Gas-Phase Elimination Reaction of Ethyl (5-cyanomethyl-1,3,4-thiadiazol-2-yl)carbamate: A Computational Study
The gas‐phase elimination reaction of ethyl (5‐cyanomethyl‐1,3,4‐thiadiazol‐2‐yl)carbamate has been studied computationally at the MP2/6–31++G(2d,p) level of theory. The values of the activation parameters and rate constants for the thermal decomposition were evaluated over a temperature range from...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/2285
- Acceso en línea:
- http://hdl.handle.net/11407/2285
- Palabra clave:
- Carbon
Carbon dioxide
Carboxylation
Chemical reactions
Computation theory
Ethylene
Gases
Radioactivity logging
Rate constants
Reaction kinetics
Temperature distribution
1 ,3 ,4-thiadiazole
Activation parameter
Arrhenius expressions
Computational studies
Cyclic transitions
Gas-phase elimination
Intrinsic reaction coordinate calculations
Temperature dependence
Thermal logging
- Rights
- restrictedAccess
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_f6ee6836bfe6fd108fbd5dd62793d256 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/2285 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
spelling |
2016-06-23T14:01:38Z2016-06-23T14:01:38Z20155388066http://hdl.handle.net/11407/228510.1002/kin.20967The gas‐phase elimination reaction of ethyl (5‐cyanomethyl‐1,3,4‐thiadiazol‐2‐yl)carbamate has been studied computationally at the MP2/6–31++G(2d,p) level of theory. The values of the activation parameters and rate constants for the thermal decomposition were evaluated over a temperature range from 405.0 to 458.0 K. The temperature dependence of the rate constants was used to deduce the modified Arrhenius expression: log k405–458 K = (9.01 ± 0.49) + (1.32 ± 0.16) log T – (6946 ± 30) 1/T, which is in good agreement with the expression obtained from experimental data. The results confirm that the mechanism is a cis‐concerted elimination that occurs in two steps: The first one corresponds to the formation of ethylene and an intermediate, 5‐(cyanomethyl)‐1,3,4‐thiadiazol‐2‐yl‐carbamic acid, via a six‐membered cyclic transition state, and the second one is the decarboxylation of this intermediate via a four‐membered cyclic transition step, leading to carbon dioxide and the corresponding 1,3,4‐thiadiazole derivative (5‐amino‐1,3,4‐thiadiazole‐2‐acetonitrile). The connectivity of transition states with their respective minima was verified through intrinsic reaction coordinate calculations, and the progress of the reaction was followed by means of Wiberg bond indices, resulting that both transition states have an “early” character, nearer to the reactants than to the products.engJohn Wiley and Sons Inc.http://onlinelibrary.wiley.com/doi/10.1002/kin.20967/fullInternational Journal of Chemical Kinetics Volume 48, Issue 1 January 2016, Pages 23–31ScopusGas-Phase Elimination Reaction of Ethyl (5-cyanomethyl-1,3,4-thiadiazol-2-yl)carbamate: A Computational StudyArticle in Pressinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/access_right/c_16ecDepartamento de Ciencias Básicas Universidad de Medellín Medellín ColombiaLaboratorio de Fisicoquímica Orgánica Facultad de Ciencias Universidad Nacional de Colombia Sede Medellín 3840 Medellín ColombiaInstituto de Química Física Rocasolano C.S.I.C Serrano 119 28006 Madrid SpainVélez E.Ruíz P. Quijano J.Notario R.CarbonCarbon dioxideCarboxylationChemical reactionsComputation theoryEthyleneGasesRadioactivity loggingRate constantsReaction kineticsTemperature distribution1 ,3 ,4-thiadiazoleActivation parameterArrhenius expressionsComputational studiesCyclic transitionsGas-phase eliminationIntrinsic reaction coordinate calculationsTemperature dependenceThermal logging11407/2285oai:repository.udem.edu.co:11407/22852020-05-27 16:35:51.784Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |
dc.title.spa.fl_str_mv |
Gas-Phase Elimination Reaction of Ethyl (5-cyanomethyl-1,3,4-thiadiazol-2-yl)carbamate: A Computational Study |
title |
Gas-Phase Elimination Reaction of Ethyl (5-cyanomethyl-1,3,4-thiadiazol-2-yl)carbamate: A Computational Study |
spellingShingle |
Gas-Phase Elimination Reaction of Ethyl (5-cyanomethyl-1,3,4-thiadiazol-2-yl)carbamate: A Computational Study Carbon Carbon dioxide Carboxylation Chemical reactions Computation theory Ethylene Gases Radioactivity logging Rate constants Reaction kinetics Temperature distribution 1 ,3 ,4-thiadiazole Activation parameter Arrhenius expressions Computational studies Cyclic transitions Gas-phase elimination Intrinsic reaction coordinate calculations Temperature dependence Thermal logging |
title_short |
Gas-Phase Elimination Reaction of Ethyl (5-cyanomethyl-1,3,4-thiadiazol-2-yl)carbamate: A Computational Study |
title_full |
Gas-Phase Elimination Reaction of Ethyl (5-cyanomethyl-1,3,4-thiadiazol-2-yl)carbamate: A Computational Study |
title_fullStr |
Gas-Phase Elimination Reaction of Ethyl (5-cyanomethyl-1,3,4-thiadiazol-2-yl)carbamate: A Computational Study |
title_full_unstemmed |
Gas-Phase Elimination Reaction of Ethyl (5-cyanomethyl-1,3,4-thiadiazol-2-yl)carbamate: A Computational Study |
title_sort |
Gas-Phase Elimination Reaction of Ethyl (5-cyanomethyl-1,3,4-thiadiazol-2-yl)carbamate: A Computational Study |
dc.contributor.affiliation.spa.fl_str_mv |
Departamento de Ciencias Básicas Universidad de Medellín Medellín Colombia Laboratorio de Fisicoquímica Orgánica Facultad de Ciencias Universidad Nacional de Colombia Sede Medellín 3840 Medellín Colombia Instituto de Química Física Rocasolano C.S.I.C Serrano 119 28006 Madrid Spain |
dc.subject.keyword.eng.fl_str_mv |
Carbon Carbon dioxide Carboxylation Chemical reactions Computation theory Ethylene Gases Radioactivity logging Rate constants Reaction kinetics Temperature distribution 1 ,3 ,4-thiadiazole Activation parameter Arrhenius expressions Computational studies Cyclic transitions Gas-phase elimination Intrinsic reaction coordinate calculations Temperature dependence Thermal logging |
topic |
Carbon Carbon dioxide Carboxylation Chemical reactions Computation theory Ethylene Gases Radioactivity logging Rate constants Reaction kinetics Temperature distribution 1 ,3 ,4-thiadiazole Activation parameter Arrhenius expressions Computational studies Cyclic transitions Gas-phase elimination Intrinsic reaction coordinate calculations Temperature dependence Thermal logging |
description |
The gas‐phase elimination reaction of ethyl (5‐cyanomethyl‐1,3,4‐thiadiazol‐2‐yl)carbamate has been studied computationally at the MP2/6–31++G(2d,p) level of theory. The values of the activation parameters and rate constants for the thermal decomposition were evaluated over a temperature range from 405.0 to 458.0 K. The temperature dependence of the rate constants was used to deduce the modified Arrhenius expression: log k405–458 K = (9.01 ± 0.49) + (1.32 ± 0.16) log T – (6946 ± 30) 1/T, which is in good agreement with the expression obtained from experimental data. The results confirm that the mechanism is a cis‐concerted elimination that occurs in two steps: The first one corresponds to the formation of ethylene and an intermediate, 5‐(cyanomethyl)‐1,3,4‐thiadiazol‐2‐yl‐carbamic acid, via a six‐membered cyclic transition state, and the second one is the decarboxylation of this intermediate via a four‐membered cyclic transition step, leading to carbon dioxide and the corresponding 1,3,4‐thiadiazole derivative (5‐amino‐1,3,4‐thiadiazole‐2‐acetonitrile). The connectivity of transition states with their respective minima was verified through intrinsic reaction coordinate calculations, and the progress of the reaction was followed by means of Wiberg bond indices, resulting that both transition states have an “early” character, nearer to the reactants than to the products. |
publishDate |
2015 |
dc.date.created.none.fl_str_mv |
2015 |
dc.date.accessioned.none.fl_str_mv |
2016-06-23T14:01:38Z |
dc.date.available.none.fl_str_mv |
2016-06-23T14:01:38Z |
dc.type.eng.fl_str_mv |
Article in Press |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
5388066 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/2285 |
dc.identifier.doi.none.fl_str_mv |
10.1002/kin.20967 |
identifier_str_mv |
5388066 10.1002/kin.20967 |
url |
http://hdl.handle.net/11407/2285 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
http://onlinelibrary.wiley.com/doi/10.1002/kin.20967/full |
dc.relation.ispartofen.eng.fl_str_mv |
International Journal of Chemical Kinetics Volume 48, Issue 1 January 2016, Pages 23–31 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
John Wiley and Sons Inc. |
dc.source.spa.fl_str_mv |
Scopus |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159153978933248 |