_unstemmed Influence of deposition temperature on WTiN coatings tribological performance
title_sort Influence of deposition temperature on WTiN coatings tribological performance
dc.contributor.affiliation.spa.fl_str_mv Londoño-Menjura, R.F., Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al Magdalena, Manizales, Colombia
Ospina, R., Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al Magdalena, Manizales, Colombia, Universidad Industrial de Santander, Santander, Bucaramanga, Colombia, Centro Brasilero de Pesquizas Fisica – CBPF, Rio de Janeiro, Brazil
Escobar, D., Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al Magdalena, Manizales, Colombia, PCM computacional Applications, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al Magdalena, Manizales, Colombia, Grupo de Magnetismo y Simulación, Instituto de Física. Universidad de Antioquia, Medellín, Colombia
Quintero, J.H., Materiales Nanoestructurados y Biomodelación, Universidad de Medellín, Medellín, Colombia
Olaya, J.J., Grupo de investigación AFIS, Universidad Nacional de Colombia, Bogotá, Colombia
Mello, A., Centro Brasilero de Pesquizas Fisica – CBPF, Rio de Janeiro, Brazil
Restrepo-Parra, E., Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al Magdalena, Manizales, Colombia, PCM computacional Applications, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al Magdalena, Manizales, Colombia
dc.subject.keyword.eng.fl_str_mv AFM
Chemical composition
Coefficient of friction
Microstructure
Roughness
Ternary coatings
Wear
topic AFM
Chemical composition
Coefficient of friction
Microstructure
Roughness
Ternary coatings
Wear
description WTiN films were grown on silicon and stainless-steel substrates using the DC magnetron sputtering technique. The substrate temperature was varied taking values of 100 °C, 200 °C, 300 °C, and 400 °C. X-ray diffraction analysis allowed us to identify a rock salt-type face centered cubic (FCC) structure, with a lattice parameter of approximately 4.2 nm, a relatively low microstrain (deformations at microscopy level, between 4.7% and 6.7%), and a crystallite size of a few nanometers (11.6 nm–31.5 nm). The C1s, N1s, O1s, Ti2p, W4s, W4p, W4d and W4f narrow spectra were obtained using X-ray photoelectron spectroscopy (XPS) and depending on the substrate temperature, the deconvoluted spectra presented different binding energies. Grain sizes and roughness (approximately 4 nm) of films were determined using atomic force microscopy. Scratch and pin on disc tests were conducted, showing better performance of the film grown at 200 °C. This sample exhibited a lower roughness, coefficient of friction, and wear rate. © 2017
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-12-19T19:36:45Z
dc.date.available.none.fl_str_mv 2017-12-19T19:36:45Z
dc.date.created.none.fl_str_mv 2018
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 1694332
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4288
dc.identifier.doi.none.fl_str_mv 10.1016/j.apsusc.2017.07.215
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad de Medellín
dc.identifier.instname.spa.fl_str_mv instname:Universidad de Medellín
identifier_str_mv 1694332
10.1016/j.apsusc.2017.07.215
reponame:Repositorio Institucional Universidad de Medellín
instname:Universidad de Medellín
url http://hdl.handle.net/11407/4288
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029529085&doi=10.1016%2fj.apsusc.2017.07.215&partnerID=40&md5=f329d53d8d587b6d915b00b99efc68a1
dc.relation.ispartofes.spa.fl_str_mv Applied Surface Science
dc.relation.references.spa.fl_str_mv Abadias, G., Djemia, P., & Belliard, L. (2014). Alloying effects on the structure and elastic properties of hard coatings based on ternary transition metal (M=Ti, zr or ta) nitrides. Surface and Coatings Technology, 257, 129-137. doi:10.1016/j.surfcoat.2014.08.022
Agudelo-Morimitsu, L. C., De La Roche, J., Escobar, D., Ospina, R., & Restrepo-Parra, E. (2013). Substrate heating and post-annealing effect on tungsten/tungsten carbide bilayers grown by non-reactive DC magnetron sputtering. Ceramics International, 39(7), 7355-7365. doi:10.1016/j.ceramint.2013.02.075
Alegría-Ortega, J. A., Ocampo-Carmona, L. M., Suárez-Bustamante, F. A., & Olaya-Flórez, J. J. (2012). Erosion-corrosion wear of Cr/CrN multi-layer coating deposited on AISI-304 stainless steel using the unbalanced magnetron (UBM) sputtering system. Wear, 290-291, 149-153. doi:10.1016/j.wear.2012.04.007
Ali, M., Hamzah, E., & Toff, M. R. (2008). Friction coefficient and surface roughness of TiN-coated HSS deposited using cathodic arc evaporation PVD technique. Industrial Lubrication and Tribology, 60(3), 121-130. doi:10.1108/00368790810871048
Alves, V. A., Brett, C. M. A., & Cavaleiro, A. (2002). Electrochemical corrosion of magnetron sputtered WTiN-coated mild steels in a chloride medium. Surface and Coatings Technology, 161(2-3), 257-266. doi:10.1016/S0257-8972(02)00515-7
ASTM. (2012). G99 Standard Test Method for Wear Testing with a Pin on Disk Apparatus, 5, 1-5.
Binder, C., Bendo, T., Hammes, G., Klein, A. N., & de Mello, J. D. B. (2015). Effect of nature of nitride phases on sliding wear of plasma nitrided sintered iron. Wear, 332-333, 995-1005. doi:10.1016/j.wear.2015.01.083
Brett, C. M. A., & Cavaleiro, A. (1998). A comparison of the electrochemical behaviour of W-M-N (M = ni, ti, al) thin film coatings on high speed steel. Thin Solid Films, 322(1-2), 263-273.
Bull, S. J. (1997). Failure mode maps in the thin film scratch adhesion test. Tribology International, 30(7), 491-498. doi:10.1016/S0301-679X(97)00012-1
Castanho, J. M., & Vieira, M. T. (1998). The influence of the interstitial element on tribological behaviour of tungsten coatings. Surface and Coatings Technology, 102(1-2), 50-62.
Castillo, H., Restrepo, E., & Arango, P. (2011). Appl.Surf.Sci., 257, 2664-2668.
Cavaleiro, A., Louro, C., & Montemor, F. (2000). Oxidation of sputtered W-based coatings. Surface and Coatings Technology, 131(1-3), 441-447. doi:10.1016/S0257-8972(00)00784-2
Cavaleiro, A., Trindade, B., & Vieira, M. T. (2003). Influence of ti addition on the properties of W-ti-C/N sputtered films. Surface and Coatings Technology, 174-175, 68-75. doi:10.1016/S0257-8972(03)00328-1
Chavda, M. R., Dave, D. P., Chauhan, K. V., & Rawal, S. K. (2016). Tribological characterization of TiN coating prepared by sputtering. Proced.Technol., 23, 36-41.
Dejun, K., & Haoyuan, G. (2015). Friction-wear behaviors of cathodic arc ion plating AlTiN coatings at high temperatures. Tribology International, 88, 31-39. doi:10.1016/j.triboint.2015.03.009
Di Puccio, F., & Mattei, L. (2015). A novel approach to the estimation and application of the wear coefficient of metal-on-metal hip implants. Tribology International, 83, 69-76. doi:10.1016/j.triboint.2014.10.023
Dirks, A. G., Wolters, R. A. M., & Nellissen, A. J. M. (1990). On the microstructure-property relationship of W{single bond}ti{single bond}(N) diffusion barriers. Thin Solid Films, 193-194(PART 1), 201-210. doi:10.1016/S0040-6090(05)80028-8
Dong, S., Chen, X., Zhang, X., & Cui, G. (2013). Nanostructured transition metal nitrides for energy storage and fuel cells. Coordination Chemistry Reviews, 257(13-14), 1946-1956. doi:10.1016/j.ccr.2012.12.012
Du, Q., Wang, W., Li, S., Zhang, D., & Zheng, W. (2016). Effects of substrate temperature on the structural, optical and resistive switching properties of HfO2 films. Thin Solid Films, 608, 21-25. doi:10.1016/j.tsf.2016.04.016
Edström, D., Sangiovanni, D. G., Hultman, L., & Chirita, V. (2014). Effects of atomic ordering on the elastic properties of TiN- and VN-based ternary alloys. Thin Solid Films, 571(P1), 145-153. doi:10.1016/j.tsf.2014.09.048
Escobar, D., Ospina, R., Gómez, A. G., & Restrepo-Parra, E. (2015). Microstructure, residual stress and hardness study of nanocrystalline titanium-zirconium nitride thin films. Ceramics International, 41(1), 947-952. doi:10.1016/j.ceramint.2014.09.012
Escobar, D., Ospina, R., Gómez, A. G., Restrepo-Parra, E., & Arango, P. J. (2014). X-ray microstructural analysis of nanocrystalline TiZrN thin films by diffraction pattern modeling. Materials Characterization, 88, 119-126. doi:10.1016/j.matchar.2013.10.028
Federici, M., Menapace, C., Moscatelli, A., Gialanella, S., & Straffelini, G. (2016). Effect of roughness on the wear behavior of HVOF coatings dry sliding against a friction material. Wear, 368-369, 326-334. doi:10.1016/j.wear.2016.10.013
Fugger, M., Plappert, M., Schäffer, C., Humbel, O., Hutter, H., Danninger, H., & Nowottnick, M. (2014). Comparison of WTi and WTi(N) as diffusion barriers for al and cu metallization on si with respect to thermal stability and diffusion behavior of ti. Microelectronics Reliability, 54(11), 2487-2493. doi:10.1016/j.microrel.2014.04.016
Gashaw, F., & Ampong, F. (2016). Chem.Phys., 183, 320-325.
Gotman, I., Gutmanas, E. Y., & Hunter, G. (2011). Wear-resistant ceramic films and coatings. Comprehensive biomaterials (pp. 127-155).
Greczynski, G., Mráz, S., Hultman, L., & Schneider, J. M. (2016). Unintentional carbide formation evidenced during high-vacuum magnetron sputtering of transition metal nitride thin films. Applied Surface Science, 385, 356-359. doi:10.1016/j.apsusc.2016.05.129
Guo, H., Chen, W., Shan, Y., Wang, W., Zhang, Z., & Jia, J. (2015). Microstructures and properties of titanium nitride films prepared by pulsed laser deposition at different substrate temperatures. Applied Surface Science, 357, 473-478. doi:10.1016/j.apsusc.2015.09.061
Huang, R., Qi, Z., Sun, P., Wang, Z., & Wu, C. (2011). Phys.Procedia, 18, 067-160.
Jagielski, J., Khanna, A. S., Kucinski, J., Mishra, D. S., Racolta, P., Sioshansi, P., . . . Zalar, A. (2000). Effect of chromium nitride coating on the corrosion and wear resistance of stainless steel. Applied Surface Science, 156(1), 47-64. doi:10.1016/S0169-4332(99)00350-5
Jiménez, H., Restrepo, E., & Devia, A. (2006). Effect of the substrate temperature in ZrN coatings grown by the pulsed arc technique studied by XRD. Surface and Coatings Technology, 201(3-4), 1594-1601. doi:10.1016/j.surfcoat.2006.02.030
Kindlund, H., Sangiovanni, D. G., Lu, J., Jensen, J., Chirita, V., Birch, J., . . . Hultman, L. (2014). Vacancy-induced toughening in hard single-crystal V0.5Mo 0.5Nx/MgO(0 0 1) thin films. Acta Materialia, 77, 394-400. doi:10.1016/j.actamat.2014.06.025
Kindlund, H., Sangiovanni, D. G., Martínez-De-Olcoz, L., Lu, J., Jensen, J., Birch, J., . . . Hultman, L. (2013). Toughness enhancement in hard ceramic thin films by alloy design. APL Materials, 1(4) doi:10.1063/1.4822440
Kuchuk, A., Kladko, V., Lytvyn, O., Piotrowska, A., Minikayev, R., & Ratajczak, R. (2006). Adv.Eng.Mater., 3(8).
Laugier, M. (1981). The development of the scratch test technique for the determination of the adhesion of coatings. Thin Solid Films, 76(3), 289-294. doi:10.1016/0040-6090(81)90700-8
Liu, G., Yang, Y., Huang, B., Luo, X., Ouyang, S., Zhao, G., . . . Li, P. (2016). Effects of substrate temperature on the structure, residual stress and nanohardness of Ti6Al4V films prepared by magnetron sputtering. Applied Surface Science, 370, 53-58. doi:10.1016/j.apsusc.2016.02.021
Ma, C. -., Huang, J. -., & Chen, H. (2006). Nanohardness of nanocrystalline TiN thin films. Surface and Coatings Technology, 200(12-13), 3868-3875. doi:10.1016/j.surfcoat.2004.10.098
Magalhaes, F. (2011). Introducción a la tecnica de espectroscopia de fotoelectrones de rayos X (XPS).
Matějíček, J., Vilémová, M., Mušálek, R., Sachr, P., & Horník, J. (2013). The influence of interface characteristics on the adhesion/cohesion of plasma sprayed tungsten coatings. Coatings, 3(2), 108-125.
Mitrovic, S., Adamovic, D., Zivic, F., Dzunic, D., & Pantic, M. (2014). Friction and wear behavior of shot peened surfaces of 36CrNiMo4 and 36NiCrMo16 alloyed steels under dry and lubricated contact conditions. Applied Surface Science, 290, 223-232. doi:10.1016/j.apsusc.2013.11.050
Mohamed, J., Sanjeeviraja, C., & Amalraj, L. (2016). Influence of substrate temperature on physical properties of (111) oriented CdIn2S4 thin films by nebulized spray pyrolysis technique. Journal of Asian Ceramic Societies, 4(2), 191-200. doi:10.1016/j.jascer.2016.03.002
Ntwaeaborwa, O. M., Nsimama, P. D., Abiade, J. T., Coetsee, E., & Swart, H. C. (2009). The effects of substrate temperature on the structure, morphology and photoluminescence properties of pulsed laser deposited SrAl2O4:Eu2+,Dy3+ thin films. Physica B: Condensed Matter, 404(22), 4436-4439. doi:10.1016/j.physb.2009.09.016
Nyenge, R. L., Swart, H. C., & Ntwaeaborwa, O. M. (2016). The influence of substrate temperature and deposition pressure on pulsed laser deposited thin films of CaS:Eu2+ phosphors. Physica B: Condensed Matter, 480, 186-190. doi:10.1016/j.physb.2015.08.046
Oktay, S., Kahraman, Z., Urgen, M., & Kazmanli, K. (2015). XPS investigations of tribolayers formed on TiN and (ti,re)N coatings. Applied Surface Science, 328, 255-261. doi:10.1016/j.apsusc.2014.12.023
Polcar, T., Parreira, N. M. G., & Cavaleiro, A. (2007). Tribological characterization of tungsten nitride coatings deposited by reactive magnetron sputtering. Wear, 262(5-6), 655-665. doi:10.1016/j.wear.2006.07.010
Qingxiang, W., Shuhua, L., Xianhui, W., & Zhikang, F. (2010). Diffusion barrier performance of amorphous WTiN films in cu metallization. Vacuum, 84(11), 1270-1274. doi:10.1016/j.vacuum.2010.02.002
Ramarotafika, H., & Lemperiere, G. (1995). Influence of a d.c. substrate bias on the resistivity, composition, crystallite size and microstrain of WTi and WTi-N films. Thin Solid Films, 266(2), 267-273. doi:10.1016/0040-6090(96)80032-0
Sangiovanni, D. G., Chirita, V., & Hultman, L. (2010). Electronic mechanism for toughness enhancement in TixM 1-xN M=Mo and W). Physical Review B - Condensed Matter and Materials Physics, 81(10) doi:10.1103/PhysRevB.81.104107
Sangiovanni, D. G., Edströma, D., Hultmana, L., Petrov, I., Greene, J. E., & Chirita, V. (2014). Ti adatom diffusion on TiN(001): Ab initio and classical molecular dynamics simulations. Surface Science, 627, 34-41. doi:10.1016/j.susc.2014.04.007
Sangiovanni, D. G., Hultman, L., & Chirita, V. (2011). Supertoughening in B1 transition metal nitride alloys by increased valence electron concentration. Acta Materialia, 59(5), 2121-2134. doi:10.1016/j.actamat.2010.12.013
Sangiovanni, D. G., Hultman, L., Chirita, V., Petrov, I., & Greene, J. E. (2016). Effects of phase stability, lattice ordering, and electron density on plastic deformation in cubic TiWN pseudobinary transition-metal nitride alloys. Acta Materialia, 103, 823-835. doi:10.1016/j.actamat.2015.10.039
Shaginyan, L. R., Mišina, M., Zemek, J., Musil, J., Regent, F., & Britun, V. F. (2002). Composition, structure, microhardness and residual stress of W-ti-N films deposited by reactive magnetron sputtering. Thin Solid Films, 408(1-2), 136-147. doi:10.1016/S0040-6090(02)00091-3
Suresh Kuiry, P. (2012). Advanced scratch testing for evaluation of coatings.
Svahn, F., Kassman-Rudolphi, Å., & Wallén, E. (2003). The influence of surface roughness on friction and wear of machine element coatings. Wear, 254(11), 1092-1098. doi:10.1016/S0043-1648(03)00341-7
Vives, S., Gaffet, E., & Meunier, C. (2004). X-ray diffraction line profile analysis of iron ball milled powders. Materials Science and Engineering A, 366(2), 229-238. doi:10.1016/S0921-5093(03)00572-0
Wagner, C., Riggs, W., Davis, L., Moulder, G., & Muilenberg, G. (1979). Handbook of X-ray spectroscopy.
Wong, W., McMurdie, H., & Paretzkin, B. (1987).
Zhou, S., Liu, W., Liu, H., & Cai, C. (2011). Structural and electrical properties of ti-W-N thin films deposited by reactive RF sputtering. Paper presented at the Physics Procedia, 18 66-72. doi:10.1016/j.phpro.2011.06.059
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Elsevier B.V.
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
Facultad de Ciencias Básicas
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159230142251008
spelling 2017-12-19T19:36:45Z2017-12-19T19:36:45Z20181694332http://hdl.handle.net/11407/428810.1016/j.apsusc.2017.07.215reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínWTiN films were grown on silicon and stainless-steel substrates using the DC magnetron sputtering technique. The substrate temperature was varied taking values of 100 °C, 200 °C, 300 °C, and 400 °C. X-ray diffraction analysis allowed us to identify a rock salt-type face centered cubic (FCC) structure, with a lattice parameter of approximately 4.2 nm, a relatively low microstrain (deformations at microscopy level, between 4.7% and 6.7%), and a crystallite size of a few nanometers (11.6 nm–31.5 nm). The C1s, N1s, O1s, Ti2p, W4s, W4p, W4d and W4f narrow spectra were obtained using X-ray photoelectron spectroscopy (XPS) and depending on the substrate temperature, the deconvoluted spectra presented different binding energies. Grain sizes and roughness (approximately 4 nm) of films were determined using atomic force microscopy. Scratch and pin on disc tests were conducted, showing better performance of the film grown at 200 °C. This sample exhibited a lower roughness, coefficient of friction, and wear rate. © 2017engElsevier B.V.Facultad de IngenieríasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85029529085&doi=10.1016%2fj.apsusc.2017.07.215&partnerID=40&md5=f329d53d8d587b6d915b00b99efc68a1Applied Surface ScienceAbadias, G., Djemia, P., & Belliard, L. (2014). Alloying effects on the structure and elastic properties of hard coatings based on ternary transition metal (M=Ti, zr or ta) nitrides. Surface and Coatings Technology, 257, 129-137. doi:10.1016/j.surfcoat.2014.08.022Agudelo-Morimitsu, L. C., De La Roche, J., Escobar, D., Ospina, R., & Restrepo-Parra, E. (2013). Substrate heating and post-annealing effect on tungsten/tungsten carbide bilayers grown by non-reactive DC magnetron sputtering. Ceramics International, 39(7), 7355-7365. doi:10.1016/j.ceramint.2013.02.075Alegría-Ortega, J. A., Ocampo-Carmona, L. M., Suárez-Bustamante, F. A., & Olaya-Flórez, J. J. (2012). Erosion-corrosion wear of Cr/CrN multi-layer coating deposited on AISI-304 stainless steel using the unbalanced magnetron (UBM) sputtering system. Wear, 290-291, 149-153. doi:10.1016/j.wear.2012.04.007Ali, M., Hamzah, E., & Toff, M. R. (2008). Friction coefficient and surface roughness of TiN-coated HSS deposited using cathodic arc evaporation PVD technique. Industrial Lubrication and Tribology, 60(3), 121-130. doi:10.1108/00368790810871048Alves, V. A., Brett, C. M. A., & Cavaleiro, A. (2002). Electrochemical corrosion of magnetron sputtered WTiN-coated mild steels in a chloride medium. Surface and Coatings Technology, 161(2-3), 257-266. doi:10.1016/S0257-8972(02)00515-7ASTM. (2012). G99 Standard Test Method for Wear Testing with a Pin on Disk Apparatus, 5, 1-5.Binder, C., Bendo, T., Hammes, G., Klein, A. N., & de Mello, J. D. B. (2015). Effect of nature of nitride phases on sliding wear of plasma nitrided sintered iron. Wear, 332-333, 995-1005. doi:10.1016/j.wear.2015.01.083Brett, C. M. A., & Cavaleiro, A. (1998). A comparison of the electrochemical behaviour of W-M-N (M = ni, ti, al) thin film coatings on high speed steel. Thin Solid Films, 322(1-2), 263-273.Bull, S. J. (1997). Failure mode maps in the thin film scratch adhesion test. Tribology International, 30(7), 491-498. doi:10.1016/S0301-679X(97)00012-1Castanho, J. M., & Vieira, M. T. (1998). The influence of the interstitial element on tribological behaviour of tungsten coatings. Surface and Coatings Technology, 102(1-2), 50-62.Castillo, H., Restrepo, E., & Arango, P. (2011). Appl.Surf.Sci., 257, 2664-2668.Cavaleiro, A., Louro, C., & Montemor, F. (2000). Oxidation of sputtered W-based coatings. Surface and Coatings Technology, 131(1-3), 441-447. doi:10.1016/S0257-8972(00)00784-2Cavaleiro, A., Trindade, B., & Vieira, M. T. (2003). Influence of ti addition on the properties of W-ti-C/N sputtered films. Surface and Coatings Technology, 174-175, 68-75. doi:10.1016/S0257-8972(03)00328-1Chavda, M. R., Dave, D. P., Chauhan, K. V., & Rawal, S. K. (2016). Tribological characterization of TiN coating prepared by sputtering. Proced.Technol., 23, 36-41.Dejun, K., & Haoyuan, G. (2015). Friction-wear behaviors of cathodic arc ion plating AlTiN coatings at high temperatures. Tribology International, 88, 31-39. doi:10.1016/j.triboint.2015.03.009Di Puccio, F., & Mattei, L. (2015). A novel approach to the estimation and application of the wear coefficient of metal-on-metal hip implants. Tribology International, 83, 69-76. doi:10.1016/j.triboint.2014.10.023Dirks, A. G., Wolters, R. A. M., & Nellissen, A. J. M. (1990). On the microstructure-property relationship of W{single bond}ti{single bond}(N) diffusion barriers. Thin Solid Films, 193-194(PART 1), 201-210. doi:10.1016/S0040-6090(05)80028-8Dong, S., Chen, X., Zhang, X., & Cui, G. (2013). Nanostructured transition metal nitrides for energy storage and fuel cells. Coordination Chemistry Reviews, 257(13-14), 1946-1956. doi:10.1016/j.ccr.2012.12.012Du, Q., Wang, W., Li, S., Zhang, D., & Zheng, W. (2016). Effects of substrate temperature on the structural, optical and resistive switching properties of HfO2 films. Thin Solid Films, 608, 21-25. doi:10.1016/j.tsf.2016.04.016Edström, D., Sangiovanni, D. G., Hultman, L., & Chirita, V. (2014). Effects of atomic ordering on the elastic properties of TiN- and VN-based ternary alloys. Thin Solid Films, 571(P1), 145-153. doi:10.1016/j.tsf.2014.09.048Escobar, D., Ospina, R., Gómez, A. G., & Restrepo-Parra, E. (2015). Microstructure, residual stress and hardness study of nanocrystalline titanium-zirconium nitride thin films. Ceramics International, 41(1), 947-952. doi:10.1016/j.ceramint.2014.09.012Escobar, D., Ospina, R., Gómez, A. G., Restrepo-Parra, E., & Arango, P. J. (2014). X-ray microstructural analysis of nanocrystalline TiZrN thin films by diffraction pattern modeling. Materials Characterization, 88, 119-126. doi:10.1016/j.matchar.2013.10.028Federici, M., Menapace, C., Moscatelli, A., Gialanella, S., & Straffelini, G. (2016). Effect of roughness on the wear behavior of HVOF coatings dry sliding against a friction material. Wear, 368-369, 326-334. doi:10.1016/j.wear.2016.10.013Fugger, M., Plappert, M., Schäffer, C., Humbel, O., Hutter, H., Danninger, H., & Nowottnick, M. (2014). Comparison of WTi and WTi(N) as diffusion barriers for al and cu metallization on si with respect to thermal stability and diffusion behavior of ti. Microelectronics Reliability, 54(11), 2487-2493. doi:10.1016/j.microrel.2014.04.016Gashaw, F., & Ampong, F. (2016). Chem.Phys., 183, 320-325.Gotman, I., Gutmanas, E. Y., & Hunter, G. (2011). Wear-resistant ceramic films and coatings. Comprehensive biomaterials (pp. 127-155).Greczynski, G., Mráz, S., Hultman, L., & Schneider, J. M. (2016). Unintentional carbide formation evidenced during high-vacuum magnetron sputtering of transition metal nitride thin films. Applied Surface Science, 385, 356-359. doi:10.1016/j.apsusc.2016.05.129Guo, H., Chen, W., Shan, Y., Wang, W., Zhang, Z., & Jia, J. (2015). Microstructures and properties of titanium nitride films prepared by pulsed laser deposition at different substrate temperatures. Applied Surface Science, 357, 473-478. doi:10.1016/j.apsusc.2015.09.061Huang, R., Qi, Z., Sun, P., Wang, Z., & Wu, C. (2011). Phys.Procedia, 18, 067-160.Jagielski, J., Khanna, A. S., Kucinski, J., Mishra, D. S., Racolta, P., Sioshansi, P., . . . Zalar, A. (2000). Effect of chromium nitride coating on the corrosion and wear resistance of stainless steel. Applied Surface Science, 156(1), 47-64. doi:10.1016/S0169-4332(99)00350-5Jiménez, H., Restrepo, E., & Devia, A. (2006). Effect of the substrate temperature in ZrN coatings grown by the pulsed arc technique studied by XRD. Surface and Coatings Technology, 201(3-4), 1594-1601. doi:10.1016/j.surfcoat.2006.02.030Kindlund, H., Sangiovanni, D. G., Lu, J., Jensen, J., Chirita, V., Birch, J., . . . Hultman, L. (2014). Vacancy-induced toughening in hard single-crystal V0.5Mo 0.5Nx/MgO(0 0 1) thin films. Acta Materialia, 77, 394-400. doi:10.1016/j.actamat.2014.06.025Kindlund, H., Sangiovanni, D. G., Martínez-De-Olcoz, L., Lu, J., Jensen, J., Birch, J., . . . Hultman, L. (2013). Toughness enhancement in hard ceramic thin films by alloy design. APL Materials, 1(4) doi:10.1063/1.4822440Kuchuk, A., Kladko, V., Lytvyn, O., Piotrowska, A., Minikayev, R., & Ratajczak, R. (2006). Adv.Eng.Mater., 3(8).Laugier, M. (1981). The development of the scratch test technique for the determination of the adhesion of coatings. Thin Solid Films, 76(3), 289-294. doi:10.1016/0040-6090(81)90700-8Liu, G., Yang, Y., Huang, B., Luo, X., Ouyang, S., Zhao, G., . . . Li, P. (2016). Effects of substrate temperature on the structure, residual stress and nanohardness of Ti6Al4V films prepared by magnetron sputtering. Applied Surface Science, 370, 53-58. doi:10.1016/j.apsusc.2016.02.021Ma, C. -., Huang, J. -., & Chen, H. (2006). Nanohardness of nanocrystalline TiN thin films. Surface and Coatings Technology, 200(12-13), 3868-3875. doi:10.1016/j.surfcoat.2004.10.098Magalhaes, F. (2011). Introducción a la tecnica de espectroscopia de fotoelectrones de rayos X (XPS).Matějíček, J., Vilémová, M., Mušálek, R., Sachr, P., & Horník, J. (2013). The influence of interface characteristics on the adhesion/cohesion of plasma sprayed tungsten coatings. Coatings, 3(2), 108-125.Mitrovic, S., Adamovic, D., Zivic, F., Dzunic, D., & Pantic, M. (2014). Friction and wear behavior of shot peened surfaces of 36CrNiMo4 and 36NiCrMo16 alloyed steels under dry and lubricated contact conditions. Applied Surface Science, 290, 223-232. doi:10.1016/j.apsusc.2013.11.050Mohamed, J., Sanjeeviraja, C., & Amalraj, L. (2016). Influence of substrate temperature on physical properties of (111) oriented CdIn2S4 thin films by nebulized spray pyrolysis technique. Journal of Asian Ceramic Societies, 4(2), 191-200. doi:10.1016/j.jascer.2016.03.002Ntwaeaborwa, O. M., Nsimama, P. D., Abiade, J. T., Coetsee, E., & Swart, H. C. (2009). The effects of substrate temperature on the structure, morphology and photoluminescence properties of pulsed laser deposited SrAl2O4:Eu2+,Dy3+ thin films. Physica B: Condensed Matter, 404(22), 4436-4439. doi:10.1016/j.physb.2009.09.016Nyenge, R. L., Swart, H. C., & Ntwaeaborwa, O. M. (2016). The influence of substrate temperature and deposition pressure on pulsed laser deposited thin films of CaS:Eu2+ phosphors. Physica B: Condensed Matter, 480, 186-190. doi:10.1016/j.physb.2015.08.046Oktay, S., Kahraman, Z., Urgen, M., & Kazmanli, K. (2015). XPS investigations of tribolayers formed on TiN and (ti,re)N coatings. Applied Surface Science, 328, 255-261. doi:10.1016/j.apsusc.2014.12.023Polcar, T., Parreira, N. M. G., & Cavaleiro, A. (2007). Tribological characterization of tungsten nitride coatings deposited by reactive magnetron sputtering. Wear, 262(5-6), 655-665. doi:10.1016/j.wear.2006.07.010Qingxiang, W., Shuhua, L., Xianhui, W., & Zhikang, F. (2010). Diffusion barrier performance of amorphous WTiN films in cu metallization. Vacuum, 84(11), 1270-1274. doi:10.1016/j.vacuum.2010.02.002Ramarotafika, H., & Lemperiere, G. (1995). Influence of a d.c. substrate bias on the resistivity, composition, crystallite size and microstrain of WTi and WTi-N films. Thin Solid Films, 266(2), 267-273. doi:10.1016/0040-6090(96)80032-0Sangiovanni, D. G., Chirita, V., & Hultman, L. (2010). Electronic mechanism for toughness enhancement in TixM 1-xN M=Mo and W). Physical Review B - Condensed Matter and Materials Physics, 81(10) doi:10.1103/PhysRevB.81.104107Sangiovanni, D. G., Edströma, D., Hultmana, L., Petrov, I., Greene, J. E., & Chirita, V. (2014). Ti adatom diffusion on TiN(001): Ab initio and classical molecular dynamics simulations. Surface Science, 627, 34-41. doi:10.1016/j.susc.2014.04.007Sangiovanni, D. G., Hultman, L., & Chirita, V. (2011). Supertoughening in B1 transition metal nitride alloys by increased valence electron concentration. Acta Materialia, 59(5), 2121-2134. doi:10.1016/j.actamat.2010.12.013Sangiovanni, D. G., Hultman, L., Chirita, V., Petrov, I., & Greene, J. E. (2016). Effects of phase stability, lattice ordering, and electron density on plastic deformation in cubic TiWN pseudobinary transition-metal nitride alloys. Acta Materialia, 103, 823-835. doi:10.1016/j.actamat.2015.10.039Shaginyan, L. R., Mišina, M., Zemek, J., Musil, J., Regent, F., & Britun, V. F. (2002). Composition, structure, microhardness and residual stress of W-ti-N films deposited by reactive magnetron sputtering. Thin Solid Films, 408(1-2), 136-147. doi:10.1016/S0040-6090(02)00091-3Suresh Kuiry, P. (2012). Advanced scratch testing for evaluation of coatings.Svahn, F., Kassman-Rudolphi, Å., & Wallén, E. (2003). The influence of surface roughness on friction and wear of machine element coatings. Wear, 254(11), 1092-1098. doi:10.1016/S0043-1648(03)00341-7Vives, S., Gaffet, E., & Meunier, C. (2004). X-ray diffraction line profile analysis of iron ball milled powders. Materials Science and Engineering A, 366(2), 229-238. doi:10.1016/S0921-5093(03)00572-0Wagner, C., Riggs, W., Davis, L., Moulder, G., & Muilenberg, G. (1979). Handbook of X-ray spectroscopy.Wong, W., McMurdie, H., & Paretzkin, B. (1987).Zhou, S., Liu, W., Liu, H., & Cai, C. (2011). Structural and electrical properties of ti-W-N thin films deposited by reactive RF sputtering. Paper presented at the Physics Procedia, 18 66-72. doi:10.1016/j.phpro.2011.06.059ScopusInfluence of deposition temperature on WTiN coatings tribological performanceArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Londoño-Menjura, R.F., Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al Magdalena, Manizales, ColombiaOspina, R., Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al Magdalena, Manizales, Colombia, Universidad Industrial de Santander, Santander, Bucaramanga, Colombia, Centro Brasilero de Pesquizas Fisica – CBPF, Rio de Janeiro, BrazilEscobar, D., Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al Magdalena, Manizales, Colombia, PCM computacional Applications, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al Magdalena, Manizales, Colombia, Grupo de Magnetismo y Simulación, Instituto de Física. Universidad de Antioquia, Medellín, ColombiaQuintero, J.H., Materiales Nanoestructurados y Biomodelación, Universidad de Medellín, Medellín, ColombiaOlaya, J.J., Grupo de investigación AFIS, Universidad Nacional de Colombia, Bogotá, ColombiaMello, A., Centro Brasilero de Pesquizas Fisica – CBPF, Rio de Janeiro, BrazilRestrepo-Parra, E., Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al Magdalena, Manizales, Colombia, PCM computacional Applications, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al Magdalena, Manizales, ColombiaLondoño-Menjura R.F.Ospina R.Escobar D.Quintero J.H.Olaya J.J.Mello A.Restrepo-Parra E.Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al Magdalena, Manizales, ColombiaUniversidad Industrial de Santander, Santander, Bucaramanga, ColombiaCentro Brasilero de Pesquizas Fisica – CBPF, Rio de Janeiro, BrazilPCM computacional Applications, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al Magdalena, Manizales, ColombiaGrupo de Magnetismo y Simulación, Instituto de Física. Universidad de Antioquia, Medellín, ColombiaMateriales Nanoestructurados y Biomodelación, Universidad de Medellín, Medellín, ColombiaGrupo de investigación AFIS, Universidad Nacional de Colombia, Bogotá, ColombiaAFMChemical compositionCoefficient of frictionMicrostructureRoughnessTernary coatingsWearWTiN films were grown on silicon and stainless-steel substrates using the DC magnetron sputtering technique. The substrate temperature was varied taking values of 100 °C, 200 °C, 300 °C, and 400 °C. X-ray diffraction analysis allowed us to identify a rock salt-type face centered cubic (FCC) structure, with a lattice parameter of approximately 4.2 nm, a relatively low microstrain (deformations at microscopy level, between 4.7% and 6.7%), and a crystallite size of a few nanometers (11.6 nm–31.5 nm). The C1s, N1s, O1s, Ti2p, W4s, W4p, W4d and W4f narrow spectra were obtained using X-ray photoelectron spectroscopy (XPS) and depending on the substrate temperature, the deconvoluted spectra presented different binding energies. Grain sizes and roughness (approximately 4 nm) of films were determined using atomic force microscopy. Scratch and pin on disc tests were conducted, showing better performance of the film grown at 200 °C. This sample exhibited a lower roughness, coefficient of friction, and wear rate. © 2017http://purl.org/coar/access_right/c_16ec11407/4288oai:repository.udem.edu.co:11407/42882020-05-27 18:33:15.144Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co