Synthesis and Characterization of Photoactive S-Tio2 from Tioso4 Precursor Using an Integrated Sol-Gel and Solvothermal Method at Low Temperatures

Photoactive S-titanium dioxides (S-TiO2) were synthesized from TiOSO4 as only Ti and S precursor using an integrated sol-gel and solvothermal method at low temperatures (200 °C - 250 °C). The effect of the synthesis conditions (molar ratios of water/TiOSO4 and solvent (ethanol)/TiOSO4 as well as tem...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4527
Acceso en línea:
http://hdl.handle.net/11407/4527
Palabra clave:
Formic Acid; Photocatalysis; Sol-gel Method; Solvothermal Method; Titanium Dioxide; Titanium Oxysulfate
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_f50e9a0ef6fe21af831c8077cc9e9282
oai_identifier_str oai:repository.udem.edu.co:11407/4527
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Synthesis and Characterization of Photoactive S-Tio2 from Tioso4 Precursor Using an Integrated Sol-Gel and Solvothermal Method at Low Temperatures
title Synthesis and Characterization of Photoactive S-Tio2 from Tioso4 Precursor Using an Integrated Sol-Gel and Solvothermal Method at Low Temperatures
spellingShingle Synthesis and Characterization of Photoactive S-Tio2 from Tioso4 Precursor Using an Integrated Sol-Gel and Solvothermal Method at Low Temperatures
Formic Acid; Photocatalysis; Sol-gel Method; Solvothermal Method; Titanium Dioxide; Titanium Oxysulfate
title_short Synthesis and Characterization of Photoactive S-Tio2 from Tioso4 Precursor Using an Integrated Sol-Gel and Solvothermal Method at Low Temperatures
title_full Synthesis and Characterization of Photoactive S-Tio2 from Tioso4 Precursor Using an Integrated Sol-Gel and Solvothermal Method at Low Temperatures
title_fullStr Synthesis and Characterization of Photoactive S-Tio2 from Tioso4 Precursor Using an Integrated Sol-Gel and Solvothermal Method at Low Temperatures
title_full_unstemmed Synthesis and Characterization of Photoactive S-Tio2 from Tioso4 Precursor Using an Integrated Sol-Gel and Solvothermal Method at Low Temperatures
title_sort Synthesis and Characterization of Photoactive S-Tio2 from Tioso4 Precursor Using an Integrated Sol-Gel and Solvothermal Method at Low Temperatures
dc.contributor.affiliation.spa.fl_str_mv Grupo Procesos Fisicoquímicos Aplicados, Departamento de Ingeniería Química, Facultad de Ingeniería, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Calle 70, Medellín, Colombia; Doctorado en Ingeniería, Facultad de Ingeniería, Universidad de Medellín, Carrera 87, Medellín, Colombia
dc.subject.keyword.eng.fl_str_mv Formic Acid; Photocatalysis; Sol-gel Method; Solvothermal Method; Titanium Dioxide; Titanium Oxysulfate
topic Formic Acid; Photocatalysis; Sol-gel Method; Solvothermal Method; Titanium Dioxide; Titanium Oxysulfate
description Photoactive S-titanium dioxides (S-TiO2) were synthesized from TiOSO4 as only Ti and S precursor using an integrated sol-gel and solvothermal method at low temperatures (200 °C - 250 °C). The effect of the synthesis conditions (molar ratios of water/TiOSO4 and solvent (ethanol)/TiOSO4 as well as temperature, < 250 °C) of the applied method in the properties and the photoactivity of the synthesized materials was evaluated through Box-Behnken experimental design. The prepared photocatalysts were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray fluorescence (XRF), attenuated total reflectance - Fourier transform infrared spectroscopy (ATR-FTIR), ultraviolet - visible diffuse reflectance spectroscopy (UV/vis-DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), porosity and BET surface area analysis. The photocatalytic activities of the synthesized S-TiO2 materials were determined by the photodegradation of formic acid. Results indicated that the integrated sol-gel and solvothermal method at low temperatures led to obtain mesoporous, crystalline and photoactive S-TiO2 materials, crystallized as anatase phase with UV and visible light absorption for all synthesis conditions. All synthesized S-TiO2 materials showed high activity in formic acid photodegradation, which was associated on their degrees of crystallinity, particle sizes and sulfur contents, being higher in the materials synthesized with the temperature of 250 °C. Material synthesized with molar ratio water/TiOSO4 of 4.0, molar ratio ethanol/TiOSO4 of 15 and T = 250 °C, showed the highest photocatalytic activity, a crystallite size of 42.34 nm, surface area of 35.77 m2/g, sulfur content of 0.818 wt %, high UV and visible radiation absorption and band gap of 3.03. © 2017.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-04-13T16:31:24Z
dc.date.available.none.fl_str_mv 2018-04-13T16:31:24Z
dc.date.created.none.fl_str_mv 2018
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 12038407
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4527
dc.identifier.doi.none.fl_str_mv 10.26802/jaots.2017.0008
identifier_str_mv 12038407
10.26802/jaots.2017.0008
url http://hdl.handle.net/11407/4527
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85037827726&doi=10.26802%2fjaots.2017.0008&partnerID=40&md5=97bd5c12fb50d1925f7a858319ecfccc
dc.relation.ispartofes.spa.fl_str_mv Journal of Advanced Oxidation Technologies
dc.relation.references.spa.fl_str_mv Hidalgo, M.C., Sakthivel, S., Bahnemann, D., (2004) Appl. Catal., A., 277, pp. 183-189; Serpone, N., Lawless, D., Khairutdinov, R., Pelizzetti, E., (1995) J. Phys. Chem., 99, pp. 16655-16661; Chen, L., Zhu, J., Liu, Y.M., Cao, Y., Li, H.X., He, H.Y., Dai, W.L., Fan, K.N., (2006) J. Mol. Catal. A: Chem., 255, pp. 260-268; Loryuenyong, V., Angamnuaysiri, K., Sukcharoenpong, J., Suwannasri, A., (2012) Ceram. Int., 38, pp. 2233-2237; Ngamta, S., Boonprakob, N., Wetchakun, N., Ounnunkad, K., Phanichphant, S., Inceesungvorn, B., (2013) Mater. Lett., 105, pp. 76-79; Colón, G., Maicu, M., Hidalgo, M.C., Navío, J.A., Kubacka, A., Fernández-García, M., (2010) J. Mol. Catal. A: Chem., 320, pp. 14-18; Ẑuni, V., Vukomanovi, M., Ŝkapin, S.D., Suvorov, D., Kova, J., (2014) Ultrason. Sonochem., 21, pp. 367-375; Khomane, R.B., (2011) J. Colloid Interface Sci., 356, pp. 369-372; Hou, J., Yang, X., Lv, X., Huang, M., Wang, Q., Wang, J.J., (2012) Alloys Compd., 511, pp. 202-208; Yeh, S.W., Ko, H.H., Chiang, H.M., Chen, Y.L., Lee, J.H., Wen, C.M., Wang, M.C., (2014) J. Alloys Compd., 613, pp. 107-116; Tripathi, A.K., Singh, M.K., Mathpal, M.C., Mishra, S.K., Agarwal, A., (2013) J. Alloys Compd., 549, pp. 114-120; He, F., Li, J., Li, T., Li, G., (2014) Chem. Eng. J., 237, pp. 312-321; Vargas, X., Tauchert, E., Marin, J.M., Restrepo, G., Dillert, R., Bahnemann, D., (2012) J. Photochem. and Photobiol., A., 243, pp. 17-22; Jaiswal, R., Bharambe, J., Patel, N., Dashora, A., Kothari, D.C., Miotello, A., (2015) Appl. Catal., B., 168-169, pp. 333-341; Han, C., Andersen, J., Likodimos, V., Falaras, P., Linkugel, J., Dionysiou, D.D., (2014) Catal. Today., 224, pp. 132-139; Nishikiori, H., Hayashibe, M., Fujii, T., (2013) Catalysts., 3, pp. 363-377; Han, C., Pelaez, M., Likodimos, V., Kontos, A., Falaras, P., O'Shea, K., Dionysiou, D.D., (2011) Appl. Catal., B., 107, pp. 77-87; Colón, G., Hidalgo, M.C., Munuera, G., Ferino, I., Cutrufello, M.G., Navío, J.A., (2006) Appl. Catal., B., 63, pp. 45-59; McManamon, C., O'Connell, J., Delaney, P., Rasappa, S., Holmes, J., Morris, M.J., (2015) Mol. Catal. A: Chem., 406, pp. 51-57; Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., Mitsui, T., Matsumura, M., (2004) Appl. Catal., A., 265, pp. 115-121; Lin, Y.H., Hsueh, H.T., Chang, C.H.W., Chu, H., (2016) Appl. Catal., B., 199, pp. 1-10; Yamazaki, S., Fujinaga, N., Araki, K., (2001) Appl. Catal., A., 210, pp. 97-102; Bakar, S., Riberio, C., (2016) J. Mol. Catal. A: Chem., 412, pp. 78-92; Hussain, S., Khan, K., Hussain, R., (2009) J. Nat. Gas Chem., 18, pp. 383-391; Chen, X., Kuo, D.H., Lu, D., (2017) Adv. Powder Technol., 28, pp. 1213-1220; Zhang, D., Wang, J.J., (2015) Water Process Eng., 7, pp. 187-195; Zeng, F., Luo, D., Zhang, Z., Liang, B., Yuan, X., Fu, L., (2016) J. Alloys Compd., 670, pp. 249-257; Murcia, J.J., Hidalgo, M.C., Navío, J.A., Araña, J., Doña-Rodríguez, J.M., (2015) Appl. Catal., B., 179, pp. 305-312; Yang, G., Ding, H., Chen, D., Ao, W., Wang, J., Hou, X., (2016) Appl. Surf. Sci., 376, pp. 227-235; Tian, C., Zhang, Z., Hou, J., Luo, N., (2008) Mate. Lett., 62, pp. 77-80; Xing, Z., Li, Z., Wu, X., Wang, G., Zhou, W., (2016) Int. J. Hydrogen Energy, 41, pp. 1535-1541; He, F., Ma, F., Li, T., Li, G., (2013) Chin. J. Catal., 34, pp. 2263-2270; Myers, R.H., Montgomery, D.C., Anderson-Cook, C.H.M., (2009) Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 3rd Ed, pp. 317-320. , New Jersey: John Wiley & Sons; You, Y.F., Xu, C.H., Xu, S.S., Cao, S., Wang, J.P., Huang, Y.B., Shi, S.Q., (2014) Ceram. Int., 40, pp. 8659-8666; Bellardita, M., Di Paola, A., Megna, B., Palmisano, L., (2017) Appl. Catal., B., 201, pp. 150-158; Sivakumar, S., Pillai, P.K., Mukundan, P., Warrier, K.G.K., (2002) Mater. Lett., 57, pp. 330-335; Zhang, W.F., He, Y.L., Zhang, M.S., Yin, Z., Chen, Q., (2000) J. Phys. D: Appl. Phys., 33, pp. 912-916; Choi, H.C.H., Jung, Y.M., Kim, S.B., (2005) Vib. Spectrosc., 37, pp. 33-38; Iliev, M.N., Hadjiev, V.G., Litvinchunk, A.P., (2013) Vib. Spectrosc., 64, pp. 148-152; Ma, H.L., Yang, J.Y., Dai, Y., Zhang, Y.B., Lu, B., Ma, G.H., (2007) Appl. Surf. Sci., 253, pp. 7497-7500; Rajender, G., Giri, P.K., (2016) J. Alloys Compd., 676, pp. 591-600; Iwasaki, M., Hara, M., Ito, S., (1998) J. Mater. Sci. Lett., 17, pp. 1769-1771; Bei, D., Marszalek, J., Youan, B.B.C., (2009) AAPS PharmSciTech., 10 (3), pp. 1040-1047; Wang, G., (2007) J. Mol. Catal. A: Chem. Ref. Data, 274, pp. 185-191; Thommes, M., Kaneko, K., Neimark, K.V., Oliver, J.P., Rodriguez-Reinoso, F., Roquerol, J., Sing, K.S.W., (2015) Pure Appl. Chem., 87 (9-10), pp. 1051-1069; Carp, O., Huisman, C.L., Reller, A., (2004) Prog. Solid State Chem., 32, pp. 33-177; Golobostanfard, M.R., Abdizadeh, H., (2013) Physica B., 413, pp. 40-46; Selishchev, D., Kozlov, D., (2014) Molecules., 19, pp. 21424-21441; Raj, K.A.J., Shanmugam, R., Mahalakshmi, R., Viswanathan, B., (2010) Indian J. Chem., 49 A, pp. 9-17; Rengifo-Herrera, J.A., Kiwi, J., Pulgarin, C., (2009) J. Photochem. Photobiol., A., 205, pp. 109-115; Ho, W., Yu, J.C., Lee, S., (2006) J. Solid State Chem., 179, pp. 1171-1176
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Walter de Gruyter GmbH
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159113369681920
spelling 2018-04-13T16:31:24Z2018-04-13T16:31:24Z201812038407http://hdl.handle.net/11407/452710.26802/jaots.2017.0008Photoactive S-titanium dioxides (S-TiO2) were synthesized from TiOSO4 as only Ti and S precursor using an integrated sol-gel and solvothermal method at low temperatures (200 °C - 250 °C). The effect of the synthesis conditions (molar ratios of water/TiOSO4 and solvent (ethanol)/TiOSO4 as well as temperature, < 250 °C) of the applied method in the properties and the photoactivity of the synthesized materials was evaluated through Box-Behnken experimental design. The prepared photocatalysts were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray fluorescence (XRF), attenuated total reflectance - Fourier transform infrared spectroscopy (ATR-FTIR), ultraviolet - visible diffuse reflectance spectroscopy (UV/vis-DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), porosity and BET surface area analysis. The photocatalytic activities of the synthesized S-TiO2 materials were determined by the photodegradation of formic acid. Results indicated that the integrated sol-gel and solvothermal method at low temperatures led to obtain mesoporous, crystalline and photoactive S-TiO2 materials, crystallized as anatase phase with UV and visible light absorption for all synthesis conditions. All synthesized S-TiO2 materials showed high activity in formic acid photodegradation, which was associated on their degrees of crystallinity, particle sizes and sulfur contents, being higher in the materials synthesized with the temperature of 250 °C. Material synthesized with molar ratio water/TiOSO4 of 4.0, molar ratio ethanol/TiOSO4 of 15 and T = 250 °C, showed the highest photocatalytic activity, a crystallite size of 42.34 nm, surface area of 35.77 m2/g, sulfur content of 0.818 wt %, high UV and visible radiation absorption and band gap of 3.03. © 2017.engWalter de Gruyter GmbHFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85037827726&doi=10.26802%2fjaots.2017.0008&partnerID=40&md5=97bd5c12fb50d1925f7a858319ecfcccJournal of Advanced Oxidation TechnologiesHidalgo, M.C., Sakthivel, S., Bahnemann, D., (2004) Appl. Catal., A., 277, pp. 183-189; Serpone, N., Lawless, D., Khairutdinov, R., Pelizzetti, E., (1995) J. Phys. Chem., 99, pp. 16655-16661; Chen, L., Zhu, J., Liu, Y.M., Cao, Y., Li, H.X., He, H.Y., Dai, W.L., Fan, K.N., (2006) J. Mol. Catal. A: Chem., 255, pp. 260-268; Loryuenyong, V., Angamnuaysiri, K., Sukcharoenpong, J., Suwannasri, A., (2012) Ceram. Int., 38, pp. 2233-2237; Ngamta, S., Boonprakob, N., Wetchakun, N., Ounnunkad, K., Phanichphant, S., Inceesungvorn, B., (2013) Mater. Lett., 105, pp. 76-79; Colón, G., Maicu, M., Hidalgo, M.C., Navío, J.A., Kubacka, A., Fernández-García, M., (2010) J. Mol. Catal. A: Chem., 320, pp. 14-18; Ẑuni, V., Vukomanovi, M., Ŝkapin, S.D., Suvorov, D., Kova, J., (2014) Ultrason. Sonochem., 21, pp. 367-375; Khomane, R.B., (2011) J. Colloid Interface Sci., 356, pp. 369-372; Hou, J., Yang, X., Lv, X., Huang, M., Wang, Q., Wang, J.J., (2012) Alloys Compd., 511, pp. 202-208; Yeh, S.W., Ko, H.H., Chiang, H.M., Chen, Y.L., Lee, J.H., Wen, C.M., Wang, M.C., (2014) J. Alloys Compd., 613, pp. 107-116; Tripathi, A.K., Singh, M.K., Mathpal, M.C., Mishra, S.K., Agarwal, A., (2013) J. Alloys Compd., 549, pp. 114-120; He, F., Li, J., Li, T., Li, G., (2014) Chem. Eng. J., 237, pp. 312-321; Vargas, X., Tauchert, E., Marin, J.M., Restrepo, G., Dillert, R., Bahnemann, D., (2012) J. Photochem. and Photobiol., A., 243, pp. 17-22; Jaiswal, R., Bharambe, J., Patel, N., Dashora, A., Kothari, D.C., Miotello, A., (2015) Appl. Catal., B., 168-169, pp. 333-341; Han, C., Andersen, J., Likodimos, V., Falaras, P., Linkugel, J., Dionysiou, D.D., (2014) Catal. Today., 224, pp. 132-139; Nishikiori, H., Hayashibe, M., Fujii, T., (2013) Catalysts., 3, pp. 363-377; Han, C., Pelaez, M., Likodimos, V., Kontos, A., Falaras, P., O'Shea, K., Dionysiou, D.D., (2011) Appl. Catal., B., 107, pp. 77-87; Colón, G., Hidalgo, M.C., Munuera, G., Ferino, I., Cutrufello, M.G., Navío, J.A., (2006) Appl. Catal., B., 63, pp. 45-59; McManamon, C., O'Connell, J., Delaney, P., Rasappa, S., Holmes, J., Morris, M.J., (2015) Mol. Catal. A: Chem., 406, pp. 51-57; Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., Mitsui, T., Matsumura, M., (2004) Appl. Catal., A., 265, pp. 115-121; Lin, Y.H., Hsueh, H.T., Chang, C.H.W., Chu, H., (2016) Appl. Catal., B., 199, pp. 1-10; Yamazaki, S., Fujinaga, N., Araki, K., (2001) Appl. Catal., A., 210, pp. 97-102; Bakar, S., Riberio, C., (2016) J. Mol. Catal. A: Chem., 412, pp. 78-92; Hussain, S., Khan, K., Hussain, R., (2009) J. Nat. Gas Chem., 18, pp. 383-391; Chen, X., Kuo, D.H., Lu, D., (2017) Adv. Powder Technol., 28, pp. 1213-1220; Zhang, D., Wang, J.J., (2015) Water Process Eng., 7, pp. 187-195; Zeng, F., Luo, D., Zhang, Z., Liang, B., Yuan, X., Fu, L., (2016) J. Alloys Compd., 670, pp. 249-257; Murcia, J.J., Hidalgo, M.C., Navío, J.A., Araña, J., Doña-Rodríguez, J.M., (2015) Appl. Catal., B., 179, pp. 305-312; Yang, G., Ding, H., Chen, D., Ao, W., Wang, J., Hou, X., (2016) Appl. Surf. Sci., 376, pp. 227-235; Tian, C., Zhang, Z., Hou, J., Luo, N., (2008) Mate. Lett., 62, pp. 77-80; Xing, Z., Li, Z., Wu, X., Wang, G., Zhou, W., (2016) Int. J. Hydrogen Energy, 41, pp. 1535-1541; He, F., Ma, F., Li, T., Li, G., (2013) Chin. J. Catal., 34, pp. 2263-2270; Myers, R.H., Montgomery, D.C., Anderson-Cook, C.H.M., (2009) Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 3rd Ed, pp. 317-320. , New Jersey: John Wiley & Sons; You, Y.F., Xu, C.H., Xu, S.S., Cao, S., Wang, J.P., Huang, Y.B., Shi, S.Q., (2014) Ceram. Int., 40, pp. 8659-8666; Bellardita, M., Di Paola, A., Megna, B., Palmisano, L., (2017) Appl. Catal., B., 201, pp. 150-158; Sivakumar, S., Pillai, P.K., Mukundan, P., Warrier, K.G.K., (2002) Mater. Lett., 57, pp. 330-335; Zhang, W.F., He, Y.L., Zhang, M.S., Yin, Z., Chen, Q., (2000) J. Phys. D: Appl. Phys., 33, pp. 912-916; Choi, H.C.H., Jung, Y.M., Kim, S.B., (2005) Vib. Spectrosc., 37, pp. 33-38; Iliev, M.N., Hadjiev, V.G., Litvinchunk, A.P., (2013) Vib. Spectrosc., 64, pp. 148-152; Ma, H.L., Yang, J.Y., Dai, Y., Zhang, Y.B., Lu, B., Ma, G.H., (2007) Appl. Surf. Sci., 253, pp. 7497-7500; Rajender, G., Giri, P.K., (2016) J. Alloys Compd., 676, pp. 591-600; Iwasaki, M., Hara, M., Ito, S., (1998) J. Mater. Sci. Lett., 17, pp. 1769-1771; Bei, D., Marszalek, J., Youan, B.B.C., (2009) AAPS PharmSciTech., 10 (3), pp. 1040-1047; Wang, G., (2007) J. Mol. Catal. A: Chem. Ref. Data, 274, pp. 185-191; Thommes, M., Kaneko, K., Neimark, K.V., Oliver, J.P., Rodriguez-Reinoso, F., Roquerol, J., Sing, K.S.W., (2015) Pure Appl. Chem., 87 (9-10), pp. 1051-1069; Carp, O., Huisman, C.L., Reller, A., (2004) Prog. Solid State Chem., 32, pp. 33-177; Golobostanfard, M.R., Abdizadeh, H., (2013) Physica B., 413, pp. 40-46; Selishchev, D., Kozlov, D., (2014) Molecules., 19, pp. 21424-21441; Raj, K.A.J., Shanmugam, R., Mahalakshmi, R., Viswanathan, B., (2010) Indian J. Chem., 49 A, pp. 9-17; Rengifo-Herrera, J.A., Kiwi, J., Pulgarin, C., (2009) J. Photochem. Photobiol., A., 205, pp. 109-115; Ho, W., Yu, J.C., Lee, S., (2006) J. Solid State Chem., 179, pp. 1171-1176ScopusSynthesis and Characterization of Photoactive S-Tio2 from Tioso4 Precursor Using an Integrated Sol-Gel and Solvothermal Method at Low TemperaturesArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Grupo Procesos Fisicoquímicos Aplicados, Departamento de Ingeniería Química, Facultad de Ingeniería, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Calle 70, Medellín, Colombia; Doctorado en Ingeniería, Facultad de Ingeniería, Universidad de Medellín, Carrera 87, Medellín, ColombiaMosquera-Pretelt J., Mejía M.I., Marín J.M.Mosquera-Pretelt, J., Grupo Procesos Fisicoquímicos Aplicados, Departamento de Ingeniería Química, Facultad de Ingeniería, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Calle 70, Medellín, Colombia; Mejía, M.I., Grupo Procesos Fisicoquímicos Aplicados, Departamento de Ingeniería Química, Facultad de Ingeniería, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Calle 70, Medellín, Colombia, Doctorado en Ingeniería, Facultad de Ingeniería, Universidad de Medellín, Carrera 87, Medellín, Colombia; Marín, J.M., Grupo Procesos Fisicoquímicos Aplicados, Departamento de Ingeniería Química, Facultad de Ingeniería, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Calle 70, Medellín, ColombiaFormic Acid; Photocatalysis; Sol-gel Method; Solvothermal Method; Titanium Dioxide; Titanium OxysulfatePhotoactive S-titanium dioxides (S-TiO2) were synthesized from TiOSO4 as only Ti and S precursor using an integrated sol-gel and solvothermal method at low temperatures (200 °C - 250 °C). The effect of the synthesis conditions (molar ratios of water/TiOSO4 and solvent (ethanol)/TiOSO4 as well as temperature, < 250 °C) of the applied method in the properties and the photoactivity of the synthesized materials was evaluated through Box-Behnken experimental design. The prepared photocatalysts were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray fluorescence (XRF), attenuated total reflectance - Fourier transform infrared spectroscopy (ATR-FTIR), ultraviolet - visible diffuse reflectance spectroscopy (UV/vis-DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), porosity and BET surface area analysis. The photocatalytic activities of the synthesized S-TiO2 materials were determined by the photodegradation of formic acid. Results indicated that the integrated sol-gel and solvothermal method at low temperatures led to obtain mesoporous, crystalline and photoactive S-TiO2 materials, crystallized as anatase phase with UV and visible light absorption for all synthesis conditions. All synthesized S-TiO2 materials showed high activity in formic acid photodegradation, which was associated on their degrees of crystallinity, particle sizes and sulfur contents, being higher in the materials synthesized with the temperature of 250 °C. Material synthesized with molar ratio water/TiOSO4 of 4.0, molar ratio ethanol/TiOSO4 of 15 and T = 250 °C, showed the highest photocatalytic activity, a crystallite size of 42.34 nm, surface area of 35.77 m2/g, sulfur content of 0.818 wt %, high UV and visible radiation absorption and band gap of 3.03. © 2017.http://purl.org/coar/access_right/c_16ec11407/4527oai:repository.udem.edu.co:11407/45272020-05-27 15:52:52.595Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co