Small molecule gas adsorption onto blue phosphorene oxide layers

We report a first-principles study of the electronic and optical properties of BPO (Blue phosphorene oxide) and BPO-V (Blue phosphorene oxide with vacancy) with the adsorption of low molecular weight gases (CH4, CO2, CO, SO2, and O2). Blue phosphorene oxide -with and without vacancies- shows differe...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/6013
Acceso en línea:
http://hdl.handle.net/11407/6013
Palabra clave:
Blue phosphorene oxide
Electronic properties
Gas adsorption
Optical properties
Calculations
Carbon dioxide
Electronic properties
Gas adsorption
Gases
Molecules
Optical properties
Adsorption energies
Ambient conditions
Electronic and optical properties
Energy of adsorption
First-principles study
Gas sensing applications
Low molecular weight
Physical adsorption
Gas sensing electrodes
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_f749d711e0e4b8c9af2f243259d7f81d
oai_identifier_str oai:repository.udem.edu.co:11407/6013
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Small molecule gas adsorption onto blue phosphorene oxide layers
title Small molecule gas adsorption onto blue phosphorene oxide layers
spellingShingle Small molecule gas adsorption onto blue phosphorene oxide layers
Blue phosphorene oxide
Electronic properties
Gas adsorption
Optical properties
Calculations
Carbon dioxide
Electronic properties
Gas adsorption
Gases
Molecules
Optical properties
Adsorption energies
Ambient conditions
Electronic and optical properties
Energy of adsorption
First-principles study
Gas sensing applications
Low molecular weight
Physical adsorption
Gas sensing electrodes
title_short Small molecule gas adsorption onto blue phosphorene oxide layers
title_full Small molecule gas adsorption onto blue phosphorene oxide layers
title_fullStr Small molecule gas adsorption onto blue phosphorene oxide layers
title_full_unstemmed Small molecule gas adsorption onto blue phosphorene oxide layers
title_sort Small molecule gas adsorption onto blue phosphorene oxide layers
dc.subject.spa.fl_str_mv Blue phosphorene oxide
Electronic properties
Gas adsorption
Optical properties
topic Blue phosphorene oxide
Electronic properties
Gas adsorption
Optical properties
Calculations
Carbon dioxide
Electronic properties
Gas adsorption
Gases
Molecules
Optical properties
Adsorption energies
Ambient conditions
Electronic and optical properties
Energy of adsorption
First-principles study
Gas sensing applications
Low molecular weight
Physical adsorption
Gas sensing electrodes
dc.subject.keyword.eng.fl_str_mv Calculations
Carbon dioxide
Electronic properties
Gas adsorption
Gases
Molecules
Optical properties
Adsorption energies
Ambient conditions
Electronic and optical properties
Energy of adsorption
First-principles study
Gas sensing applications
Low molecular weight
Physical adsorption
Gas sensing electrodes
description We report a first-principles study of the electronic and optical properties of BPO (Blue phosphorene oxide) and BPO-V (Blue phosphorene oxide with vacancy) with the adsorption of low molecular weight gases (CH4, CO2, CO, SO2, and O2). Blue phosphorene oxide -with and without vacancies- shows different optoelectronic compared to blue phosphorene. The BPO has proven to be more energetically, and structurally stable than blue phosphorene under ambient conditions. Our calculations show that: Blue phosphorene oxide -with and without vacancies- exhibits different optoelectronic compared to blue phosphorene. Physical adsorption occurs for all gas molecules. Highest values of adsorption energy are found when the monolayers interact with O2 and SO2. This is associated with a modification of conducting nature, which is changed from semiconductor to conductor character, depending on the orientation of adsorbed molecules. By contrast, the coupling with CO and CO2 molecules leads to the lowest values of the energy of adsorption. The observed features of the electronic properties and optical response of BPO + adsorbed-gas complexes allow to suggest that this phosphorene-based structures could be promising candidates for gas sensing applications. © 2020 Elsevier B.V.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:58:46Z
dc.date.available.none.fl_str_mv 2021-02-05T14:58:46Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 1694332
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/6013
dc.identifier.doi.none.fl_str_mv 10.1016/j.apsusc.2020.147039
identifier_str_mv 1694332
10.1016/j.apsusc.2020.147039
url http://hdl.handle.net/11407/6013
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087937663&doi=10.1016%2fj.apsusc.2020.147039&partnerID=40&md5=d0a2a3b00c46f5e15b944719abc3bca0
dc.relation.citationvolume.none.fl_str_mv 530
dc.relation.references.none.fl_str_mv Ko, G., Kim, H.-Y., Ahn, J., Park, Y.-M., Lee, K.-Y., Kim, J., Graphene-based nitrogen dioxide gas sensors (2010) Current Applied Physics, 10 (4), pp. 1002-1004
He, Q., Shixin, W., Yin, Z., Zhang, H.A., Graphene-based electronic sensors (2012) Chemical Science, 3 (6), pp. 1764-1772
Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K., Two-dimensional atomic crystals (2005) Proceedings of the National Academy of Sciences, 102 (30), pp. 10451-10453
Allen, M.J., Tung, V.C., Kaner, R.B., Honeycomb carbon: a review of graphene (2009) Chemical Reviews, 110 (1), pp. 132-145
Bauld, R., William Choi, D.-Y., Bazylewski, P., Divigalpitiya, R., Fanchini, G., Thermo-optical characterization and thermal properties of graphene–polymer composites: a review (2018) Journal of Materials Chemistry C, 6 (12), pp. 2901-2914
Cao, C., Min, W., Jiang, J., Cheng, H.-P., Transition metal adatom and dimer adsorbed on graphene: Induced magnetization and electronic structures (2010) Physical Review B, 81 (20)
Andrew, J., (2017), Mannix, Brian Kiraly, Mark C. Hersam, Nathan P. Guisinger, Synthesis and chemistry of elemental 2d materials, Nature Reviews Chemistry 1 (2) 0014
Kyle, R., (2010), pp. 1167-1176. , Ratinac, Wenrong Yang, Simon P. Ringer, Filip Braet, Toward ubiquitous environmental gas sensors? capitalizing on the promise of graphene, Environmental Science & Technology, 44 (4)
Sun, M., Hao, Y., Ren, Q., Zhao, Y., Yanhui, D., Tang, W., Tuning electronic and magnetic properties of blue phosphorene by doping al, si, as and sb atom: A dft calculation (2016) Solid State Communications, 242, pp. 36-40
(2012), Qing Hua Wang, Kourosh Kalantar-Zadeh, Andras Kis, Jonathan N. Coleman, Michael S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nature Nanotechnology 7 (11) 699
Zhou, S., Liu, N., Zhao, J., Phosphorus quantum dots as visible-light photocatalyst for water splitting (2017) Computational Materials Science, 130, pp. 56-63
Yang, S., Jiang, C., Wei, S.-H., Gas sensing in 2d materials (2017) Applied Physics Reviews, 4 (2)
Liu, N., Zhou, S., Gas adsorption on monolayer blue phosphorus: implications for environmental stability and gas sensors (2017) Nanotechnology, 28 (17)
Ataca, C., Ciraci, S., Functionalization of bn honeycomb structure by adsorption and substitution of foreign atoms (2010) Physical Review B, 82 (16)
Ataca, C., Ciraci, S., Functionalization of single-layer mos2 honeycomb structures (2011) The Journal of Physical Chemistry C, 115 (27), pp. 13303-13311
Ding, Y., Wang, Y., Structural, electronic, and magnetic properties of adatom adsorptions on black and blue phosphorene: a first-principles study (2015) The Journal of Physical Chemistry C, 119 (19), pp. 10610-10622
Kaci, L., (2017), pp. 9126-9135. , Kuntz, Rebekah A. Wells, Jun Hu, Teng Yang, Baojuan Dong, Huaihong Guo, Adam H. Woomer, Daniel L. Druffel, Anginelle Alabanza, David Tománek, Control of surface and edge oxidation on phosphorene, ACS Applied Materials & Interfaces 9 (10)
George, F., (2010), pp. 5469-5502. , Fine, Leon M. Cavanagh, Ayo Afonja, Russell Binions, Metal oxide semi-conductor gas sensors in environmental monitoring, Sensors, 10 (6)
Binions, R., Naik, A.J.T., Metal oxide semiconductor gas sensors in environmental monitoring (2013) Semiconductor Gas Sensors, pp. 433-466. , Elsevier
Suematsu, K., Shin, Y., Ma, N., Oyama, T., Sasaki, M., Yuasa, M., Kida, T., Shimanoe, K., Pulse-driven micro gas sensor fitted with clustered pd/sno2 nanoparticles (2015) Analytical Chemistry, 87 (16), pp. 8407-8415
Varghese, S., Varghese, S., Swaminathan, S., Singh, K., Mittal, V., Two-dimensional materials for sensing: Graphene and beyond (2015) Electronics, 4 (3), pp. 651-687
(2002), pp. 275-278. , Jens Kehlet Nørskov, T. Bligaard, Ashildur Logadottir, S. Bahn, Lars Bruno Hansen, Mikkel Bollinger, H. Bengaard, Bjørk Hammer, Z. Sljivancanin, Manos Mavrikakis, Universality in heterogeneous catalysis, Journal of Catalysis 209 (2)
(2009), Jens Kehlet Nørskov, Thomas Bligaard, Jan Rossmeisl, Claus Hviid Christensen, Towards the computational design of solid catalysts, Nature chemistry 1 (1) 37
Leenaerts, O., Partoens, B., Peeters, F.M., (2008), Adsorption of H2 O, N H3, CO, N O2, and NO on graphene: A first-principles study Physical Review B – Condensed Matter and Materials Physics 77 (12) 1–6. doi: 10.1103/PhysRevB.77.125416
(2014), Liangzhi Kou, Thomas Frauenheim, Changfeng Chen, Phosphorene as a superior gas sensor: Selective adsorption and distinct i – V response, Journal of Physical Chemistry Letters 5 (15) 2675–2681. doi: 10.1021/jz501188k
Cai, Y., Ke, Q., Zhang, G., Zhang, Y.-W., Energetics, charge transfer, and magnetism of small molecules physisorbed on phosphorene (2015) The Journal of Physical Chemistry C, 119 (6), pp. 3102-3110
(2017), Dongwei Ma, Benyuan Ma, Zhiwen Lu, Chaozheng He, Yanan Tang, Zhansheng Lu, Zongxian Yang, Interaction between H2O, N2, CO, NO, NO2 and N2O molecules and a defective WSe2 monolayer, Physical Chemistry Chemical Physics 19 (38) 26022–26033. doi: 10.1039/c7cp04351a
(2017), Shengxue Yang, Chengbao Jiang, Su huai Wei, Gas sensing in 2D materials, Applied Physics Reviews 4 (2). doi: 10.1063/1.4983310
(2013), Wenjing Yuan, Gaoquan Shi. Graphene-based gas sensors, Journal of Materials Chemistry A, 1 (35) 10078–10091. doi: 10.1039/c3ta11774j
(2015), Padmanathan Karthick Kannan, Dattatray J. Late, Hywel Morgan, Chandra Sekhar Rout, Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale, 7 (32) 13293–13312. ISSN 2040-3364. doi: 10.1039/C5NR03633J
Yang, W., Gan, L., Li, H., Zhai, T., Two-dimensional layered nanomaterials for gas-sensing applications (2016) Inorganic Chemistry Frontiers, 3 (4), pp. 433-451
Bagheri, S., Mansouri, N., Aghaie, E., Phosphorene: A new competitor for graphene (2016) International Journal of Hydrogen Energy, 41 (7), pp. 4085-4095
Ospina, D.A., Duque, C.A., Correa, J.D., Morell, E.S., Twisted bilayer blue phosphorene: A direct band gap semiconductor (2016) Superlattices and Microstructures, 97, pp. 562-568
Zhao, T., He, C.Y., Ma, S.Y., Zhang, K.W., Peng, X.Y., Xie, G.F., Zhong, J.X., A new phase of phosphorus: the missed tricycle type red phosphorene (2015) Journal of Physics: Condensed Matter, 27 (26)
(2016), pp. 18312-18322. , Sumandeep Kaur, Ashok Kumar, Sunita Srivastava, K. Tankeshwar, Electronic structure engineering of various structural phases of phosphorene, Physical Chemistry Chemical Physics 18 (27)
Irshad, R., Tahir, K., Li, B., Sher, Z., Ali, J., Nazir, S., A revival of 2d materials, phosphorene: Its application as sensors (2018) Journal of Industrial and Engineering Chemistry, 64, pp. 60-69
Wang, Z., Zhao, D., Shidong, Y., Nie, Z., Li, Y., Zhang, L., First-principles investigation of structural and electronic properties of oxygen adsorbing phosphorene (2019) Progress in Natural Science: Materials International, 29 (3), pp. 316-321
(2015), pp. 524-531. , Gaoxue Wang, Ravindra Pandey, Shashi P. Karna, Phosphorene oxide: stability and electronic properties of a novel two-dimensional material, Nanoscale 7 (2)
(2016), pp. 6548-6554. , Liyan Zhu, Shan-Shan Wang, Shan Guan, Ying Liu, Tingting Zhang, Guibin Chen, Shengyuan A. Yang, Blue phosphorene oxide: strain-tunable quantum phase transitions and novel 2d emergent fermions, Nano Letters 16 (10)
Edison, A., (2020), Zuluaga-Hernández, Elizabeth Flórez, Ludovic Dorkis, Miguel E. Mora-Ramos, Julian D. Correa, Opto-electronic properties of blue phosphorene oxide with and without oxygen vacancies, International Journal of Quantum Chemistry 120 (2): e26075
José, M., (2002), Soler, Emilio Artacho, Julian D. Gale, Alberto García, Javier Junquera, Pablo Ordejón, Daniel Sánchez-Portal, The siesta method for ab initio order-n materials simulation, Journal of Physics: Condensed Matter 14 (11) 2745
Dion, M., dion, M., Rydberg, H., Schröder, E., Langreth, D.C., Lundqvist, B.I., (2004), Physical Review Letter 92 (2004) 246401. Phys. Rev. Lett., 92: 246401
(2009), Jiří Klimeš, David R. Bowler, Angelos Michaelides, Chemical accuracy for the van der waals density functional, Journal of Physics: Condensed Matter, 22 (2) 022201
Ospina, D.A., Duque, C.A., Mora-Ramos, M.E., Correa, J.D., Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A dft study (2017) Computational Materials Science, 135, pp. 43-53
Kong, L.-J., Liu, G.-H., Zhang, Y.-J., Tuning the electronic and optical properties of phosphorene by transition-metal and nonmetallic atom co-doping (2016) RSC Advances, 6 (13), pp. 10919-10929
(2019), pp. 153-161. , Fatemeh Safari, Mahdi Moradinasab, M. Fathipour, Hans Kosina, Adsorption of the nh3, no, no2, co2, and co gas molecules on blue phosphorene: a first-principles study, Applied Surface Science, 464
(2016), Gaoxue Wang, William J. Slough, Ravindra Pandey, Shashi P. Karna, Degradation of phosphorene in air: understanding at atomic level, 2D Materials 3 (2) 025011
Patrick, L., (2018), pp. 179-186. , Kinney, Interactions of climate change, air pollution, and human health, Current Environmental Health Reports, 5 (1)
Dean, A., Green, D., Climate change, air pollution and human health in sydney, australia: A review of the literature (2018) Environmental Research Letters, 13 (5)
Yi, Z., Ma, Y., Zheng, Y., Duan, Y., Li, H., Fundamental insights into the performance deterioration of phosphorene due to oxidation: A gw method investigation (2019) Advanced Materials Interfaces, 6 (1), p. 1801175
Ravishankara, A.R., John, S., (2009), pp. 123-125. , Daniel, Robert W. Portmann, Nitrous oxide (n2o): the dominant ozone-depleting substance emitted in the 21st century, Science 326 (5949)
Rettig, F., Moos, R., Plog, C., Poisoning of temperature independent resistive oxygen sensors by sulfur dioxide (2004) Journal of Electroceramics, 13 (1-3), pp. 733-738
Zhang, Y.-H., Chen, Y.-B., Zhou, K.-G., Liu, C.-H., Zeng, J., Zhang, H.-L., Peng, Y., Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study (2009) Nanotechnology, 20 (18)
Breedon, M., Spencer, M.J.S., Yarovsky, I., Adsorption of no2 on oxygen deficient zno (2110) for gas sensing applications: a dft study (2010) The Journal of Physical Chemistry C, 114 (39), pp. 16603-16610
Carrasco, J., Lopez, N., Illas, F., First principles analysis of the stability and diffusion of oxygen vacancies in metal oxides (2004) Physical Review Letters, 93 (22)
Matatagui, D., Kolokoltsev, O.V., Qureshi, N., Mejía-Uriarte, E.V., Saniger, J.M., A magnonic gas sensor based on magnetic nanoparticles (2015) Nanoscale, 7 (21), pp. 9607-9613
Matatagui, D., Kolokoltsev, O.V., Qureshi, N., Mejía-Uriarte, E.V., Ordoñez-Romero, C.L., Vázquez-Olmos, A., Saniger, J.M., Magnonic sensor array based on magnetic nanoparticles to detect, discriminate and classify toxic gases (2017) Sensors and Actuators B: Chemical, 240, pp. 497-502
Kou, L., Frauenheim, T., Chen, C., Phosphorene as a superior gas sensor: Selective adsorption and distinct i–v response (2014) The Journal of Physical Chemistry Letters, 5 (15), pp. 2675-2681
(2015) The Journal of Physical Chemistry Letters, 6 (14), pp. 2794-2805. , Liangzhi Kou, Changfeng Chen, Sean C. Smith, Phosphorene: fabrication, properties, and applications
Tang, X., Aijun, D., Kou, L., Gas sensing and capturing based on two-dimensional layered materials: Overview from theoretical perspective (2018) Wiley Interdisciplinary Reviews: Computational Molecular Science, 8 (4)
(2008), Emilio Artacho, Eduardo Anglada, Oswaldo Diéguez, Julian D. Gale, Alberto García, Javier Junquera, Richard M. Martin, Pablo Ordejón, José Miguel Pruneda, Daniel Sánchez-Portal, The siesta method
developments and applicability, Journal of Physics: Condensed Matter 20 (6) 064208
Malyi, O.I., Sopiha, K.V., Draxl, C., Persson, C., Stability and electronic properties of phosphorene oxides: from 0-dimensional to amorphous 2-dimensional structures (2017) Nanoscale, 9 (7), pp. 2428-2435
Oleksandr, I., (2019), pp. 24876-24884. , Malyi, Kostiantyn V. Sopiha, Clas Persson, Energy, phonon, and dynamic stability criteria of two-dimensional materials, ACS Applied Materials & Interfaces 11 (28)
Zeng, B., Long, M., Dong, Y., Xiao, J., Zhang, S., Yi, Y., Gao, Y., Stress-sign-tunable poissons ratio in monolayer blue phosphorus oxide (2019) Journal of Physics: Condensed Matter, 31 (29)
(2019), pp. 5340-5346. , Jia Lin Zhang, Songtao Zhao, Mykola Telychko, Shuo Sun, Xu Lian, Jie Su, Anton Tadich, Dongchen Qi, Jincheng Zhuang, Yue Zheng, Reversible oxidation of blue phosphorus monolayer on au (111), Nano Letters 19 (8)
Sun, M., Wang, Z., Jin, J., Xiao, J., Dai, X., Long, M., Modulating the electronic properties and magnetism of bilayer phosphorene with small gas molecules adsorbing (2018) The Journal of Superconductivity and Novel Magnetism, 31 (8), pp. 2529-2537
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Elsevier B.V.
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Applied Surface Science
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159191861886976
spelling 20202021-02-05T14:58:46Z2021-02-05T14:58:46Z1694332http://hdl.handle.net/11407/601310.1016/j.apsusc.2020.147039We report a first-principles study of the electronic and optical properties of BPO (Blue phosphorene oxide) and BPO-V (Blue phosphorene oxide with vacancy) with the adsorption of low molecular weight gases (CH4, CO2, CO, SO2, and O2). Blue phosphorene oxide -with and without vacancies- shows different optoelectronic compared to blue phosphorene. The BPO has proven to be more energetically, and structurally stable than blue phosphorene under ambient conditions. Our calculations show that: Blue phosphorene oxide -with and without vacancies- exhibits different optoelectronic compared to blue phosphorene. Physical adsorption occurs for all gas molecules. Highest values of adsorption energy are found when the monolayers interact with O2 and SO2. This is associated with a modification of conducting nature, which is changed from semiconductor to conductor character, depending on the orientation of adsorbed molecules. By contrast, the coupling with CO and CO2 molecules leads to the lowest values of the energy of adsorption. The observed features of the electronic properties and optical response of BPO + adsorbed-gas complexes allow to suggest that this phosphorene-based structures could be promising candidates for gas sensing applications. © 2020 Elsevier B.V.engElsevier B.V.Facultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85087937663&doi=10.1016%2fj.apsusc.2020.147039&partnerID=40&md5=d0a2a3b00c46f5e15b944719abc3bca0530Ko, G., Kim, H.-Y., Ahn, J., Park, Y.-M., Lee, K.-Y., Kim, J., Graphene-based nitrogen dioxide gas sensors (2010) Current Applied Physics, 10 (4), pp. 1002-1004He, Q., Shixin, W., Yin, Z., Zhang, H.A., Graphene-based electronic sensors (2012) Chemical Science, 3 (6), pp. 1764-1772Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K., Two-dimensional atomic crystals (2005) Proceedings of the National Academy of Sciences, 102 (30), pp. 10451-10453Allen, M.J., Tung, V.C., Kaner, R.B., Honeycomb carbon: a review of graphene (2009) Chemical Reviews, 110 (1), pp. 132-145Bauld, R., William Choi, D.-Y., Bazylewski, P., Divigalpitiya, R., Fanchini, G., Thermo-optical characterization and thermal properties of graphene–polymer composites: a review (2018) Journal of Materials Chemistry C, 6 (12), pp. 2901-2914Cao, C., Min, W., Jiang, J., Cheng, H.-P., Transition metal adatom and dimer adsorbed on graphene: Induced magnetization and electronic structures (2010) Physical Review B, 81 (20)Andrew, J., (2017), Mannix, Brian Kiraly, Mark C. Hersam, Nathan P. Guisinger, Synthesis and chemistry of elemental 2d materials, Nature Reviews Chemistry 1 (2) 0014Kyle, R., (2010), pp. 1167-1176. , Ratinac, Wenrong Yang, Simon P. Ringer, Filip Braet, Toward ubiquitous environmental gas sensors? capitalizing on the promise of graphene, Environmental Science & Technology, 44 (4)Sun, M., Hao, Y., Ren, Q., Zhao, Y., Yanhui, D., Tang, W., Tuning electronic and magnetic properties of blue phosphorene by doping al, si, as and sb atom: A dft calculation (2016) Solid State Communications, 242, pp. 36-40(2012), Qing Hua Wang, Kourosh Kalantar-Zadeh, Andras Kis, Jonathan N. Coleman, Michael S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nature Nanotechnology 7 (11) 699Zhou, S., Liu, N., Zhao, J., Phosphorus quantum dots as visible-light photocatalyst for water splitting (2017) Computational Materials Science, 130, pp. 56-63Yang, S., Jiang, C., Wei, S.-H., Gas sensing in 2d materials (2017) Applied Physics Reviews, 4 (2)Liu, N., Zhou, S., Gas adsorption on monolayer blue phosphorus: implications for environmental stability and gas sensors (2017) Nanotechnology, 28 (17)Ataca, C., Ciraci, S., Functionalization of bn honeycomb structure by adsorption and substitution of foreign atoms (2010) Physical Review B, 82 (16)Ataca, C., Ciraci, S., Functionalization of single-layer mos2 honeycomb structures (2011) The Journal of Physical Chemistry C, 115 (27), pp. 13303-13311Ding, Y., Wang, Y., Structural, electronic, and magnetic properties of adatom adsorptions on black and blue phosphorene: a first-principles study (2015) The Journal of Physical Chemistry C, 119 (19), pp. 10610-10622Kaci, L., (2017), pp. 9126-9135. , Kuntz, Rebekah A. Wells, Jun Hu, Teng Yang, Baojuan Dong, Huaihong Guo, Adam H. Woomer, Daniel L. Druffel, Anginelle Alabanza, David Tománek, Control of surface and edge oxidation on phosphorene, ACS Applied Materials & Interfaces 9 (10)George, F., (2010), pp. 5469-5502. , Fine, Leon M. Cavanagh, Ayo Afonja, Russell Binions, Metal oxide semi-conductor gas sensors in environmental monitoring, Sensors, 10 (6)Binions, R., Naik, A.J.T., Metal oxide semiconductor gas sensors in environmental monitoring (2013) Semiconductor Gas Sensors, pp. 433-466. , ElsevierSuematsu, K., Shin, Y., Ma, N., Oyama, T., Sasaki, M., Yuasa, M., Kida, T., Shimanoe, K., Pulse-driven micro gas sensor fitted with clustered pd/sno2 nanoparticles (2015) Analytical Chemistry, 87 (16), pp. 8407-8415Varghese, S., Varghese, S., Swaminathan, S., Singh, K., Mittal, V., Two-dimensional materials for sensing: Graphene and beyond (2015) Electronics, 4 (3), pp. 651-687(2002), pp. 275-278. , Jens Kehlet Nørskov, T. Bligaard, Ashildur Logadottir, S. Bahn, Lars Bruno Hansen, Mikkel Bollinger, H. Bengaard, Bjørk Hammer, Z. Sljivancanin, Manos Mavrikakis, Universality in heterogeneous catalysis, Journal of Catalysis 209 (2)(2009), Jens Kehlet Nørskov, Thomas Bligaard, Jan Rossmeisl, Claus Hviid Christensen, Towards the computational design of solid catalysts, Nature chemistry 1 (1) 37Leenaerts, O., Partoens, B., Peeters, F.M., (2008), Adsorption of H2 O, N H3, CO, N O2, and NO on graphene: A first-principles study Physical Review B – Condensed Matter and Materials Physics 77 (12) 1–6. doi: 10.1103/PhysRevB.77.125416(2014), Liangzhi Kou, Thomas Frauenheim, Changfeng Chen, Phosphorene as a superior gas sensor: Selective adsorption and distinct i – V response, Journal of Physical Chemistry Letters 5 (15) 2675–2681. doi: 10.1021/jz501188kCai, Y., Ke, Q., Zhang, G., Zhang, Y.-W., Energetics, charge transfer, and magnetism of small molecules physisorbed on phosphorene (2015) The Journal of Physical Chemistry C, 119 (6), pp. 3102-3110(2017), Dongwei Ma, Benyuan Ma, Zhiwen Lu, Chaozheng He, Yanan Tang, Zhansheng Lu, Zongxian Yang, Interaction between H2O, N2, CO, NO, NO2 and N2O molecules and a defective WSe2 monolayer, Physical Chemistry Chemical Physics 19 (38) 26022–26033. doi: 10.1039/c7cp04351a(2017), Shengxue Yang, Chengbao Jiang, Su huai Wei, Gas sensing in 2D materials, Applied Physics Reviews 4 (2). doi: 10.1063/1.4983310(2013), Wenjing Yuan, Gaoquan Shi. Graphene-based gas sensors, Journal of Materials Chemistry A, 1 (35) 10078–10091. doi: 10.1039/c3ta11774j(2015), Padmanathan Karthick Kannan, Dattatray J. Late, Hywel Morgan, Chandra Sekhar Rout, Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale, 7 (32) 13293–13312. ISSN 2040-3364. doi: 10.1039/C5NR03633JYang, W., Gan, L., Li, H., Zhai, T., Two-dimensional layered nanomaterials for gas-sensing applications (2016) Inorganic Chemistry Frontiers, 3 (4), pp. 433-451Bagheri, S., Mansouri, N., Aghaie, E., Phosphorene: A new competitor for graphene (2016) International Journal of Hydrogen Energy, 41 (7), pp. 4085-4095Ospina, D.A., Duque, C.A., Correa, J.D., Morell, E.S., Twisted bilayer blue phosphorene: A direct band gap semiconductor (2016) Superlattices and Microstructures, 97, pp. 562-568Zhao, T., He, C.Y., Ma, S.Y., Zhang, K.W., Peng, X.Y., Xie, G.F., Zhong, J.X., A new phase of phosphorus: the missed tricycle type red phosphorene (2015) Journal of Physics: Condensed Matter, 27 (26)(2016), pp. 18312-18322. , Sumandeep Kaur, Ashok Kumar, Sunita Srivastava, K. Tankeshwar, Electronic structure engineering of various structural phases of phosphorene, Physical Chemistry Chemical Physics 18 (27)Irshad, R., Tahir, K., Li, B., Sher, Z., Ali, J., Nazir, S., A revival of 2d materials, phosphorene: Its application as sensors (2018) Journal of Industrial and Engineering Chemistry, 64, pp. 60-69Wang, Z., Zhao, D., Shidong, Y., Nie, Z., Li, Y., Zhang, L., First-principles investigation of structural and electronic properties of oxygen adsorbing phosphorene (2019) Progress in Natural Science: Materials International, 29 (3), pp. 316-321(2015), pp. 524-531. , Gaoxue Wang, Ravindra Pandey, Shashi P. Karna, Phosphorene oxide: stability and electronic properties of a novel two-dimensional material, Nanoscale 7 (2)(2016), pp. 6548-6554. , Liyan Zhu, Shan-Shan Wang, Shan Guan, Ying Liu, Tingting Zhang, Guibin Chen, Shengyuan A. Yang, Blue phosphorene oxide: strain-tunable quantum phase transitions and novel 2d emergent fermions, Nano Letters 16 (10)Edison, A., (2020), Zuluaga-Hernández, Elizabeth Flórez, Ludovic Dorkis, Miguel E. Mora-Ramos, Julian D. Correa, Opto-electronic properties of blue phosphorene oxide with and without oxygen vacancies, International Journal of Quantum Chemistry 120 (2): e26075José, M., (2002), Soler, Emilio Artacho, Julian D. Gale, Alberto García, Javier Junquera, Pablo Ordejón, Daniel Sánchez-Portal, The siesta method for ab initio order-n materials simulation, Journal of Physics: Condensed Matter 14 (11) 2745Dion, M., dion, M., Rydberg, H., Schröder, E., Langreth, D.C., Lundqvist, B.I., (2004), Physical Review Letter 92 (2004) 246401. Phys. Rev. Lett., 92: 246401(2009), Jiří Klimeš, David R. Bowler, Angelos Michaelides, Chemical accuracy for the van der waals density functional, Journal of Physics: Condensed Matter, 22 (2) 022201Ospina, D.A., Duque, C.A., Mora-Ramos, M.E., Correa, J.D., Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A dft study (2017) Computational Materials Science, 135, pp. 43-53Kong, L.-J., Liu, G.-H., Zhang, Y.-J., Tuning the electronic and optical properties of phosphorene by transition-metal and nonmetallic atom co-doping (2016) RSC Advances, 6 (13), pp. 10919-10929(2019), pp. 153-161. , Fatemeh Safari, Mahdi Moradinasab, M. Fathipour, Hans Kosina, Adsorption of the nh3, no, no2, co2, and co gas molecules on blue phosphorene: a first-principles study, Applied Surface Science, 464(2016), Gaoxue Wang, William J. Slough, Ravindra Pandey, Shashi P. Karna, Degradation of phosphorene in air: understanding at atomic level, 2D Materials 3 (2) 025011Patrick, L., (2018), pp. 179-186. , Kinney, Interactions of climate change, air pollution, and human health, Current Environmental Health Reports, 5 (1)Dean, A., Green, D., Climate change, air pollution and human health in sydney, australia: A review of the literature (2018) Environmental Research Letters, 13 (5)Yi, Z., Ma, Y., Zheng, Y., Duan, Y., Li, H., Fundamental insights into the performance deterioration of phosphorene due to oxidation: A gw method investigation (2019) Advanced Materials Interfaces, 6 (1), p. 1801175Ravishankara, A.R., John, S., (2009), pp. 123-125. , Daniel, Robert W. Portmann, Nitrous oxide (n2o): the dominant ozone-depleting substance emitted in the 21st century, Science 326 (5949)Rettig, F., Moos, R., Plog, C., Poisoning of temperature independent resistive oxygen sensors by sulfur dioxide (2004) Journal of Electroceramics, 13 (1-3), pp. 733-738Zhang, Y.-H., Chen, Y.-B., Zhou, K.-G., Liu, C.-H., Zeng, J., Zhang, H.-L., Peng, Y., Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study (2009) Nanotechnology, 20 (18)Breedon, M., Spencer, M.J.S., Yarovsky, I., Adsorption of no2 on oxygen deficient zno (2110) for gas sensing applications: a dft study (2010) The Journal of Physical Chemistry C, 114 (39), pp. 16603-16610Carrasco, J., Lopez, N., Illas, F., First principles analysis of the stability and diffusion of oxygen vacancies in metal oxides (2004) Physical Review Letters, 93 (22)Matatagui, D., Kolokoltsev, O.V., Qureshi, N., Mejía-Uriarte, E.V., Saniger, J.M., A magnonic gas sensor based on magnetic nanoparticles (2015) Nanoscale, 7 (21), pp. 9607-9613Matatagui, D., Kolokoltsev, O.V., Qureshi, N., Mejía-Uriarte, E.V., Ordoñez-Romero, C.L., Vázquez-Olmos, A., Saniger, J.M., Magnonic sensor array based on magnetic nanoparticles to detect, discriminate and classify toxic gases (2017) Sensors and Actuators B: Chemical, 240, pp. 497-502Kou, L., Frauenheim, T., Chen, C., Phosphorene as a superior gas sensor: Selective adsorption and distinct i–v response (2014) The Journal of Physical Chemistry Letters, 5 (15), pp. 2675-2681(2015) The Journal of Physical Chemistry Letters, 6 (14), pp. 2794-2805. , Liangzhi Kou, Changfeng Chen, Sean C. Smith, Phosphorene: fabrication, properties, and applicationsTang, X., Aijun, D., Kou, L., Gas sensing and capturing based on two-dimensional layered materials: Overview from theoretical perspective (2018) Wiley Interdisciplinary Reviews: Computational Molecular Science, 8 (4)(2008), Emilio Artacho, Eduardo Anglada, Oswaldo Diéguez, Julian D. Gale, Alberto García, Javier Junquera, Richard M. Martin, Pablo Ordejón, José Miguel Pruneda, Daniel Sánchez-Portal, The siesta methoddevelopments and applicability, Journal of Physics: Condensed Matter 20 (6) 064208Malyi, O.I., Sopiha, K.V., Draxl, C., Persson, C., Stability and electronic properties of phosphorene oxides: from 0-dimensional to amorphous 2-dimensional structures (2017) Nanoscale, 9 (7), pp. 2428-2435Oleksandr, I., (2019), pp. 24876-24884. , Malyi, Kostiantyn V. Sopiha, Clas Persson, Energy, phonon, and dynamic stability criteria of two-dimensional materials, ACS Applied Materials & Interfaces 11 (28)Zeng, B., Long, M., Dong, Y., Xiao, J., Zhang, S., Yi, Y., Gao, Y., Stress-sign-tunable poissons ratio in monolayer blue phosphorus oxide (2019) Journal of Physics: Condensed Matter, 31 (29)(2019), pp. 5340-5346. , Jia Lin Zhang, Songtao Zhao, Mykola Telychko, Shuo Sun, Xu Lian, Jie Su, Anton Tadich, Dongchen Qi, Jincheng Zhuang, Yue Zheng, Reversible oxidation of blue phosphorus monolayer on au (111), Nano Letters 19 (8)Sun, M., Wang, Z., Jin, J., Xiao, J., Dai, X., Long, M., Modulating the electronic properties and magnetism of bilayer phosphorene with small gas molecules adsorbing (2018) The Journal of Superconductivity and Novel Magnetism, 31 (8), pp. 2529-2537Applied Surface ScienceBlue phosphorene oxideElectronic propertiesGas adsorptionOptical propertiesCalculationsCarbon dioxideElectronic propertiesGas adsorptionGasesMoleculesOptical propertiesAdsorption energiesAmbient conditionsElectronic and optical propertiesEnergy of adsorptionFirst-principles studyGas sensing applicationsLow molecular weightPhysical adsorptionGas sensing electrodesSmall molecule gas adsorption onto blue phosphorene oxide layersArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Zuluaga-Hernandez, E.A., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaFlórez, E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaDorkis, L., Universidad Nacional de Colombia, Sede Medellín, Facultad de Minas, Departamento de Materiales y Minerales, Medellín, ColombiaMora-Ramos, M.E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos CP 62209, MexicoCorrea, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecZuluaga-Hernandez E.A.Flórez E.Dorkis L.Mora-Ramos M.E.Correa J.D.11407/6013oai:repository.udem.edu.co:11407/60132021-02-05 09:58:46.084Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co