Wood walls insulated with coconut fiber [Muro de madera aislado con fibra de coco]

Solid wood gives the shape to walls, while panels are the coating and they are nailed or screwed to the wood sections. In the cavities between the wood elements and the panels, a thermal and acoustic insulator must be added. Unfortunately, almost all of the currently used insulators (mineral wool, e...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5716
Acceso en línea:
http://hdl.handle.net/11407/5716
Palabra clave:
Acoustic absorption
Coconut fiber
Thermal conductivity
Wood
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_f5891351c298360626e7968f6290180d
oai_identifier_str oai:repository.udem.edu.co:11407/5716
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Wood walls insulated with coconut fiber [Muro de madera aislado con fibra de coco]
title Wood walls insulated with coconut fiber [Muro de madera aislado con fibra de coco]
spellingShingle Wood walls insulated with coconut fiber [Muro de madera aislado con fibra de coco]
Acoustic absorption
Coconut fiber
Thermal conductivity
Wood
title_short Wood walls insulated with coconut fiber [Muro de madera aislado con fibra de coco]
title_full Wood walls insulated with coconut fiber [Muro de madera aislado con fibra de coco]
title_fullStr Wood walls insulated with coconut fiber [Muro de madera aislado con fibra de coco]
title_full_unstemmed Wood walls insulated with coconut fiber [Muro de madera aislado con fibra de coco]
title_sort Wood walls insulated with coconut fiber [Muro de madera aislado con fibra de coco]
dc.subject.none.fl_str_mv Acoustic absorption
Coconut fiber
Thermal conductivity
Wood
topic Acoustic absorption
Coconut fiber
Thermal conductivity
Wood
description Solid wood gives the shape to walls, while panels are the coating and they are nailed or screwed to the wood sections. In the cavities between the wood elements and the panels, a thermal and acoustic insulator must be added. Unfortunately, almost all of the currently used insulators (mineral wool, expanded polystyrene, polyurethane) are not biodegradable and require the use of vapor barriers (polyethylene sheets, aluminum foils, etc.) that deteriorate rapidly and that are relatively environmentally unfriendly. In this article, the use of coconut fiber instead of conventional insulators is suggested. The acoustic absorption and thermal conductivity coefficients of composite sections taken from wood walls with coconut fiber are estimated. In this way, good thermo-acoustic conditions inside the wood building are achieved using an ecological insulating material. © The author; licensee Universidad Nacional de Colombia.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:53:45Z
dc.date.available.none.fl_str_mv 2020-04-29T14:53:45Z
dc.date.none.fl_str_mv 2019
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 127353
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5716
dc.identifier.doi.none.fl_str_mv 10.15446/dyna.v86n210.73685
identifier_str_mv 127353
10.15446/dyna.v86n210.73685
url http://hdl.handle.net/11407/5716
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081216304&doi=10.15446%2fdyna.v86n210.73685&partnerID=40&md5=5414a81b8aedfdbb412fd1763dba39a7
dc.relation.citationvolume.none.fl_str_mv 86
dc.relation.citationissue.none.fl_str_mv 210
dc.relation.citationstartpage.none.fl_str_mv 333
dc.relation.citationendpage.none.fl_str_mv 337
dc.relation.references.none.fl_str_mv Standard methods of testing on small clear specimens of timber (1994) ASTM Annual Book of Standards, p. 2006. , West Conshohocken, Pa
Standard test methods for specific gravity of wood and wood-based materials (2002) ASTM Annual Book of Standards, p. 2006. , West Conshohocken, Pa
(2012) Standard Test Method for Impedance and Absorption of Acoustical Materials Using a Tube, Two Microphones and a Digital Frequency Analysis System, p. 2012. , ASTM Annual Book of Standards, West Conshohocken, Pa
(2013) Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by means of the Guarded-Hot-Plate Apparatus, p. 2013. , ASTM Annual Book of Standards, West Conshohocken, Pa
(2015) Standard Test Method for Steady-State Thermal Transmission Properties by means of the Heat Flow Meter Apparatus. ASTM Annual Book of Standards, , West Conshohocken, Pa
Alavez, R., Chiñas, F., Morales, V.J., Ortiz, M., Thermal conductivity of coconut fibre filled ferrocement sandwich panels (2012) Construction and Building Materials, 37, pp. 425-431
Asasutjarit, C., Hirunlabh, J., Khedari, J., Charoenvai, S., Zeghmati, B., Cheul-Shin, U., Development of coconut coir-based lightweight cement board (2007) Construction and Building Materials, 21 (2), pp. 277-288
Ayub, M., Nor, M.J.M., Fouladi, M.H., Zulkifli, R., Amin, N., A practical acoustical absorption analysis of coir fiber based on rigid frame modeling (2012) Acoustical Physics, 58 (2), pp. 246-255
Biot, M.A., Theory of propagation of elastic waves in a fluid saturated porous solid (1956) The Journal of the Acoustical Society of America, 28 (2), pp. 168-178
Conde, S., (2010) Estudio De La Fibra De Coco Con Resina poliéster Para La Manufactura De Palas De Aerogeneradores De pequeña Potencia, , Universidad del Istmo Campus Tehuantepec, Santo Domingo Tehuantepec, Oaxaca
Courgey, S., (2010) Maisons Bois Chanvre Et Paille Sur La Commune De Montholier-Une expérimentation matériaux Renouvelables. Collection Recherche développement métier. Fédération française Du bâtiment, , Paris, SEBTP
Delany, M.E., Bazley, E.N., Acoustical properties of fibrous absorbent materials (1970) Applied Acoustics, 3 (2), pp. 105-116
Dunn, I.P., Davern, W.A., Calculation of acoustic impedance of multi-layer absorbers (1986) Applied Acoustics, 19 (5), pp. 321-334
Ford, R.D., West, M., The fundamental acoustic parameters of two commonly used absorbent materials (1970) Applied Acoustics, 3 (2), pp. 89-103
Frémond, Y., Ziller, R., de Nucé-De Lamothe, M., (1968) The Coconut Palm, , International Potash Institute, Berne, Switzerland
Fouladi, M.H., Ghassem, M., Ayub, M., Mohd-Nor, M.J., Implementation of coir fiber as acoustic absorber material (2011) Noise & Vibration Worldwide, 42 (9), pp. 11-16
Hens, H., (2016) Applied Building Physics-Ambient Conditions, Building Performance and Material Properties, , Wiley Ernst & Sohn. Darmstadt, Germany
(1998) Acoustics-Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes-Part 2: Transfer-Function Method, , 10534-2:1998
Khedari, J., Watsanasathaporn, P., Hirunlabh, J., Development of fibre-based soil-cement block with low thermal conductivity (2005) Cement and Concrete Composites, 27 (1), pp. 111-116
Mohanty, A.K., Misra, M., Drzal, L.T., (2005) Natural Fibers, Biopolymers, and Biocomposites, , CRC Press
Quintero, S.L., González, L.O., Uso de fibra de estopa de coco para mejorar las propiedades mecánicas del concreto (2006) Ingeniería Y Desarrollo, 20, pp. 134-150. , Julio-Diciembre
Shiney, A., Premlet, B., Acoustic properties of composite coir mats (2014) IOSR Journal of Applied Physics, 6 (3), pp. 18-23
Tudu, P., (2009) Processing and Characterization of Natural Fiber Reinforced Polymer Composites. Department of Mechanical Engineering, , National Institute of Technology, Rourkela-769008, Rourkela, India
(1996) Structures En Bois Aux états Limites: Introduction à L'eurocode 5-Matériaux Et Bases De Calcul-Step 1, , Eyrolles, Paris, France
Vorländer, M., (2008) Auralization-Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality, , Springer, Berlin, Germany
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.none.fl_str_mv Ingeniería Ambiental
dc.publisher.faculty.none.fl_str_mv Facultad de Ingenierías
publisher.none.fl_str_mv Universidad Nacional de Colombia
dc.source.none.fl_str_mv DYNA (Colombia)
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159113196666880
spelling 20192020-04-29T14:53:45Z2020-04-29T14:53:45Z127353http://hdl.handle.net/11407/571610.15446/dyna.v86n210.73685Solid wood gives the shape to walls, while panels are the coating and they are nailed or screwed to the wood sections. In the cavities between the wood elements and the panels, a thermal and acoustic insulator must be added. Unfortunately, almost all of the currently used insulators (mineral wool, expanded polystyrene, polyurethane) are not biodegradable and require the use of vapor barriers (polyethylene sheets, aluminum foils, etc.) that deteriorate rapidly and that are relatively environmentally unfriendly. In this article, the use of coconut fiber instead of conventional insulators is suggested. The acoustic absorption and thermal conductivity coefficients of composite sections taken from wood walls with coconut fiber are estimated. In this way, good thermo-acoustic conditions inside the wood building are achieved using an ecological insulating material. © The author; licensee Universidad Nacional de Colombia.engUniversidad Nacional de ColombiaIngeniería AmbientalFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85081216304&doi=10.15446%2fdyna.v86n210.73685&partnerID=40&md5=5414a81b8aedfdbb412fd1763dba39a786210333337Standard methods of testing on small clear specimens of timber (1994) ASTM Annual Book of Standards, p. 2006. , West Conshohocken, PaStandard test methods for specific gravity of wood and wood-based materials (2002) ASTM Annual Book of Standards, p. 2006. , West Conshohocken, Pa(2012) Standard Test Method for Impedance and Absorption of Acoustical Materials Using a Tube, Two Microphones and a Digital Frequency Analysis System, p. 2012. , ASTM Annual Book of Standards, West Conshohocken, Pa(2013) Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by means of the Guarded-Hot-Plate Apparatus, p. 2013. , ASTM Annual Book of Standards, West Conshohocken, Pa(2015) Standard Test Method for Steady-State Thermal Transmission Properties by means of the Heat Flow Meter Apparatus. ASTM Annual Book of Standards, , West Conshohocken, PaAlavez, R., Chiñas, F., Morales, V.J., Ortiz, M., Thermal conductivity of coconut fibre filled ferrocement sandwich panels (2012) Construction and Building Materials, 37, pp. 425-431Asasutjarit, C., Hirunlabh, J., Khedari, J., Charoenvai, S., Zeghmati, B., Cheul-Shin, U., Development of coconut coir-based lightweight cement board (2007) Construction and Building Materials, 21 (2), pp. 277-288Ayub, M., Nor, M.J.M., Fouladi, M.H., Zulkifli, R., Amin, N., A practical acoustical absorption analysis of coir fiber based on rigid frame modeling (2012) Acoustical Physics, 58 (2), pp. 246-255Biot, M.A., Theory of propagation of elastic waves in a fluid saturated porous solid (1956) The Journal of the Acoustical Society of America, 28 (2), pp. 168-178Conde, S., (2010) Estudio De La Fibra De Coco Con Resina poliéster Para La Manufactura De Palas De Aerogeneradores De pequeña Potencia, , Universidad del Istmo Campus Tehuantepec, Santo Domingo Tehuantepec, OaxacaCourgey, S., (2010) Maisons Bois Chanvre Et Paille Sur La Commune De Montholier-Une expérimentation matériaux Renouvelables. Collection Recherche développement métier. Fédération française Du bâtiment, , Paris, SEBTPDelany, M.E., Bazley, E.N., Acoustical properties of fibrous absorbent materials (1970) Applied Acoustics, 3 (2), pp. 105-116Dunn, I.P., Davern, W.A., Calculation of acoustic impedance of multi-layer absorbers (1986) Applied Acoustics, 19 (5), pp. 321-334Ford, R.D., West, M., The fundamental acoustic parameters of two commonly used absorbent materials (1970) Applied Acoustics, 3 (2), pp. 89-103Frémond, Y., Ziller, R., de Nucé-De Lamothe, M., (1968) The Coconut Palm, , International Potash Institute, Berne, SwitzerlandFouladi, M.H., Ghassem, M., Ayub, M., Mohd-Nor, M.J., Implementation of coir fiber as acoustic absorber material (2011) Noise & Vibration Worldwide, 42 (9), pp. 11-16Hens, H., (2016) Applied Building Physics-Ambient Conditions, Building Performance and Material Properties, , Wiley Ernst & Sohn. Darmstadt, Germany(1998) Acoustics-Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes-Part 2: Transfer-Function Method, , 10534-2:1998Khedari, J., Watsanasathaporn, P., Hirunlabh, J., Development of fibre-based soil-cement block with low thermal conductivity (2005) Cement and Concrete Composites, 27 (1), pp. 111-116Mohanty, A.K., Misra, M., Drzal, L.T., (2005) Natural Fibers, Biopolymers, and Biocomposites, , CRC PressQuintero, S.L., González, L.O., Uso de fibra de estopa de coco para mejorar las propiedades mecánicas del concreto (2006) Ingeniería Y Desarrollo, 20, pp. 134-150. , Julio-DiciembreShiney, A., Premlet, B., Acoustic properties of composite coir mats (2014) IOSR Journal of Applied Physics, 6 (3), pp. 18-23Tudu, P., (2009) Processing and Characterization of Natural Fiber Reinforced Polymer Composites. Department of Mechanical Engineering, , National Institute of Technology, Rourkela-769008, Rourkela, India(1996) Structures En Bois Aux états Limites: Introduction à L'eurocode 5-Matériaux Et Bases De Calcul-Step 1, , Eyrolles, Paris, FranceVorländer, M., (2008) Auralization-Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality, , Springer, Berlin, GermanyDYNA (Colombia)Acoustic absorptionCoconut fiberThermal conductivityWoodWood walls insulated with coconut fiber [Muro de madera aislado con fibra de coco]Articleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Villa, K., Universidad Nacional de Colombia, Medellín, Colombia; Echavarría, C., Universidad Nacional de Colombia, Medellín, Colombia; Blessent, D., Universidad de Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecVilla K.Echavarría C.Blessent D.11407/5716oai:repository.udem.edu.co:11407/57162020-05-27 15:51:19.761Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co