Generalised shape theory via SV decomposition I

This work finds in terms of zonal polynomials, the non isotropic noncentral elliptical shape distributions via singular value decomposition; it avoids the invariant polynomials and the open problems for their computation. The new shape distributions are easily computable and then the inference proce...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2012
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/3405
Acceso en línea:
http://hdl.handle.net/11407/3405
Palabra clave:
Shape theory
Non-central and non-isotropic shape densities
Zonal polynomials
Rights
restrictedAccess
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_f3d6f92f5ce453d031e4ab59fe93c9fd
oai_identifier_str oai:repository.udem.edu.co:11407/3405
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
spelling 2017-06-15T22:05:18Z2017-06-15T22:05:18Z2012Díaz-García, J. A., & Caro-Lopera, F. J. (2012). Generalised shape theory via SV decomposition I. Metrika, 75(4), 541-565.00261335http://hdl.handle.net/11407/3405DOI: 10.1007/s00184-010-0341-51435926XThis work finds in terms of zonal polynomials, the non isotropic noncentral elliptical shape distributions via singular value decomposition; it avoids the invariant polynomials and the open problems for their computation. The new shape distributions are easily computable and then the inference procedure is based on exact densities, instead of the published approximations and asymptotic distribution of isotropic models. An application of the technique is illustrated with a classical landmark data of Biology, for this, three Kotz type models are proposed (including Gaussian); then the best one is chosen by using a modified BIC criterion.engPhysica-Verlag Gmbh und CoSpringer Berlin HeidelbergTronco común IngenieríasFacultad de Ciencias Básicashttps://link.springer.com/article/10.1007%2Fs00184-010-0341-5?LI=trueMetrika, May 2012, Volume 75, Issue 4, pp 541–565Caro-Lopera FJ, Díaz-García JA, González-Farías G (2009) Noncentral elliptical configuration density. J Multivar Anal 101(1): 32–43Davis AW (1980) Invariant polynomials with two matrix arguments, extending the zonal polynomials. In: Krishnaiah PR (ed.) Multivariate analysis V. North-Holland Publishing Company, Amsterdam, pp 287–299Díaz-García JA, Gutiérrez- Jáimez R, Mardia KV (1997) Wishart and Pseudo-Wishart distributions and some applications to shape theory. J Multivar Anal 63: 73–87Díaz-García JA, Gutiérrez-Jáimez R, Ramos R (2003) Size-and-shape cone, shape disk and configuration densities for the elliptical models. Braz J Probab Stat 17: 135–146Dryden IL, Mardia KV (1998) Statistical shape analysis. Wiley, ChichesterFang KT, Zhang YT (1990) Generalized multivariate analysis. Science Press, Springer, BeijingGoodall CR (1991) Procustes methods in the statistical analysis of shape (with discussion). J R Stat Soc Ser B 53: 285–339Goodall CR, Mardia KV (1993) Multivariate aspects of shape theory. Ann Stat 21: 848–866Gupta AK, Varga T (1993) Elliptically contoured models in statistics. Kluwer, DordrechtJames AT (1964) Distributions of matrix variate and latent roots derived from normal samples. Ann Math Stat 35: 475–501Kass RE, Raftery AE (1995) Bayes factor. J Am Stat Soc 90: 773–795Koev P, Edelman A (2006) The efficient evaluation of the hypergeometric function of a matrix argument. Math Comput 75: 833–846Le HL, Kendall DG (1993) The Riemannian structure of Euclidean spaces: a novel environment for statistics. Ann Stat 21: 1225–1271Mardia KV, Dryden IL (1989) The statistical analysis of shape data. Biometrika 76(2): 271–281Muirhead RJ (1982) Aspects of multivariate statistical theory. Wiley series in probability and mathematical statistics. Wiley, New YorkRaftery AE (1995) Bayesian model selection in social research. Sociol Methodol 25: 111–163Rissanen J (1978) Modelling by shortest data description. Automatica 14: 465–471Yang ChCh, Yang ChCh (2007) Separating latent classes by information criteria. J Classif 24: 183–203Metrika: International Journal for Theoretical and Applied StatisticsShape theoryNon-central and non-isotropic shape densitiesZonal polynomialsGeneralised shape theory via SV decomposition IArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/access_right/c_16ecDíaz-García, José A.Caro-Lopera, Francisco J.Díaz-García, José A.; Universidad Autónoma Agraria Antonio NarroCaro-Lopera, Francisco J.; Universidad de MedellínORIGINALArticulo.htmltext/html501http://repository.udem.edu.co/bitstream/11407/3405/1/Articulo.html4ea1cbe0827e7beb03631908d62a1690MD5111407/3405oai:repository.udem.edu.co:11407/34052020-05-27 19:17:34.871Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co
dc.title.spa.fl_str_mv Generalised shape theory via SV decomposition I
title Generalised shape theory via SV decomposition I
spellingShingle Generalised shape theory via SV decomposition I
Shape theory
Non-central and non-isotropic shape densities
Zonal polynomials
title_short Generalised shape theory via SV decomposition I
title_full Generalised shape theory via SV decomposition I
title_fullStr Generalised shape theory via SV decomposition I
title_full_unstemmed Generalised shape theory via SV decomposition I
title_sort Generalised shape theory via SV decomposition I
dc.subject.spa.fl_str_mv Shape theory
Non-central and non-isotropic shape densities
Zonal polynomials
topic Shape theory
Non-central and non-isotropic shape densities
Zonal polynomials
description This work finds in terms of zonal polynomials, the non isotropic noncentral elliptical shape distributions via singular value decomposition; it avoids the invariant polynomials and the open problems for their computation. The new shape distributions are easily computable and then the inference procedure is based on exact densities, instead of the published approximations and asymptotic distribution of isotropic models. An application of the technique is illustrated with a classical landmark data of Biology, for this, three Kotz type models are proposed (including Gaussian); then the best one is chosen by using a modified BIC criterion.
publishDate 2012
dc.date.created.none.fl_str_mv 2012
dc.date.accessioned.none.fl_str_mv 2017-06-15T22:05:18Z
dc.date.available.none.fl_str_mv 2017-06-15T22:05:18Z
dc.type.eng.fl_str_mv Article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.citation.spa.fl_str_mv Díaz-García, J. A., & Caro-Lopera, F. J. (2012). Generalised shape theory via SV decomposition I. Metrika, 75(4), 541-565.
dc.identifier.issn.none.fl_str_mv 00261335
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/3405
dc.identifier.doi.none.fl_str_mv DOI: 10.1007/s00184-010-0341-5
dc.identifier.eissn.none.fl_str_mv 1435926X
identifier_str_mv Díaz-García, J. A., & Caro-Lopera, F. J. (2012). Generalised shape theory via SV decomposition I. Metrika, 75(4), 541-565.
00261335
DOI: 10.1007/s00184-010-0341-5
1435926X
url http://hdl.handle.net/11407/3405
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://link.springer.com/article/10.1007%2Fs00184-010-0341-5?LI=true
dc.relation.ispartofes.spa.fl_str_mv Metrika, May 2012, Volume 75, Issue 4, pp 541–565
dc.relation.references.spa.fl_str_mv Caro-Lopera FJ, Díaz-García JA, González-Farías G (2009) Noncentral elliptical configuration density. J Multivar Anal 101(1): 32–43
Davis AW (1980) Invariant polynomials with two matrix arguments, extending the zonal polynomials. In: Krishnaiah PR (ed.) Multivariate analysis V. North-Holland Publishing Company, Amsterdam, pp 287–299
Díaz-García JA, Gutiérrez- Jáimez R, Mardia KV (1997) Wishart and Pseudo-Wishart distributions and some applications to shape theory. J Multivar Anal 63: 73–87
Díaz-García JA, Gutiérrez-Jáimez R, Ramos R (2003) Size-and-shape cone, shape disk and configuration densities for the elliptical models. Braz J Probab Stat 17: 135–146
Dryden IL, Mardia KV (1998) Statistical shape analysis. Wiley, Chichester
Fang KT, Zhang YT (1990) Generalized multivariate analysis. Science Press, Springer, Beijing
Goodall CR (1991) Procustes methods in the statistical analysis of shape (with discussion). J R Stat Soc Ser B 53: 285–339
Goodall CR, Mardia KV (1993) Multivariate aspects of shape theory. Ann Stat 21: 848–866
Gupta AK, Varga T (1993) Elliptically contoured models in statistics. Kluwer, Dordrecht
James AT (1964) Distributions of matrix variate and latent roots derived from normal samples. Ann Math Stat 35: 475–501
Kass RE, Raftery AE (1995) Bayes factor. J Am Stat Soc 90: 773–795
Koev P, Edelman A (2006) The efficient evaluation of the hypergeometric function of a matrix argument. Math Comput 75: 833–846
Le HL, Kendall DG (1993) The Riemannian structure of Euclidean spaces: a novel environment for statistics. Ann Stat 21: 1225–1271
Mardia KV, Dryden IL (1989) The statistical analysis of shape data. Biometrika 76(2): 271–281
Muirhead RJ (1982) Aspects of multivariate statistical theory. Wiley series in probability and mathematical statistics. Wiley, New York
Raftery AE (1995) Bayesian model selection in social research. Sociol Methodol 25: 111–163
Rissanen J (1978) Modelling by shortest data description. Automatica 14: 465–471
Yang ChCh, Yang ChCh (2007) Separating latent classes by information criteria. J Classif 24: 183–203
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Physica-Verlag Gmbh und Co
Springer Berlin Heidelberg
dc.publisher.program.spa.fl_str_mv Tronco común Ingenierías
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
dc.source.spa.fl_str_mv Metrika: International Journal for Theoretical and Applied Statistics
institution Universidad de Medellín
bitstream.url.fl_str_mv http://repository.udem.edu.co/bitstream/11407/3405/1/Articulo.html
bitstream.checksum.fl_str_mv 4ea1cbe0827e7beb03631908d62a1690
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159270034276352