Influence of MWCNT/surfactant dispersions on the rheology of Portland cement pastes

This work studies the effect of MWCNT/surfactant aqueous dispersions on the rheology of cement paste. Three types of surfactants (sodium dodecyl sulfate, cetylpyridinium chloride and triton TX-100) were used to prepare cement pastes with and without MWCNT. Three rheological parameters were determine...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4576
Acceso en línea:
http://hdl.handle.net/11407/4576
Palabra clave:
A. Dispersion; A. Hydration; A. Rheology; C. Adsorption; D. Carbon nanotubes
Carbon; Cements; Chlorine compounds; Curve fitting; Elasticity; Hydration; Multiwalled carbon nanotubes (MWCN); Portland cement; Sodium dodecyl sulfate; Sulfur compounds; Surface active agents; Viscosity; X ray diffraction; Yarn; Yield stress; Aqueous dispersions; Bingham model; Cetylpyridinium Chloride; Hydration reaction; Interparticle attractions; Isothermal calorimetry; Portland cement paste; Rheological parameter; Dispersions
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_f4c50804ff4f7d995c9ac77367c403ec
oai_identifier_str oai:repository.udem.edu.co:11407/4576
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Influence of MWCNT/surfactant dispersions on the rheology of Portland cement pastes
title Influence of MWCNT/surfactant dispersions on the rheology of Portland cement pastes
spellingShingle Influence of MWCNT/surfactant dispersions on the rheology of Portland cement pastes
A. Dispersion; A. Hydration; A. Rheology; C. Adsorption; D. Carbon nanotubes
Carbon; Cements; Chlorine compounds; Curve fitting; Elasticity; Hydration; Multiwalled carbon nanotubes (MWCN); Portland cement; Sodium dodecyl sulfate; Sulfur compounds; Surface active agents; Viscosity; X ray diffraction; Yarn; Yield stress; Aqueous dispersions; Bingham model; Cetylpyridinium Chloride; Hydration reaction; Interparticle attractions; Isothermal calorimetry; Portland cement paste; Rheological parameter; Dispersions
title_short Influence of MWCNT/surfactant dispersions on the rheology of Portland cement pastes
title_full Influence of MWCNT/surfactant dispersions on the rheology of Portland cement pastes
title_fullStr Influence of MWCNT/surfactant dispersions on the rheology of Portland cement pastes
title_full_unstemmed Influence of MWCNT/surfactant dispersions on the rheology of Portland cement pastes
title_sort Influence of MWCNT/surfactant dispersions on the rheology of Portland cement pastes
dc.contributor.affiliation.spa.fl_str_mv Universidade Federal do Rio de Janeiro, Brazil; Universidad Nacional de Colombia, Colombia; Universidad de Medellín, Colombia
dc.subject.keyword.eng.fl_str_mv A. Dispersion; A. Hydration; A. Rheology; C. Adsorption; D. Carbon nanotubes
Carbon; Cements; Chlorine compounds; Curve fitting; Elasticity; Hydration; Multiwalled carbon nanotubes (MWCN); Portland cement; Sodium dodecyl sulfate; Sulfur compounds; Surface active agents; Viscosity; X ray diffraction; Yarn; Yield stress; Aqueous dispersions; Bingham model; Cetylpyridinium Chloride; Hydration reaction; Interparticle attractions; Isothermal calorimetry; Portland cement paste; Rheological parameter; Dispersions
topic A. Dispersion; A. Hydration; A. Rheology; C. Adsorption; D. Carbon nanotubes
Carbon; Cements; Chlorine compounds; Curve fitting; Elasticity; Hydration; Multiwalled carbon nanotubes (MWCN); Portland cement; Sodium dodecyl sulfate; Sulfur compounds; Surface active agents; Viscosity; X ray diffraction; Yarn; Yield stress; Aqueous dispersions; Bingham model; Cetylpyridinium Chloride; Hydration reaction; Interparticle attractions; Isothermal calorimetry; Portland cement paste; Rheological parameter; Dispersions
description This work studies the effect of MWCNT/surfactant aqueous dispersions on the rheology of cement paste. Three types of surfactants (sodium dodecyl sulfate, cetylpyridinium chloride and triton TX-100) were used to prepare cement pastes with and without MWCNT. Three rheological parameters were determined for each sample: static yield stress, yield stress, and viscosity. The first was measured directly, while the other two were obtained by fitting a Bingham model to the descending portion of a flow curve. Additionally, X-ray diffraction and isothermal calorimetry were used to follow the hydration reaction of cement during the first hour. It was found that the MWCNT/surfactant dispersions generate an overall shift to higher yield stress values while maintaining viscosity, suggesting a modification of the interparticle attraction. It was concluded that the triple interaction MWCNT-surfactant-cement governs the rheology of cement pastes. © 2018 Elsevier Ltd
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-04-13T16:35:28Z
dc.date.available.none.fl_str_mv 2018-04-13T16:35:28Z
dc.date.created.none.fl_str_mv 2018
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 88846
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4576
dc.identifier.doi.none.fl_str_mv 10.1016/j.cemconres.2018.02.020
identifier_str_mv 88846
10.1016/j.cemconres.2018.02.020
url http://hdl.handle.net/11407/4576
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042181283&doi=10.1016%2fj.cemconres.2018.02.020&partnerID=40&md5=d10388eff27dd4642ff05fdcb4831a7f
dc.relation.ispartofes.spa.fl_str_mv Cement and Concrete Research
dc.relation.references.spa.fl_str_mv Senff, L., Modolo, R.C.E., Tobaldi, D.M., Ascenção, G., Hotza, D., Ferreira, V.M., The influence of TiO2 nanoparticles and poliacrilonitrile fibers on the rheological behavior and hardened properties of mortars (2015) Constr. Build. Mater., 75, pp. 315-330; Nazari, A., Riahi, S., Al2O3 nanoparticles in concrete and different curing media (2011) Energy Build., 43, pp. 1480-1488; Riahi, S., Nazari, A., Physical, mechanical and thermal properties of concrete in different curing media containing ZnO2 nanoparticles (2011) Energy Build., 43, pp. 1977-1984; García-Taengua, E., Sonebi, M., Hossain, K.M.A., Lachemi, M., Khatib, J., Effects of the addition of nanosilica on the rheology, hydration and development of the compressive strength of cement mortars (2015) Compos. Part B Eng., 81, pp. 120-129; Kawashima, S., Hou, P., Corr, D.J., Shah, S.P., Modification of cement-based materials with nanoparticles (2013) Cem. Concr. Compos., 36, pp. 8-15; Nadiv, R., Vasilyev, G., Shtein, M., Peled, A., Zussman, E., Regev, O., The multiple roles of a dispersant in nanocomposite systems (2016) Compos. Sci. Technol., 133, pp. 192-199; Mendoza Reales, O., Toledo Filho, R.D., Nanotube–cement composites (2016) Carbon Nanomater. Sourceb. Nanoparticles, Nanocapsules, Nanofibers, Nanoporous Struct. Nanocomposites, 2, pp. 573-596. , K. Sattler 1st ed. CRC Press Boca Raton; Liebscher, M., Lange, A., Schröfl, C., Fuge, R., Mechtcherine, V., Plank, J., Impact of the molecular architecture of polycarboxylate superplasticizers on the dispersion of multi-walled carbon nanotubes in aqueous phase (2017) J. Mater. Sci., 52, pp. 2296-2307; Jiang, L., Gao, L., Sun, J., Production of aqueous colloidal dispersions of carbon nanotubes (2003) J. Colloid Interface Sci., 260, pp. 89-94; Fernandes, R.M.F., Buzaglo, M., Shtein, M., Pri Bar, I., Regev, O., Marques, E.F., Lateral diffusion of dispersing molecules on nanotubes as probed by NMR (2014) J. Phys. Chem. C, 118, pp. 582-589; Rastogi, R., Kaushal, R., Tripathi, S.K., Sharma, A.L., Kaur, I., Bharadwaj, L.M., Comparative study of carbon nanotube dispersion using surfactants (2008) J. Colloid Interface Sci., 328, pp. 421-428; Hodne, H., Saasen, A., Rheological properties of the silica phases in clinker slurries (2003) Annu. Trans. Nord. Rheol. Soc., 11, pp. 2-5; Neubauer, C.M., Yang, M., Jennings, H.M., Interparticle potential and sedimentation behavior of cement suspensions: effects of admixtures (1998) Adv. Cem. Based Mater., 8, pp. 17-27; Banfill, P.F.G., Rheology of fresh cement and concrete (2006) Rheol. Rev., 2006, pp. 61-130; Zhang, T., Shang, S., Yin, F., Aishah, A., Salmiah, A., Ooi, T.L., Adsorptive behavior of surfactants on surface of Portland cement (2001) Cem. Concr. Res., 31, pp. 1009-1015; Zhang, R., Somasundaran, P., Advances in adsorption of surfactants and their mixtures at solid/solution interfaces (2006) Adv. Colloid Interf. Sci., 123-126, pp. 213-229; Hewlett, P., Lea's Chemistry of Cement and Concrete (2004), http://www.dbpia.co.kr/view/ar_view.asp?arid=1536305, 4th ed. Elsevier Science & Technology Books Oxford (Accessed 15 December 2011); Mendoza Reales, O.A., Arias, Y., Delgado, C., Ochoa, J., Quintero, J., Toledo, R.D., Surfactants as dispersants for carbon nanotubes in water: hydration of cement (2017) Proc. 10th ACI/RILEM Int. Conf. Cem. Mater. Altern. Bind. Sustain. Concr., pp. 1-15; Cordeiro, G.C., De Alvarenga, L.M.S.C., Rocha, C.A.A., Rheological and mechanical properties of concrete containing crushed granite fine aggregate (2016) Constr. Build. Mater., 111, pp. 766-773; Mendoza, O., Sierra, G., Tobón, J.I., Influence of super plasticizer and Ca(OH)2 on the stability of functionalized multi-walled carbon nanotubes dispersions for cement composites applications (2013) Constr. Build. Mater., 47, pp. 771-778; Scrivener, K.L., Nonat, A., Hydration of cementitious materials, present and future (2011) Cem. Concr. Res., 41, pp. 651-665; Minard, H., Garrault, S., Regnaud, L., Nonat, A., Mechanisms and parameters controlling the tricalcium aluminate reactivity in the presence of gypsum (2007) Cem. Concr. Res., 37, pp. 1418-1426; Taylor, H.F.W., Cement Chemistry (1997), http://books.google.com/books?hl=en&lr=&id=1BOETtwi7mMC&oi=fnd&pg=PA1&dq=Cement+Chemistry&ots=6XtaMAZVvw&sig=09Ve-cFfssIIhpHNZ0yTypN7BzQ, Thomas Telford Services Ltd London (Accessed 15 December 2011); Matschei, T., Lothenbach, B., Glasser, F.P., The AFm phase in Portland cement (2007) Cem. Concr. Res., 37, pp. 118-130; Quennoz, A., Scrivener, K.L., Cement and concrete research hydration of C 3 a – gypsum systems (2012) Cem. Concr. Res., 42, pp. 1032-1041; Sievert, T., Wolter, A., Singh, N.B., Hydration of anhydrite of gypsum (CaSO4.II) in a ball mill (2005) Cem. Concr. Res., 35, pp. 623-630; Yuehua Yuan, T., Lee, R., Contact angle and wetting properties (2013) Springer Ser. Surf. Sci, , G. Bracco B. Holst 1st ed. Springer Berlin Heidelberg Heidelberg; Yoshioka, K., Tazawa, E., Kawai, K., Enohata, T., Adsorption characteristics of superplasticizers on cement component minerals (2002) Cem. Concr. Res., 32, pp. 1507-1513; Nadiv, R., Vasilyev, G., Shtein, M., Peled, A., Zussman, E., Regev, O., The multiple roles of a dispersant in nanocomposite systems (2016) Compos. Sci. Technol., 133, pp. 192-199; Saasen, A., Haugom, J.O., Johansen, E., The effect of gypsum and anhydrite on rheological properties of cement slurries (1994) Annu. Trans. Nord. Rheol. Soc., 2; Zhang, X., Han, J., The effect of ultra-fine admixture on the rheological property of cement paste (2000) Cem. Concr. Res., 30, pp. 827-830; Berg, W., Influence of specific surface and concentration of solids upon the flow behaviour of cement pastes (1979) Mag. Concr. Res., 31, pp. 211-216; Parveen, S., Rana, S., Fangueiro, R., Paiva, M.C., Microstructure and mechanical properties of carbon nanotube reinforced cementitious composites developed using a novel dispersion technique (2015) Cem. Concr. Res., 73, pp. 215-227; Sobolkina, A., Mechtcherine, V., Khavrus, V., Maier, D., Mende, M., Ritschel, M., Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix (2012) Cem. Concr. Compos., 34, pp. 1104-1113; Sobolkina, A., Mechtcherine, V., Bellmann, C., Khavrus, V., Oswald, S., Hampel, S., Surface properties of CNTs and their interaction with silica (2014) J. Colloid Interface Sci., 413, pp. 43-53; Wang, H., Dispersing carbon nanotubes using surfactants (2009) Curr. Opin. Colloid Interface Sci., 14, pp. 364-371; Strano, M.S., Moore, V.C., Miller, M.K., Allen, M.J., Haroz, E.H., Kittrell, C., Hauge, R.H., Smalley, R., The role of surfactan adsoption during ultrasonication in the dispersion of single walled carbon nanotubes (2003) J. Nanosci. Nanotechnol., 3, pp. 81-86
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Elsevier Ltd
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159262416371712
spelling 2018-04-13T16:35:28Z2018-04-13T16:35:28Z201888846http://hdl.handle.net/11407/457610.1016/j.cemconres.2018.02.020This work studies the effect of MWCNT/surfactant aqueous dispersions on the rheology of cement paste. Three types of surfactants (sodium dodecyl sulfate, cetylpyridinium chloride and triton TX-100) were used to prepare cement pastes with and without MWCNT. Three rheological parameters were determined for each sample: static yield stress, yield stress, and viscosity. The first was measured directly, while the other two were obtained by fitting a Bingham model to the descending portion of a flow curve. Additionally, X-ray diffraction and isothermal calorimetry were used to follow the hydration reaction of cement during the first hour. It was found that the MWCNT/surfactant dispersions generate an overall shift to higher yield stress values while maintaining viscosity, suggesting a modification of the interparticle attraction. It was concluded that the triple interaction MWCNT-surfactant-cement governs the rheology of cement pastes. © 2018 Elsevier LtdengElsevier LtdFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85042181283&doi=10.1016%2fj.cemconres.2018.02.020&partnerID=40&md5=d10388eff27dd4642ff05fdcb4831a7fCement and Concrete ResearchSenff, L., Modolo, R.C.E., Tobaldi, D.M., Ascenção, G., Hotza, D., Ferreira, V.M., The influence of TiO2 nanoparticles and poliacrilonitrile fibers on the rheological behavior and hardened properties of mortars (2015) Constr. Build. Mater., 75, pp. 315-330; Nazari, A., Riahi, S., Al2O3 nanoparticles in concrete and different curing media (2011) Energy Build., 43, pp. 1480-1488; Riahi, S., Nazari, A., Physical, mechanical and thermal properties of concrete in different curing media containing ZnO2 nanoparticles (2011) Energy Build., 43, pp. 1977-1984; García-Taengua, E., Sonebi, M., Hossain, K.M.A., Lachemi, M., Khatib, J., Effects of the addition of nanosilica on the rheology, hydration and development of the compressive strength of cement mortars (2015) Compos. Part B Eng., 81, pp. 120-129; Kawashima, S., Hou, P., Corr, D.J., Shah, S.P., Modification of cement-based materials with nanoparticles (2013) Cem. Concr. Compos., 36, pp. 8-15; Nadiv, R., Vasilyev, G., Shtein, M., Peled, A., Zussman, E., Regev, O., The multiple roles of a dispersant in nanocomposite systems (2016) Compos. Sci. Technol., 133, pp. 192-199; Mendoza Reales, O., Toledo Filho, R.D., Nanotube–cement composites (2016) Carbon Nanomater. Sourceb. Nanoparticles, Nanocapsules, Nanofibers, Nanoporous Struct. Nanocomposites, 2, pp. 573-596. , K. Sattler 1st ed. CRC Press Boca Raton; Liebscher, M., Lange, A., Schröfl, C., Fuge, R., Mechtcherine, V., Plank, J., Impact of the molecular architecture of polycarboxylate superplasticizers on the dispersion of multi-walled carbon nanotubes in aqueous phase (2017) J. Mater. Sci., 52, pp. 2296-2307; Jiang, L., Gao, L., Sun, J., Production of aqueous colloidal dispersions of carbon nanotubes (2003) J. Colloid Interface Sci., 260, pp. 89-94; Fernandes, R.M.F., Buzaglo, M., Shtein, M., Pri Bar, I., Regev, O., Marques, E.F., Lateral diffusion of dispersing molecules on nanotubes as probed by NMR (2014) J. Phys. Chem. C, 118, pp. 582-589; Rastogi, R., Kaushal, R., Tripathi, S.K., Sharma, A.L., Kaur, I., Bharadwaj, L.M., Comparative study of carbon nanotube dispersion using surfactants (2008) J. Colloid Interface Sci., 328, pp. 421-428; Hodne, H., Saasen, A., Rheological properties of the silica phases in clinker slurries (2003) Annu. Trans. Nord. Rheol. Soc., 11, pp. 2-5; Neubauer, C.M., Yang, M., Jennings, H.M., Interparticle potential and sedimentation behavior of cement suspensions: effects of admixtures (1998) Adv. Cem. Based Mater., 8, pp. 17-27; Banfill, P.F.G., Rheology of fresh cement and concrete (2006) Rheol. Rev., 2006, pp. 61-130; Zhang, T., Shang, S., Yin, F., Aishah, A., Salmiah, A., Ooi, T.L., Adsorptive behavior of surfactants on surface of Portland cement (2001) Cem. Concr. Res., 31, pp. 1009-1015; Zhang, R., Somasundaran, P., Advances in adsorption of surfactants and their mixtures at solid/solution interfaces (2006) Adv. Colloid Interf. Sci., 123-126, pp. 213-229; Hewlett, P., Lea's Chemistry of Cement and Concrete (2004), http://www.dbpia.co.kr/view/ar_view.asp?arid=1536305, 4th ed. Elsevier Science & Technology Books Oxford (Accessed 15 December 2011); Mendoza Reales, O.A., Arias, Y., Delgado, C., Ochoa, J., Quintero, J., Toledo, R.D., Surfactants as dispersants for carbon nanotubes in water: hydration of cement (2017) Proc. 10th ACI/RILEM Int. Conf. Cem. Mater. Altern. Bind. Sustain. Concr., pp. 1-15; Cordeiro, G.C., De Alvarenga, L.M.S.C., Rocha, C.A.A., Rheological and mechanical properties of concrete containing crushed granite fine aggregate (2016) Constr. Build. Mater., 111, pp. 766-773; Mendoza, O., Sierra, G., Tobón, J.I., Influence of super plasticizer and Ca(OH)2 on the stability of functionalized multi-walled carbon nanotubes dispersions for cement composites applications (2013) Constr. Build. Mater., 47, pp. 771-778; Scrivener, K.L., Nonat, A., Hydration of cementitious materials, present and future (2011) Cem. Concr. Res., 41, pp. 651-665; Minard, H., Garrault, S., Regnaud, L., Nonat, A., Mechanisms and parameters controlling the tricalcium aluminate reactivity in the presence of gypsum (2007) Cem. Concr. Res., 37, pp. 1418-1426; Taylor, H.F.W., Cement Chemistry (1997), http://books.google.com/books?hl=en&lr=&id=1BOETtwi7mMC&oi=fnd&pg=PA1&dq=Cement+Chemistry&ots=6XtaMAZVvw&sig=09Ve-cFfssIIhpHNZ0yTypN7BzQ, Thomas Telford Services Ltd London (Accessed 15 December 2011); Matschei, T., Lothenbach, B., Glasser, F.P., The AFm phase in Portland cement (2007) Cem. Concr. Res., 37, pp. 118-130; Quennoz, A., Scrivener, K.L., Cement and concrete research hydration of C 3 a – gypsum systems (2012) Cem. Concr. Res., 42, pp. 1032-1041; Sievert, T., Wolter, A., Singh, N.B., Hydration of anhydrite of gypsum (CaSO4.II) in a ball mill (2005) Cem. Concr. Res., 35, pp. 623-630; Yuehua Yuan, T., Lee, R., Contact angle and wetting properties (2013) Springer Ser. Surf. Sci, , G. Bracco B. Holst 1st ed. Springer Berlin Heidelberg Heidelberg; Yoshioka, K., Tazawa, E., Kawai, K., Enohata, T., Adsorption characteristics of superplasticizers on cement component minerals (2002) Cem. Concr. Res., 32, pp. 1507-1513; Nadiv, R., Vasilyev, G., Shtein, M., Peled, A., Zussman, E., Regev, O., The multiple roles of a dispersant in nanocomposite systems (2016) Compos. Sci. Technol., 133, pp. 192-199; Saasen, A., Haugom, J.O., Johansen, E., The effect of gypsum and anhydrite on rheological properties of cement slurries (1994) Annu. Trans. Nord. Rheol. Soc., 2; Zhang, X., Han, J., The effect of ultra-fine admixture on the rheological property of cement paste (2000) Cem. Concr. Res., 30, pp. 827-830; Berg, W., Influence of specific surface and concentration of solids upon the flow behaviour of cement pastes (1979) Mag. Concr. Res., 31, pp. 211-216; Parveen, S., Rana, S., Fangueiro, R., Paiva, M.C., Microstructure and mechanical properties of carbon nanotube reinforced cementitious composites developed using a novel dispersion technique (2015) Cem. Concr. Res., 73, pp. 215-227; Sobolkina, A., Mechtcherine, V., Khavrus, V., Maier, D., Mende, M., Ritschel, M., Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix (2012) Cem. Concr. Compos., 34, pp. 1104-1113; Sobolkina, A., Mechtcherine, V., Bellmann, C., Khavrus, V., Oswald, S., Hampel, S., Surface properties of CNTs and their interaction with silica (2014) J. Colloid Interface Sci., 413, pp. 43-53; Wang, H., Dispersing carbon nanotubes using surfactants (2009) Curr. Opin. Colloid Interface Sci., 14, pp. 364-371; Strano, M.S., Moore, V.C., Miller, M.K., Allen, M.J., Haroz, E.H., Kittrell, C., Hauge, R.H., Smalley, R., The role of surfactan adsoption during ultrasonication in the dispersion of single walled carbon nanotubes (2003) J. Nanosci. Nanotechnol., 3, pp. 81-86ScopusInfluence of MWCNT/surfactant dispersions on the rheology of Portland cement pastesArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Universidade Federal do Rio de Janeiro, Brazil; Universidad Nacional de Colombia, Colombia; Universidad de Medellín, ColombiaMendoza Reales O.A., Arias Jaramillo Y.P., Ochoa Botero J.C., Delgado C.A., Quintero J.H., Toledo Filho R.D.Mendoza Reales, O.A., Universidade Federal do Rio de Janeiro, Brazil; Arias Jaramillo, Y.P., Universidad Nacional de Colombia, Colombia; Ochoa Botero, J.C., Universidad Nacional de Colombia, Colombia; Delgado, C.A., Universidad de Medellín, Colombia; Quintero, J.H., Universidad de Medellín, Colombia; Toledo Filho, R.D., Universidade Federal do Rio de Janeiro, BrazilA. Dispersion; A. Hydration; A. Rheology; C. Adsorption; D. Carbon nanotubesCarbon; Cements; Chlorine compounds; Curve fitting; Elasticity; Hydration; Multiwalled carbon nanotubes (MWCN); Portland cement; Sodium dodecyl sulfate; Sulfur compounds; Surface active agents; Viscosity; X ray diffraction; Yarn; Yield stress; Aqueous dispersions; Bingham model; Cetylpyridinium Chloride; Hydration reaction; Interparticle attractions; Isothermal calorimetry; Portland cement paste; Rheological parameter; DispersionsThis work studies the effect of MWCNT/surfactant aqueous dispersions on the rheology of cement paste. Three types of surfactants (sodium dodecyl sulfate, cetylpyridinium chloride and triton TX-100) were used to prepare cement pastes with and without MWCNT. Three rheological parameters were determined for each sample: static yield stress, yield stress, and viscosity. The first was measured directly, while the other two were obtained by fitting a Bingham model to the descending portion of a flow curve. Additionally, X-ray diffraction and isothermal calorimetry were used to follow the hydration reaction of cement during the first hour. It was found that the MWCNT/surfactant dispersions generate an overall shift to higher yield stress values while maintaining viscosity, suggesting a modification of the interparticle attraction. It was concluded that the triple interaction MWCNT-surfactant-cement governs the rheology of cement pastes. © 2018 Elsevier Ltdhttp://purl.org/coar/access_right/c_16ec11407/4576oai:repository.udem.edu.co:11407/45762020-05-27 19:15:11.317Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co