Gas-Phase Elimination Reaction of Ethyl (5-cyanomethyl-1,3,4-thiadiazol-2-yl)carbamate: A Computational Study

The gas‐phase elimination reaction of ethyl (5‐cyanomethyl‐1,3,4‐thiadiazol‐2‐yl)carbamate has been studied computationally at the MP2/6–31++G(2d,p) level of theory. The values of the activation parameters and rate constants for the thermal decomposition were evaluated over a temperature range from...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2015
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/2285
Acceso en línea:
http://hdl.handle.net/11407/2285
Palabra clave:
Carbon
Carbon dioxide
Carboxylation
Chemical reactions
Computation theory
Ethylene
Gases
Radioactivity logging
Rate constants
Reaction kinetics
Temperature distribution
1 ,3 ,4-thiadiazole
Activation parameter
Arrhenius expressions
Computational studies
Cyclic transitions
Gas-phase elimination
Intrinsic reaction coordinate calculations
Temperature dependence
Thermal logging
Rights
restrictedAccess
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_f6ee6836bfe6fd108fbd5dd62793d256
oai_identifier_str oai:repository.udem.edu.co:11407/2285
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
spelling 2016-06-23T14:01:38Z2016-06-23T14:01:38Z20155388066http://hdl.handle.net/11407/228510.1002/kin.20967The gas‐phase elimination reaction of ethyl (5‐cyanomethyl‐1,3,4‐thiadiazol‐2‐yl)carbamate has been studied computationally at the MP2/6–31++G(2d,p) level of theory. The values of the activation parameters and rate constants for the thermal decomposition were evaluated over a temperature range from 405.0 to 458.0 K. The temperature dependence of the rate constants was used to deduce the modified Arrhenius expression: log k405–458 K = (9.01 ± 0.49) + (1.32 ± 0.16) log T – (6946 ± 30) 1/T, which is in good agreement with the expression obtained from experimental data. The results confirm that the mechanism is a cis‐concerted elimination that occurs in two steps: The first one corresponds to the formation of ethylene and an intermediate, 5‐(cyanomethyl)‐1,3,4‐thiadiazol‐2‐yl‐carbamic acid, via a six‐membered cyclic transition state, and the second one is the decarboxylation of this intermediate via a four‐membered cyclic transition step, leading to carbon dioxide and the corresponding 1,3,4‐thiadiazole derivative (5‐amino‐1,3,4‐thiadiazole‐2‐acetonitrile). The connectivity of transition states with their respective minima was verified through intrinsic reaction coordinate calculations, and the progress of the reaction was followed by means of Wiberg bond indices, resulting that both transition states have an “early” character, nearer to the reactants than to the products.engJohn Wiley and Sons Inc.http://onlinelibrary.wiley.com/doi/10.1002/kin.20967/fullInternational Journal of Chemical Kinetics Volume 48, Issue 1 January 2016, Pages 23–31ScopusGas-Phase Elimination Reaction of Ethyl (5-cyanomethyl-1,3,4-thiadiazol-2-yl)carbamate: A Computational StudyArticle in Pressinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/access_right/c_16ecDepartamento de Ciencias Básicas Universidad de Medellín Medellín ColombiaLaboratorio de Fisicoquímica Orgánica Facultad de Ciencias Universidad Nacional de Colombia Sede Medellín 3840 Medellín ColombiaInstituto de Química Física Rocasolano C.S.I.C Serrano 119 28006 Madrid SpainVélez E.Ruíz P. Quijano J.Notario R.CarbonCarbon dioxideCarboxylationChemical reactionsComputation theoryEthyleneGasesRadioactivity loggingRate constantsReaction kineticsTemperature distribution1 ,3 ,4-thiadiazoleActivation parameterArrhenius expressionsComputational studiesCyclic transitionsGas-phase eliminationIntrinsic reaction coordinate calculationsTemperature dependenceThermal logging11407/2285oai:repository.udem.edu.co:11407/22852020-05-27 16:35:51.784Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co
dc.title.spa.fl_str_mv Gas-Phase Elimination Reaction of Ethyl (5-cyanomethyl-1,3,4-thiadiazol-2-yl)carbamate: A Computational Study
title Gas-Phase Elimination Reaction of Ethyl (5-cyanomethyl-1,3,4-thiadiazol-2-yl)carbamate: A Computational Study
spellingShingle Gas-Phase Elimination Reaction of Ethyl (5-cyanomethyl-1,3,4-thiadiazol-2-yl)carbamate: A Computational Study
Carbon
Carbon dioxide
Carboxylation
Chemical reactions
Computation theory
Ethylene
Gases
Radioactivity logging
Rate constants
Reaction kinetics
Temperature distribution
1 ,3 ,4-thiadiazole
Activation parameter
Arrhenius expressions
Computational studies
Cyclic transitions
Gas-phase elimination
Intrinsic reaction coordinate calculations
Temperature dependence
Thermal logging
title_short Gas-Phase Elimination Reaction of Ethyl (5-cyanomethyl-1,3,4-thiadiazol-2-yl)carbamate: A Computational Study
title_full Gas-Phase Elimination Reaction of Ethyl (5-cyanomethyl-1,3,4-thiadiazol-2-yl)carbamate: A Computational Study
title_fullStr Gas-Phase Elimination Reaction of Ethyl (5-cyanomethyl-1,3,4-thiadiazol-2-yl)carbamate: A Computational Study
title_full_unstemmed Gas-Phase Elimination Reaction of Ethyl (5-cyanomethyl-1,3,4-thiadiazol-2-yl)carbamate: A Computational Study
title_sort Gas-Phase Elimination Reaction of Ethyl (5-cyanomethyl-1,3,4-thiadiazol-2-yl)carbamate: A Computational Study
dc.contributor.affiliation.spa.fl_str_mv Departamento de Ciencias Básicas Universidad de Medellín Medellín Colombia
Laboratorio de Fisicoquímica Orgánica Facultad de Ciencias Universidad Nacional de Colombia Sede Medellín 3840 Medellín Colombia
Instituto de Química Física Rocasolano C.S.I.C Serrano 119 28006 Madrid Spain
dc.subject.keyword.eng.fl_str_mv Carbon
Carbon dioxide
Carboxylation
Chemical reactions
Computation theory
Ethylene
Gases
Radioactivity logging
Rate constants
Reaction kinetics
Temperature distribution
1 ,3 ,4-thiadiazole
Activation parameter
Arrhenius expressions
Computational studies
Cyclic transitions
Gas-phase elimination
Intrinsic reaction coordinate calculations
Temperature dependence
Thermal logging
topic Carbon
Carbon dioxide
Carboxylation
Chemical reactions
Computation theory
Ethylene
Gases
Radioactivity logging
Rate constants
Reaction kinetics
Temperature distribution
1 ,3 ,4-thiadiazole
Activation parameter
Arrhenius expressions
Computational studies
Cyclic transitions
Gas-phase elimination
Intrinsic reaction coordinate calculations
Temperature dependence
Thermal logging
description The gas‐phase elimination reaction of ethyl (5‐cyanomethyl‐1,3,4‐thiadiazol‐2‐yl)carbamate has been studied computationally at the MP2/6–31++G(2d,p) level of theory. The values of the activation parameters and rate constants for the thermal decomposition were evaluated over a temperature range from 405.0 to 458.0 K. The temperature dependence of the rate constants was used to deduce the modified Arrhenius expression: log k405–458 K = (9.01 ± 0.49) + (1.32 ± 0.16) log T – (6946 ± 30) 1/T, which is in good agreement with the expression obtained from experimental data. The results confirm that the mechanism is a cis‐concerted elimination that occurs in two steps: The first one corresponds to the formation of ethylene and an intermediate, 5‐(cyanomethyl)‐1,3,4‐thiadiazol‐2‐yl‐carbamic acid, via a six‐membered cyclic transition state, and the second one is the decarboxylation of this intermediate via a four‐membered cyclic transition step, leading to carbon dioxide and the corresponding 1,3,4‐thiadiazole derivative (5‐amino‐1,3,4‐thiadiazole‐2‐acetonitrile). The connectivity of transition states with their respective minima was verified through intrinsic reaction coordinate calculations, and the progress of the reaction was followed by means of Wiberg bond indices, resulting that both transition states have an “early” character, nearer to the reactants than to the products.
publishDate 2015
dc.date.created.none.fl_str_mv 2015
dc.date.accessioned.none.fl_str_mv 2016-06-23T14:01:38Z
dc.date.available.none.fl_str_mv 2016-06-23T14:01:38Z
dc.type.eng.fl_str_mv Article in Press
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 5388066
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/2285
dc.identifier.doi.none.fl_str_mv 10.1002/kin.20967
identifier_str_mv 5388066
10.1002/kin.20967
url http://hdl.handle.net/11407/2285
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv http://onlinelibrary.wiley.com/doi/10.1002/kin.20967/full
dc.relation.ispartofen.eng.fl_str_mv International Journal of Chemical Kinetics Volume 48, Issue 1 January 2016, Pages 23–31
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv John Wiley and Sons Inc.
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159153978933248