Synthesis and Characterization of Photoactive S-Tio2 from Tioso4 Precursor Using an Integrated Sol-Gel and Solvothermal Method at Low Temperatures
Photoactive S-titanium dioxides (S-TiO2) were synthesized from TiOSO4 as only Ti and S precursor using an integrated sol-gel and solvothermal method at low temperatures (200 °C - 250 °C). The effect of the synthesis conditions (molar ratios of water/TiOSO4 and solvent (ethanol)/TiOSO4 as well as tem...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/4527
- Acceso en línea:
- http://hdl.handle.net/11407/4527
- Palabra clave:
- Formic Acid; Photocatalysis; Sol-gel Method; Solvothermal Method; Titanium Dioxide; Titanium Oxysulfate
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_f50e9a0ef6fe21af831c8077cc9e9282 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/4527 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Synthesis and Characterization of Photoactive S-Tio2 from Tioso4 Precursor Using an Integrated Sol-Gel and Solvothermal Method at Low Temperatures |
title |
Synthesis and Characterization of Photoactive S-Tio2 from Tioso4 Precursor Using an Integrated Sol-Gel and Solvothermal Method at Low Temperatures |
spellingShingle |
Synthesis and Characterization of Photoactive S-Tio2 from Tioso4 Precursor Using an Integrated Sol-Gel and Solvothermal Method at Low Temperatures Formic Acid; Photocatalysis; Sol-gel Method; Solvothermal Method; Titanium Dioxide; Titanium Oxysulfate |
title_short |
Synthesis and Characterization of Photoactive S-Tio2 from Tioso4 Precursor Using an Integrated Sol-Gel and Solvothermal Method at Low Temperatures |
title_full |
Synthesis and Characterization of Photoactive S-Tio2 from Tioso4 Precursor Using an Integrated Sol-Gel and Solvothermal Method at Low Temperatures |
title_fullStr |
Synthesis and Characterization of Photoactive S-Tio2 from Tioso4 Precursor Using an Integrated Sol-Gel and Solvothermal Method at Low Temperatures |
title_full_unstemmed |
Synthesis and Characterization of Photoactive S-Tio2 from Tioso4 Precursor Using an Integrated Sol-Gel and Solvothermal Method at Low Temperatures |
title_sort |
Synthesis and Characterization of Photoactive S-Tio2 from Tioso4 Precursor Using an Integrated Sol-Gel and Solvothermal Method at Low Temperatures |
dc.contributor.affiliation.spa.fl_str_mv |
Grupo Procesos Fisicoquímicos Aplicados, Departamento de Ingeniería Química, Facultad de Ingeniería, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Calle 70, Medellín, Colombia; Doctorado en Ingeniería, Facultad de Ingeniería, Universidad de Medellín, Carrera 87, Medellín, Colombia |
dc.subject.keyword.eng.fl_str_mv |
Formic Acid; Photocatalysis; Sol-gel Method; Solvothermal Method; Titanium Dioxide; Titanium Oxysulfate |
topic |
Formic Acid; Photocatalysis; Sol-gel Method; Solvothermal Method; Titanium Dioxide; Titanium Oxysulfate |
description |
Photoactive S-titanium dioxides (S-TiO2) were synthesized from TiOSO4 as only Ti and S precursor using an integrated sol-gel and solvothermal method at low temperatures (200 °C - 250 °C). The effect of the synthesis conditions (molar ratios of water/TiOSO4 and solvent (ethanol)/TiOSO4 as well as temperature, < 250 °C) of the applied method in the properties and the photoactivity of the synthesized materials was evaluated through Box-Behnken experimental design. The prepared photocatalysts were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray fluorescence (XRF), attenuated total reflectance - Fourier transform infrared spectroscopy (ATR-FTIR), ultraviolet - visible diffuse reflectance spectroscopy (UV/vis-DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), porosity and BET surface area analysis. The photocatalytic activities of the synthesized S-TiO2 materials were determined by the photodegradation of formic acid. Results indicated that the integrated sol-gel and solvothermal method at low temperatures led to obtain mesoporous, crystalline and photoactive S-TiO2 materials, crystallized as anatase phase with UV and visible light absorption for all synthesis conditions. All synthesized S-TiO2 materials showed high activity in formic acid photodegradation, which was associated on their degrees of crystallinity, particle sizes and sulfur contents, being higher in the materials synthesized with the temperature of 250 °C. Material synthesized with molar ratio water/TiOSO4 of 4.0, molar ratio ethanol/TiOSO4 of 15 and T = 250 °C, showed the highest photocatalytic activity, a crystallite size of 42.34 nm, surface area of 35.77 m2/g, sulfur content of 0.818 wt %, high UV and visible radiation absorption and band gap of 3.03. © 2017. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2018-04-13T16:31:24Z |
dc.date.available.none.fl_str_mv |
2018-04-13T16:31:24Z |
dc.date.created.none.fl_str_mv |
2018 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
12038407 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/4527 |
dc.identifier.doi.none.fl_str_mv |
10.26802/jaots.2017.0008 |
identifier_str_mv |
12038407 10.26802/jaots.2017.0008 |
url |
http://hdl.handle.net/11407/4527 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85037827726&doi=10.26802%2fjaots.2017.0008&partnerID=40&md5=97bd5c12fb50d1925f7a858319ecfccc |
dc.relation.ispartofes.spa.fl_str_mv |
Journal of Advanced Oxidation Technologies |
dc.relation.references.spa.fl_str_mv |
Hidalgo, M.C., Sakthivel, S., Bahnemann, D., (2004) Appl. Catal., A., 277, pp. 183-189; Serpone, N., Lawless, D., Khairutdinov, R., Pelizzetti, E., (1995) J. Phys. Chem., 99, pp. 16655-16661; Chen, L., Zhu, J., Liu, Y.M., Cao, Y., Li, H.X., He, H.Y., Dai, W.L., Fan, K.N., (2006) J. Mol. Catal. A: Chem., 255, pp. 260-268; Loryuenyong, V., Angamnuaysiri, K., Sukcharoenpong, J., Suwannasri, A., (2012) Ceram. Int., 38, pp. 2233-2237; Ngamta, S., Boonprakob, N., Wetchakun, N., Ounnunkad, K., Phanichphant, S., Inceesungvorn, B., (2013) Mater. Lett., 105, pp. 76-79; Colón, G., Maicu, M., Hidalgo, M.C., Navío, J.A., Kubacka, A., Fernández-García, M., (2010) J. Mol. Catal. A: Chem., 320, pp. 14-18; Ẑuni, V., Vukomanovi, M., Ŝkapin, S.D., Suvorov, D., Kova, J., (2014) Ultrason. Sonochem., 21, pp. 367-375; Khomane, R.B., (2011) J. Colloid Interface Sci., 356, pp. 369-372; Hou, J., Yang, X., Lv, X., Huang, M., Wang, Q., Wang, J.J., (2012) Alloys Compd., 511, pp. 202-208; Yeh, S.W., Ko, H.H., Chiang, H.M., Chen, Y.L., Lee, J.H., Wen, C.M., Wang, M.C., (2014) J. Alloys Compd., 613, pp. 107-116; Tripathi, A.K., Singh, M.K., Mathpal, M.C., Mishra, S.K., Agarwal, A., (2013) J. Alloys Compd., 549, pp. 114-120; He, F., Li, J., Li, T., Li, G., (2014) Chem. Eng. J., 237, pp. 312-321; Vargas, X., Tauchert, E., Marin, J.M., Restrepo, G., Dillert, R., Bahnemann, D., (2012) J. Photochem. and Photobiol., A., 243, pp. 17-22; Jaiswal, R., Bharambe, J., Patel, N., Dashora, A., Kothari, D.C., Miotello, A., (2015) Appl. Catal., B., 168-169, pp. 333-341; Han, C., Andersen, J., Likodimos, V., Falaras, P., Linkugel, J., Dionysiou, D.D., (2014) Catal. Today., 224, pp. 132-139; Nishikiori, H., Hayashibe, M., Fujii, T., (2013) Catalysts., 3, pp. 363-377; Han, C., Pelaez, M., Likodimos, V., Kontos, A., Falaras, P., O'Shea, K., Dionysiou, D.D., (2011) Appl. Catal., B., 107, pp. 77-87; Colón, G., Hidalgo, M.C., Munuera, G., Ferino, I., Cutrufello, M.G., Navío, J.A., (2006) Appl. Catal., B., 63, pp. 45-59; McManamon, C., O'Connell, J., Delaney, P., Rasappa, S., Holmes, J., Morris, M.J., (2015) Mol. Catal. A: Chem., 406, pp. 51-57; Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., Mitsui, T., Matsumura, M., (2004) Appl. Catal., A., 265, pp. 115-121; Lin, Y.H., Hsueh, H.T., Chang, C.H.W., Chu, H., (2016) Appl. Catal., B., 199, pp. 1-10; Yamazaki, S., Fujinaga, N., Araki, K., (2001) Appl. Catal., A., 210, pp. 97-102; Bakar, S., Riberio, C., (2016) J. Mol. Catal. A: Chem., 412, pp. 78-92; Hussain, S., Khan, K., Hussain, R., (2009) J. Nat. Gas Chem., 18, pp. 383-391; Chen, X., Kuo, D.H., Lu, D., (2017) Adv. Powder Technol., 28, pp. 1213-1220; Zhang, D., Wang, J.J., (2015) Water Process Eng., 7, pp. 187-195; Zeng, F., Luo, D., Zhang, Z., Liang, B., Yuan, X., Fu, L., (2016) J. Alloys Compd., 670, pp. 249-257; Murcia, J.J., Hidalgo, M.C., Navío, J.A., Araña, J., Doña-Rodríguez, J.M., (2015) Appl. Catal., B., 179, pp. 305-312; Yang, G., Ding, H., Chen, D., Ao, W., Wang, J., Hou, X., (2016) Appl. Surf. Sci., 376, pp. 227-235; Tian, C., Zhang, Z., Hou, J., Luo, N., (2008) Mate. Lett., 62, pp. 77-80; Xing, Z., Li, Z., Wu, X., Wang, G., Zhou, W., (2016) Int. J. Hydrogen Energy, 41, pp. 1535-1541; He, F., Ma, F., Li, T., Li, G., (2013) Chin. J. Catal., 34, pp. 2263-2270; Myers, R.H., Montgomery, D.C., Anderson-Cook, C.H.M., (2009) Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 3rd Ed, pp. 317-320. , New Jersey: John Wiley & Sons; You, Y.F., Xu, C.H., Xu, S.S., Cao, S., Wang, J.P., Huang, Y.B., Shi, S.Q., (2014) Ceram. Int., 40, pp. 8659-8666; Bellardita, M., Di Paola, A., Megna, B., Palmisano, L., (2017) Appl. Catal., B., 201, pp. 150-158; Sivakumar, S., Pillai, P.K., Mukundan, P., Warrier, K.G.K., (2002) Mater. Lett., 57, pp. 330-335; Zhang, W.F., He, Y.L., Zhang, M.S., Yin, Z., Chen, Q., (2000) J. Phys. D: Appl. Phys., 33, pp. 912-916; Choi, H.C.H., Jung, Y.M., Kim, S.B., (2005) Vib. Spectrosc., 37, pp. 33-38; Iliev, M.N., Hadjiev, V.G., Litvinchunk, A.P., (2013) Vib. Spectrosc., 64, pp. 148-152; Ma, H.L., Yang, J.Y., Dai, Y., Zhang, Y.B., Lu, B., Ma, G.H., (2007) Appl. Surf. Sci., 253, pp. 7497-7500; Rajender, G., Giri, P.K., (2016) J. Alloys Compd., 676, pp. 591-600; Iwasaki, M., Hara, M., Ito, S., (1998) J. Mater. Sci. Lett., 17, pp. 1769-1771; Bei, D., Marszalek, J., Youan, B.B.C., (2009) AAPS PharmSciTech., 10 (3), pp. 1040-1047; Wang, G., (2007) J. Mol. Catal. A: Chem. Ref. Data, 274, pp. 185-191; Thommes, M., Kaneko, K., Neimark, K.V., Oliver, J.P., Rodriguez-Reinoso, F., Roquerol, J., Sing, K.S.W., (2015) Pure Appl. Chem., 87 (9-10), pp. 1051-1069; Carp, O., Huisman, C.L., Reller, A., (2004) Prog. Solid State Chem., 32, pp. 33-177; Golobostanfard, M.R., Abdizadeh, H., (2013) Physica B., 413, pp. 40-46; Selishchev, D., Kozlov, D., (2014) Molecules., 19, pp. 21424-21441; Raj, K.A.J., Shanmugam, R., Mahalakshmi, R., Viswanathan, B., (2010) Indian J. Chem., 49 A, pp. 9-17; Rengifo-Herrera, J.A., Kiwi, J., Pulgarin, C., (2009) J. Photochem. Photobiol., A., 205, pp. 109-115; Ho, W., Yu, J.C., Lee, S., (2006) J. Solid State Chem., 179, pp. 1171-1176 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
Walter de Gruyter GmbH |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
dc.source.spa.fl_str_mv |
Scopus |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159113369681920 |
spelling |
2018-04-13T16:31:24Z2018-04-13T16:31:24Z201812038407http://hdl.handle.net/11407/452710.26802/jaots.2017.0008Photoactive S-titanium dioxides (S-TiO2) were synthesized from TiOSO4 as only Ti and S precursor using an integrated sol-gel and solvothermal method at low temperatures (200 °C - 250 °C). The effect of the synthesis conditions (molar ratios of water/TiOSO4 and solvent (ethanol)/TiOSO4 as well as temperature, < 250 °C) of the applied method in the properties and the photoactivity of the synthesized materials was evaluated through Box-Behnken experimental design. The prepared photocatalysts were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray fluorescence (XRF), attenuated total reflectance - Fourier transform infrared spectroscopy (ATR-FTIR), ultraviolet - visible diffuse reflectance spectroscopy (UV/vis-DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), porosity and BET surface area analysis. The photocatalytic activities of the synthesized S-TiO2 materials were determined by the photodegradation of formic acid. Results indicated that the integrated sol-gel and solvothermal method at low temperatures led to obtain mesoporous, crystalline and photoactive S-TiO2 materials, crystallized as anatase phase with UV and visible light absorption for all synthesis conditions. All synthesized S-TiO2 materials showed high activity in formic acid photodegradation, which was associated on their degrees of crystallinity, particle sizes and sulfur contents, being higher in the materials synthesized with the temperature of 250 °C. Material synthesized with molar ratio water/TiOSO4 of 4.0, molar ratio ethanol/TiOSO4 of 15 and T = 250 °C, showed the highest photocatalytic activity, a crystallite size of 42.34 nm, surface area of 35.77 m2/g, sulfur content of 0.818 wt %, high UV and visible radiation absorption and band gap of 3.03. © 2017.engWalter de Gruyter GmbHFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85037827726&doi=10.26802%2fjaots.2017.0008&partnerID=40&md5=97bd5c12fb50d1925f7a858319ecfcccJournal of Advanced Oxidation TechnologiesHidalgo, M.C., Sakthivel, S., Bahnemann, D., (2004) Appl. Catal., A., 277, pp. 183-189; Serpone, N., Lawless, D., Khairutdinov, R., Pelizzetti, E., (1995) J. Phys. Chem., 99, pp. 16655-16661; Chen, L., Zhu, J., Liu, Y.M., Cao, Y., Li, H.X., He, H.Y., Dai, W.L., Fan, K.N., (2006) J. Mol. Catal. A: Chem., 255, pp. 260-268; Loryuenyong, V., Angamnuaysiri, K., Sukcharoenpong, J., Suwannasri, A., (2012) Ceram. Int., 38, pp. 2233-2237; Ngamta, S., Boonprakob, N., Wetchakun, N., Ounnunkad, K., Phanichphant, S., Inceesungvorn, B., (2013) Mater. Lett., 105, pp. 76-79; Colón, G., Maicu, M., Hidalgo, M.C., Navío, J.A., Kubacka, A., Fernández-García, M., (2010) J. Mol. Catal. A: Chem., 320, pp. 14-18; Ẑuni, V., Vukomanovi, M., Ŝkapin, S.D., Suvorov, D., Kova, J., (2014) Ultrason. Sonochem., 21, pp. 367-375; Khomane, R.B., (2011) J. Colloid Interface Sci., 356, pp. 369-372; Hou, J., Yang, X., Lv, X., Huang, M., Wang, Q., Wang, J.J., (2012) Alloys Compd., 511, pp. 202-208; Yeh, S.W., Ko, H.H., Chiang, H.M., Chen, Y.L., Lee, J.H., Wen, C.M., Wang, M.C., (2014) J. Alloys Compd., 613, pp. 107-116; Tripathi, A.K., Singh, M.K., Mathpal, M.C., Mishra, S.K., Agarwal, A., (2013) J. Alloys Compd., 549, pp. 114-120; He, F., Li, J., Li, T., Li, G., (2014) Chem. Eng. J., 237, pp. 312-321; Vargas, X., Tauchert, E., Marin, J.M., Restrepo, G., Dillert, R., Bahnemann, D., (2012) J. Photochem. and Photobiol., A., 243, pp. 17-22; Jaiswal, R., Bharambe, J., Patel, N., Dashora, A., Kothari, D.C., Miotello, A., (2015) Appl. Catal., B., 168-169, pp. 333-341; Han, C., Andersen, J., Likodimos, V., Falaras, P., Linkugel, J., Dionysiou, D.D., (2014) Catal. Today., 224, pp. 132-139; Nishikiori, H., Hayashibe, M., Fujii, T., (2013) Catalysts., 3, pp. 363-377; Han, C., Pelaez, M., Likodimos, V., Kontos, A., Falaras, P., O'Shea, K., Dionysiou, D.D., (2011) Appl. Catal., B., 107, pp. 77-87; Colón, G., Hidalgo, M.C., Munuera, G., Ferino, I., Cutrufello, M.G., Navío, J.A., (2006) Appl. Catal., B., 63, pp. 45-59; McManamon, C., O'Connell, J., Delaney, P., Rasappa, S., Holmes, J., Morris, M.J., (2015) Mol. Catal. A: Chem., 406, pp. 51-57; Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., Mitsui, T., Matsumura, M., (2004) Appl. Catal., A., 265, pp. 115-121; Lin, Y.H., Hsueh, H.T., Chang, C.H.W., Chu, H., (2016) Appl. Catal., B., 199, pp. 1-10; Yamazaki, S., Fujinaga, N., Araki, K., (2001) Appl. Catal., A., 210, pp. 97-102; Bakar, S., Riberio, C., (2016) J. Mol. Catal. A: Chem., 412, pp. 78-92; Hussain, S., Khan, K., Hussain, R., (2009) J. Nat. Gas Chem., 18, pp. 383-391; Chen, X., Kuo, D.H., Lu, D., (2017) Adv. Powder Technol., 28, pp. 1213-1220; Zhang, D., Wang, J.J., (2015) Water Process Eng., 7, pp. 187-195; Zeng, F., Luo, D., Zhang, Z., Liang, B., Yuan, X., Fu, L., (2016) J. Alloys Compd., 670, pp. 249-257; Murcia, J.J., Hidalgo, M.C., Navío, J.A., Araña, J., Doña-Rodríguez, J.M., (2015) Appl. Catal., B., 179, pp. 305-312; Yang, G., Ding, H., Chen, D., Ao, W., Wang, J., Hou, X., (2016) Appl. Surf. Sci., 376, pp. 227-235; Tian, C., Zhang, Z., Hou, J., Luo, N., (2008) Mate. Lett., 62, pp. 77-80; Xing, Z., Li, Z., Wu, X., Wang, G., Zhou, W., (2016) Int. J. Hydrogen Energy, 41, pp. 1535-1541; He, F., Ma, F., Li, T., Li, G., (2013) Chin. J. Catal., 34, pp. 2263-2270; Myers, R.H., Montgomery, D.C., Anderson-Cook, C.H.M., (2009) Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 3rd Ed, pp. 317-320. , New Jersey: John Wiley & Sons; You, Y.F., Xu, C.H., Xu, S.S., Cao, S., Wang, J.P., Huang, Y.B., Shi, S.Q., (2014) Ceram. Int., 40, pp. 8659-8666; Bellardita, M., Di Paola, A., Megna, B., Palmisano, L., (2017) Appl. Catal., B., 201, pp. 150-158; Sivakumar, S., Pillai, P.K., Mukundan, P., Warrier, K.G.K., (2002) Mater. Lett., 57, pp. 330-335; Zhang, W.F., He, Y.L., Zhang, M.S., Yin, Z., Chen, Q., (2000) J. Phys. D: Appl. Phys., 33, pp. 912-916; Choi, H.C.H., Jung, Y.M., Kim, S.B., (2005) Vib. Spectrosc., 37, pp. 33-38; Iliev, M.N., Hadjiev, V.G., Litvinchunk, A.P., (2013) Vib. Spectrosc., 64, pp. 148-152; Ma, H.L., Yang, J.Y., Dai, Y., Zhang, Y.B., Lu, B., Ma, G.H., (2007) Appl. Surf. Sci., 253, pp. 7497-7500; Rajender, G., Giri, P.K., (2016) J. Alloys Compd., 676, pp. 591-600; Iwasaki, M., Hara, M., Ito, S., (1998) J. Mater. Sci. Lett., 17, pp. 1769-1771; Bei, D., Marszalek, J., Youan, B.B.C., (2009) AAPS PharmSciTech., 10 (3), pp. 1040-1047; Wang, G., (2007) J. Mol. Catal. A: Chem. Ref. Data, 274, pp. 185-191; Thommes, M., Kaneko, K., Neimark, K.V., Oliver, J.P., Rodriguez-Reinoso, F., Roquerol, J., Sing, K.S.W., (2015) Pure Appl. Chem., 87 (9-10), pp. 1051-1069; Carp, O., Huisman, C.L., Reller, A., (2004) Prog. Solid State Chem., 32, pp. 33-177; Golobostanfard, M.R., Abdizadeh, H., (2013) Physica B., 413, pp. 40-46; Selishchev, D., Kozlov, D., (2014) Molecules., 19, pp. 21424-21441; Raj, K.A.J., Shanmugam, R., Mahalakshmi, R., Viswanathan, B., (2010) Indian J. Chem., 49 A, pp. 9-17; Rengifo-Herrera, J.A., Kiwi, J., Pulgarin, C., (2009) J. Photochem. Photobiol., A., 205, pp. 109-115; Ho, W., Yu, J.C., Lee, S., (2006) J. Solid State Chem., 179, pp. 1171-1176ScopusSynthesis and Characterization of Photoactive S-Tio2 from Tioso4 Precursor Using an Integrated Sol-Gel and Solvothermal Method at Low TemperaturesArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Grupo Procesos Fisicoquímicos Aplicados, Departamento de Ingeniería Química, Facultad de Ingeniería, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Calle 70, Medellín, Colombia; Doctorado en Ingeniería, Facultad de Ingeniería, Universidad de Medellín, Carrera 87, Medellín, ColombiaMosquera-Pretelt J., Mejía M.I., Marín J.M.Mosquera-Pretelt, J., Grupo Procesos Fisicoquímicos Aplicados, Departamento de Ingeniería Química, Facultad de Ingeniería, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Calle 70, Medellín, Colombia; Mejía, M.I., Grupo Procesos Fisicoquímicos Aplicados, Departamento de Ingeniería Química, Facultad de Ingeniería, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Calle 70, Medellín, Colombia, Doctorado en Ingeniería, Facultad de Ingeniería, Universidad de Medellín, Carrera 87, Medellín, Colombia; Marín, J.M., Grupo Procesos Fisicoquímicos Aplicados, Departamento de Ingeniería Química, Facultad de Ingeniería, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Calle 70, Medellín, ColombiaFormic Acid; Photocatalysis; Sol-gel Method; Solvothermal Method; Titanium Dioxide; Titanium OxysulfatePhotoactive S-titanium dioxides (S-TiO2) were synthesized from TiOSO4 as only Ti and S precursor using an integrated sol-gel and solvothermal method at low temperatures (200 °C - 250 °C). The effect of the synthesis conditions (molar ratios of water/TiOSO4 and solvent (ethanol)/TiOSO4 as well as temperature, < 250 °C) of the applied method in the properties and the photoactivity of the synthesized materials was evaluated through Box-Behnken experimental design. The prepared photocatalysts were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray fluorescence (XRF), attenuated total reflectance - Fourier transform infrared spectroscopy (ATR-FTIR), ultraviolet - visible diffuse reflectance spectroscopy (UV/vis-DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), porosity and BET surface area analysis. The photocatalytic activities of the synthesized S-TiO2 materials were determined by the photodegradation of formic acid. Results indicated that the integrated sol-gel and solvothermal method at low temperatures led to obtain mesoporous, crystalline and photoactive S-TiO2 materials, crystallized as anatase phase with UV and visible light absorption for all synthesis conditions. All synthesized S-TiO2 materials showed high activity in formic acid photodegradation, which was associated on their degrees of crystallinity, particle sizes and sulfur contents, being higher in the materials synthesized with the temperature of 250 °C. Material synthesized with molar ratio water/TiOSO4 of 4.0, molar ratio ethanol/TiOSO4 of 15 and T = 250 °C, showed the highest photocatalytic activity, a crystallite size of 42.34 nm, surface area of 35.77 m2/g, sulfur content of 0.818 wt %, high UV and visible radiation absorption and band gap of 3.03. © 2017.http://purl.org/coar/access_right/c_16ec11407/4527oai:repository.udem.edu.co:11407/45272020-05-27 15:52:52.595Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |