Intermetallic-Rich Layer Formation for Improving Corrosion Resistance of Magnesium Alloys

Abstract: The present work examines the formation of a corrosion protective coating containing intermetallic phases on magnesium alloy substrates. The protective coating was formed on the surfaces of commercially pure magnesium (cp Mg) and AZ31B magnesium alloy by vacuum thermal evaporation of comme...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5889
Acceso en línea:
http://hdl.handle.net/11407/5889
Palabra clave:
AZ31B magnesium alloy
Coating
Pure magnesium
Vacuum thermal evaporation
α-Mg phase
β (Mg17Al12) phase
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_f5d856cedd0a1222b65e0ad61596164d
oai_identifier_str oai:repository.udem.edu.co:11407/5889
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Intermetallic-Rich Layer Formation for Improving Corrosion Resistance of Magnesium Alloys
title Intermetallic-Rich Layer Formation for Improving Corrosion Resistance of Magnesium Alloys
spellingShingle Intermetallic-Rich Layer Formation for Improving Corrosion Resistance of Magnesium Alloys
AZ31B magnesium alloy
Coating
Pure magnesium
Vacuum thermal evaporation
α-Mg phase
β (Mg17Al12) phase
title_short Intermetallic-Rich Layer Formation for Improving Corrosion Resistance of Magnesium Alloys
title_full Intermetallic-Rich Layer Formation for Improving Corrosion Resistance of Magnesium Alloys
title_fullStr Intermetallic-Rich Layer Formation for Improving Corrosion Resistance of Magnesium Alloys
title_full_unstemmed Intermetallic-Rich Layer Formation for Improving Corrosion Resistance of Magnesium Alloys
title_sort Intermetallic-Rich Layer Formation for Improving Corrosion Resistance of Magnesium Alloys
dc.subject.spa.fl_str_mv AZ31B magnesium alloy
Coating
Pure magnesium
Vacuum thermal evaporation
α-Mg phase
β (Mg17Al12) phase
topic AZ31B magnesium alloy
Coating
Pure magnesium
Vacuum thermal evaporation
α-Mg phase
β (Mg17Al12) phase
description Abstract: The present work examines the formation of a corrosion protective coating containing intermetallic phases on magnesium alloy substrates. The protective coating was formed on the surfaces of commercially pure magnesium (cp Mg) and AZ31B magnesium alloy by vacuum thermal evaporation of commercially pure aluminium (cp Al) and a subsequent heat treatment of the sample. This coating was continuous, homogenous and its microstructure was a eutectic phase composed by clusters of α-Mg surrounded by β phase (Mg17Al12). This eutectic-type coating provided 168 and 504 h of protection inside the salt spray chamber for the cp Mg and AZ31 alloy samples, respectively. To achieve this, it was required to deposit at least 5.5 µm of cp Al and then perform a combined thermal treatment involving heating the samples to 583 K for 60 min and then raising the temperature to 693 K for 5 min. Graphic Abstract: [Figure not available: see fulltext.] © 2021, The Korean Institute of Metals and Materials.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:57:34Z
dc.date.available.none.fl_str_mv 2021-02-05T14:57:34Z
dc.date.none.fl_str_mv 2021
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 15989623
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5889
dc.identifier.doi.none.fl_str_mv 10.1007/s12540-020-00912-5
identifier_str_mv 15989623
10.1007/s12540-020-00912-5
url http://hdl.handle.net/11407/5889
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099310701&doi=10.1007%2fs12540-020-00912-5&partnerID=40&md5=9d196d7ddfe1ae0cba63fe7ce9b0e0be
dc.relation.references.none.fl_str_mv Stephen, A., (2011) Magnesium Alloys—Corrosion and Surface Treatment, p. 195. , Czerwinski F, (ed), InTechOpen, Rijeca
Fleming, S., (2012) Evaluation of Coating Methods for Corrosion Protection of Magnesium Castings, , Rensselaer Polytechnic Institute, Troy
Hu, H., Nie, X., Ma, Y., (2014) Corrosion and Surface Treatment of Magnesium Alloys, , InTechOpen, Windsor
Kainer, K.U., (2003) Magnesium Alloys and Technology, , Wiley, Weinheim
Gray, J.E., Luan, B., (2002) J. Alloys Compd., 336, p. 88. , COI: 1:CAS:528:DC%2BD38XhvVWltb8%3D
Manzanares Grados, R.A., (2011), B.D. Thesis, Pontificia Universidad Católica del Perú
Mola, R., Engineering, F., (2013) Arch. Foundry Eng., 13, p. 99. , COI: 1:CAS:528:DC%2BC3sXmsVCqtL4%3D
Hollstein, F., Wiedemann, R., Scholz, J., (2003) Surf. Coat. Technol., 162, p. 261. , COI: 1:CAS:528:DC%2BD38XoslCks7s%3D
Nassif, N., Ghayad, I., (2013) Hindawi Adv. Mater. Sci. Eng., 2013, p. 532896
Song, G., (2005) Adv. Eng. Mater., 7, p. 563. , COI: 1:CAS:528:DC%2BD2MXhtVWgt7%2FF
Taha, M.A., El-Mahallawy, N.A., Hammouda, R.M., Nassef, S.I., (2010) J. Coat. Technol. Res., 7, p. 793. , COI: 1:CAS:528:DC%2BC3cXhtlKhu7zJ
Zhu, T., Gao, W., (2009) IOP Conf. Ser. Mater. Sci. Eng., 4, p. 012024
Zhang, M.-X., Huang, H., Spencer, K., Shi, Y.-N., (2010) Surf. Coat. Technol., 204, p. 2118. , COI: 1:CAS:528:DC%2BC3cXhvFCktr0%3D
Yang, H., Guo, X., Wu, G., Ding, W., Birbilis, N., (2011) Corros. Sci., 53, p. 381. , COI: 1:CAS:528:DC%2BC3cXhsVansr%2FI
Mola, R., (2015) J. Mater. Res., 30, p. 3682. , COI: 1:CAS:528:DC%2BC2MXhvF2ltL7J
Mola, R., Jagielska-Wiaderek, K., (2014) Surf. Interface Anal., 46, p. 577
Zhu, L., Song, G., (2006) Surf. Coat. Technol., 200, p. 2834. , COI: 1:CAS:528:DC%2BD28XktFKksg%3D%3D
(2019) Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, , ASTM International, West Conshohocken, PA
(2019) Standard Practice for Evaluating Degree of Rusting on Painted Steel Surfaces, , https://doi.org/10.1520/D0610-08R19, ASTM D610-08, ASTM International, West Conshohocken, PA
Zlatanović, D., Davinić, G., (1990) Vacuum, 40, p. 157
Presland, A.E.B., Price, G.L., Trimm, D.L., (1972) Surf. Sci., 29, p. 424. , COI: 1:CAS:528:DyaE38XptFSksg%3D%3D
Brennan, S., Bermudez, K., Kulkarni, N.S., Sohn, Y., (2012) Metall. Mater. Trans. A, 43, p. 4043. , COI: 1:CAS:528:DC%2BC38XhsVSmsLzL
Schmid-Fetzer, R., (2014) J. Phase Equilibria Diffus., 35, p. 735. , COI: 1:CAS:528:DC%2BC2cXhs1CntrjL
Lu, D., Zhang, Q., Wang, W., Guan, F., Ma, X., Yang, L., Wang, X., Hou, B., (2017) Mater. Des., 120, p. 75. , COI: 1:CAS:528:DC%2BC2sXivVOlsr8%3D
Süleyman, E., Van Setten, M.J., De Wijs, G.A., Brocks, G., (2010) J. Phys.: Condens. Matter, 22, p. 074208
Wang, N., Yu, W.-Y., Tang, B.-Y., Peng, L.-M., Ding, W.-J., (2008) J. Phys. D Appl. Phys., 41, p. 195408
Barrena, M.I., Gómez De Salazar, J.M., Matesanz, L., Soria, A., (2011) Mater. Charact., 62, p. 982. , COI: 1:CAS:528:DC%2BC3MXhtFWktLzJ
Jeong, Y.S., Kim, W.J., (2014) Corros. Sci., 82, p. 392. , COI: 1:CAS:528:DC%2BC2cXislKgtLw%3D
Zhong, C., Liu, F., Wu, Y., Le, J., Liu, L., He, M., Zhu, J., Hu, W., (2012) J. Alloys Compd., 520, p. 11. , COI: 1:CAS:528:DC%2BC38XivVCqtrw%3D
Aiello, A., Sieradzki, K., (2018) J. Electrochem. Soc., 165, p. C950. , COI: 1:CAS:528:DC%2BC1cXitlGrt73E
Schmitz, G., Kruse, B., Baither, D., Kim, T.H., (2009) Defect Diffus. Forum, 289-292, p. 719. , COI: 1:CAS:528:DC%2BD1MXosFequr8%3D
Wang, Y., Xia, M., Fan, Z., Zhou, X., Thompson, G.E., (2010) Intermetallics, 18, p. 1683. , COI: 1:CAS:528:DC%2BC3cXnvFKmsb8%3D
Catorceno, L.L.C., de Abreu, H.F.G., Padilha, A.F., (2018) J. Magnes. Alloy., 6, p. 121. , COI: 1:CAS:528:DC%2BC1cXhtVWlur7I
Abbasi, S., Aliofkhazraei, M., Mojiri, H., Amini, M., Ahmadzadeh, M., Shourgeshty, M., (2017) Prot. Met. Phys. Chem. Surf., 53, p. 573. , COI: 1:CAS:528:DC%2BC2sXpsVCjsbk%3D
Toro, L., Zuleta, A.A., Correa, E., Calderón, D., Galindez, Y., Calderón, J., Chacón, P., Echeverría, F., (2020) Mater. Res. Express, 7, p. 016539. , COI: 1:CAS:528:DC%2BB3cXkvVyiur4%3D
Diab, M., Pang, X., Jahed, H., (2017) Surf. Coat. Technol., 309, p. 423. , COI: 1:CAS:528:DC%2BC28XitVGnu7%2FP
Jin, Q., Tian, G., Li, J., Zhao, Y., Yan, H., (2019) Colloids Surf. A Physicochem. Eng. Asp., 577, p. 8. , COI: 1:CAS:528:DC%2BC1MXhtVKnsLbM
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Korean Institute of Metals and Materials
dc.publisher.program.spa.fl_str_mv Ingeniería de Materiales
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
publisher.none.fl_str_mv Korean Institute of Metals and Materials
dc.source.none.fl_str_mv Metals and Materials International
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1808481177326059520
spelling 20212021-02-05T14:57:34Z2021-02-05T14:57:34Z15989623http://hdl.handle.net/11407/588910.1007/s12540-020-00912-5Abstract: The present work examines the formation of a corrosion protective coating containing intermetallic phases on magnesium alloy substrates. The protective coating was formed on the surfaces of commercially pure magnesium (cp Mg) and AZ31B magnesium alloy by vacuum thermal evaporation of commercially pure aluminium (cp Al) and a subsequent heat treatment of the sample. This coating was continuous, homogenous and its microstructure was a eutectic phase composed by clusters of α-Mg surrounded by β phase (Mg17Al12). This eutectic-type coating provided 168 and 504 h of protection inside the salt spray chamber for the cp Mg and AZ31 alloy samples, respectively. To achieve this, it was required to deposit at least 5.5 µm of cp Al and then perform a combined thermal treatment involving heating the samples to 583 K for 60 min and then raising the temperature to 693 K for 5 min. Graphic Abstract: [Figure not available: see fulltext.] © 2021, The Korean Institute of Metals and Materials.engKorean Institute of Metals and MaterialsIngeniería de MaterialesFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85099310701&doi=10.1007%2fs12540-020-00912-5&partnerID=40&md5=9d196d7ddfe1ae0cba63fe7ce9b0e0beStephen, A., (2011) Magnesium Alloys—Corrosion and Surface Treatment, p. 195. , Czerwinski F, (ed), InTechOpen, RijecaFleming, S., (2012) Evaluation of Coating Methods for Corrosion Protection of Magnesium Castings, , Rensselaer Polytechnic Institute, TroyHu, H., Nie, X., Ma, Y., (2014) Corrosion and Surface Treatment of Magnesium Alloys, , InTechOpen, WindsorKainer, K.U., (2003) Magnesium Alloys and Technology, , Wiley, WeinheimGray, J.E., Luan, B., (2002) J. Alloys Compd., 336, p. 88. , COI: 1:CAS:528:DC%2BD38XhvVWltb8%3DManzanares Grados, R.A., (2011), B.D. Thesis, Pontificia Universidad Católica del PerúMola, R., Engineering, F., (2013) Arch. Foundry Eng., 13, p. 99. , COI: 1:CAS:528:DC%2BC3sXmsVCqtL4%3DHollstein, F., Wiedemann, R., Scholz, J., (2003) Surf. Coat. Technol., 162, p. 261. , COI: 1:CAS:528:DC%2BD38XoslCks7s%3DNassif, N., Ghayad, I., (2013) Hindawi Adv. Mater. Sci. Eng., 2013, p. 532896Song, G., (2005) Adv. Eng. Mater., 7, p. 563. , COI: 1:CAS:528:DC%2BD2MXhtVWgt7%2FFTaha, M.A., El-Mahallawy, N.A., Hammouda, R.M., Nassef, S.I., (2010) J. Coat. Technol. Res., 7, p. 793. , COI: 1:CAS:528:DC%2BC3cXhtlKhu7zJZhu, T., Gao, W., (2009) IOP Conf. Ser. Mater. Sci. Eng., 4, p. 012024Zhang, M.-X., Huang, H., Spencer, K., Shi, Y.-N., (2010) Surf. Coat. Technol., 204, p. 2118. , COI: 1:CAS:528:DC%2BC3cXhvFCktr0%3DYang, H., Guo, X., Wu, G., Ding, W., Birbilis, N., (2011) Corros. Sci., 53, p. 381. , COI: 1:CAS:528:DC%2BC3cXhsVansr%2FIMola, R., (2015) J. Mater. Res., 30, p. 3682. , COI: 1:CAS:528:DC%2BC2MXhvF2ltL7JMola, R., Jagielska-Wiaderek, K., (2014) Surf. Interface Anal., 46, p. 577Zhu, L., Song, G., (2006) Surf. Coat. Technol., 200, p. 2834. , COI: 1:CAS:528:DC%2BD28XktFKksg%3D%3D(2019) Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, , ASTM International, West Conshohocken, PA(2019) Standard Practice for Evaluating Degree of Rusting on Painted Steel Surfaces, , https://doi.org/10.1520/D0610-08R19, ASTM D610-08, ASTM International, West Conshohocken, PAZlatanović, D., Davinić, G., (1990) Vacuum, 40, p. 157Presland, A.E.B., Price, G.L., Trimm, D.L., (1972) Surf. Sci., 29, p. 424. , COI: 1:CAS:528:DyaE38XptFSksg%3D%3DBrennan, S., Bermudez, K., Kulkarni, N.S., Sohn, Y., (2012) Metall. Mater. Trans. A, 43, p. 4043. , COI: 1:CAS:528:DC%2BC38XhsVSmsLzLSchmid-Fetzer, R., (2014) J. Phase Equilibria Diffus., 35, p. 735. , COI: 1:CAS:528:DC%2BC2cXhs1CntrjLLu, D., Zhang, Q., Wang, W., Guan, F., Ma, X., Yang, L., Wang, X., Hou, B., (2017) Mater. Des., 120, p. 75. , COI: 1:CAS:528:DC%2BC2sXivVOlsr8%3DSüleyman, E., Van Setten, M.J., De Wijs, G.A., Brocks, G., (2010) J. Phys.: Condens. Matter, 22, p. 074208Wang, N., Yu, W.-Y., Tang, B.-Y., Peng, L.-M., Ding, W.-J., (2008) J. Phys. D Appl. Phys., 41, p. 195408Barrena, M.I., Gómez De Salazar, J.M., Matesanz, L., Soria, A., (2011) Mater. Charact., 62, p. 982. , COI: 1:CAS:528:DC%2BC3MXhtFWktLzJJeong, Y.S., Kim, W.J., (2014) Corros. Sci., 82, p. 392. , COI: 1:CAS:528:DC%2BC2cXislKgtLw%3DZhong, C., Liu, F., Wu, Y., Le, J., Liu, L., He, M., Zhu, J., Hu, W., (2012) J. Alloys Compd., 520, p. 11. , COI: 1:CAS:528:DC%2BC38XivVCqtrw%3DAiello, A., Sieradzki, K., (2018) J. Electrochem. Soc., 165, p. C950. , COI: 1:CAS:528:DC%2BC1cXitlGrt73ESchmitz, G., Kruse, B., Baither, D., Kim, T.H., (2009) Defect Diffus. Forum, 289-292, p. 719. , COI: 1:CAS:528:DC%2BD1MXosFequr8%3DWang, Y., Xia, M., Fan, Z., Zhou, X., Thompson, G.E., (2010) Intermetallics, 18, p. 1683. , COI: 1:CAS:528:DC%2BC3cXnvFKmsb8%3DCatorceno, L.L.C., de Abreu, H.F.G., Padilha, A.F., (2018) J. Magnes. Alloy., 6, p. 121. , COI: 1:CAS:528:DC%2BC1cXhtVWlur7IAbbasi, S., Aliofkhazraei, M., Mojiri, H., Amini, M., Ahmadzadeh, M., Shourgeshty, M., (2017) Prot. Met. Phys. Chem. Surf., 53, p. 573. , COI: 1:CAS:528:DC%2BC2sXpsVCjsbk%3DToro, L., Zuleta, A.A., Correa, E., Calderón, D., Galindez, Y., Calderón, J., Chacón, P., Echeverría, F., (2020) Mater. Res. Express, 7, p. 016539. , COI: 1:CAS:528:DC%2BB3cXkvVyiur4%3DDiab, M., Pang, X., Jahed, H., (2017) Surf. Coat. Technol., 309, p. 423. , COI: 1:CAS:528:DC%2BC28XitVGnu7%2FPJin, Q., Tian, G., Li, J., Zhao, Y., Yan, H., (2019) Colloids Surf. A Physicochem. Eng. Asp., 577, p. 8. , COI: 1:CAS:528:DC%2BC1MXhtVKnsLbMMetals and Materials InternationalAZ31B magnesium alloyCoatingPure magnesiumVacuum thermal evaporationα-Mg phaseβ (Mg17Al12) phaseIntermetallic-Rich Layer Formation for Improving Corrosion Resistance of Magnesium AlloysArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Calderón, D., Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaGalindez, Y., Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaToro, L., Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaZuleta, A.A., Grupo de Investigación de Estudios en Diseño - GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana UPB, Circular 1a. No 70-01, Medellín, ColombiaValencia-Escobar, A., Grupo de Investigación de Estudios en Diseño - GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana UPB, Circular 1a. No 70-01, Medellín, ColombiaChacón, P., Grupo de Investigación de Estudios en Diseño - GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana UPB, Circular 1a. No 70-01, Medellín, ColombiaCorrea, E., Grupo de Investigación Materiales con Impacto – MAT&MPAC, Facultad de Ingenierías, Universidad de Medellín UdeM, Carrera 87 No 30 – 65, Medellín, ColombiaEcheverría, F., Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecCalderón D.Galindez Y.Toro L.Zuleta A.A.Valencia-Escobar A.Chacón P.Correa E.Echeverría F.11407/5889oai:repository.udem.edu.co:11407/58892021-02-05 09:57:34.332Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co