Opto-electronic properties of blue phosphorene oxide with and without oxygen vacancies

Blue phosphorene is an attractive nanomaterial that exhibits some remarkable optoelectronic properties. Various studies have verified its ability to adsorb gaseous compounds and, in particular, to dissociate O2, forming covalent bonds between phosphorus and oxygen atoms. These covalent bonds could b...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5740
Acceso en línea:
http://hdl.handle.net/11407/5740
Palabra clave:
Blue Phosphorene Oxide
DFT
oxygen vacancies
phosphorene
Atoms
Chemical sensors
Density functional theory
Electronic properties
Electronic structure
Gas detectors
Metallic compounds
Metals
Energetic stability
Formation energies
Gaseous compounds
Optical response
Optoelectronic properties
Oxidation reactions
phosphorene
Single vacancies
Oxygen vacancies
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_f27f454279f9aca33fc40f2b0292307e
oai_identifier_str oai:repository.udem.edu.co:11407/5740
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Opto-electronic properties of blue phosphorene oxide with and without oxygen vacancies
title Opto-electronic properties of blue phosphorene oxide with and without oxygen vacancies
spellingShingle Opto-electronic properties of blue phosphorene oxide with and without oxygen vacancies
Blue Phosphorene Oxide
DFT
oxygen vacancies
phosphorene
Atoms
Chemical sensors
Density functional theory
Electronic properties
Electronic structure
Gas detectors
Metallic compounds
Metals
Energetic stability
Formation energies
Gaseous compounds
Optical response
Optoelectronic properties
Oxidation reactions
phosphorene
Single vacancies
Oxygen vacancies
title_short Opto-electronic properties of blue phosphorene oxide with and without oxygen vacancies
title_full Opto-electronic properties of blue phosphorene oxide with and without oxygen vacancies
title_fullStr Opto-electronic properties of blue phosphorene oxide with and without oxygen vacancies
title_full_unstemmed Opto-electronic properties of blue phosphorene oxide with and without oxygen vacancies
title_sort Opto-electronic properties of blue phosphorene oxide with and without oxygen vacancies
dc.subject.none.fl_str_mv Blue Phosphorene Oxide
DFT
oxygen vacancies
phosphorene
Atoms
Chemical sensors
Density functional theory
Electronic properties
Electronic structure
Gas detectors
Metallic compounds
Metals
Energetic stability
Formation energies
Gaseous compounds
Optical response
Optoelectronic properties
Oxidation reactions
phosphorene
Single vacancies
Oxygen vacancies
topic Blue Phosphorene Oxide
DFT
oxygen vacancies
phosphorene
Atoms
Chemical sensors
Density functional theory
Electronic properties
Electronic structure
Gas detectors
Metallic compounds
Metals
Energetic stability
Formation energies
Gaseous compounds
Optical response
Optoelectronic properties
Oxidation reactions
phosphorene
Single vacancies
Oxygen vacancies
description Blue phosphorene is an attractive nanomaterial that exhibits some remarkable optoelectronic properties. Various studies have verified its ability to adsorb gaseous compounds and, in particular, to dissociate O2, forming covalent bonds between phosphorus and oxygen atoms. These covalent bonds could be the reason behind the oxidation reaction that affects the blue phosphorene in normal room conditions. Theoretically, it has been demonstrated that the blue phosphorene oxide (BPO) is just as stable as the blue phosphorene. Given that metallic oxides are widely used as catalyzers and gas sensors, this opens the possibility of the BPO being presented as a gas sensor as well. For all the above, in this work the optoelectronic properties of BPO were studied, along with the generation of the oxygen vacancies. The investigation was performed within the density functional theory (DFT). In the study of the oxygen vacancy, the formation energy was calculated, and the results are similar to the formation energies of oxygen vacancies in other known oxides. It was found that the BPO with a single vacancy has a favorable energetic stability. The characterization of the vacancy is achieved using the electronic structure and the optical response. Additionally, the analysis of the adsorption of a hydrogen atom on the BPO, and the subsequent formation of hydroxide is presented. © 2019 Wiley Periodicals, Inc.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:53:50Z
dc.date.available.none.fl_str_mv 2020-04-29T14:53:50Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 207608
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5740
dc.identifier.doi.none.fl_str_mv 10.1002/qua.26075
identifier_str_mv 207608
10.1002/qua.26075
url http://hdl.handle.net/11407/5740
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074323263&doi=10.1002%2fqua.26075&partnerID=40&md5=47f44558cb3cf0860ed6f8a6f2753f14
dc.relation.citationvolume.none.fl_str_mv 120
dc.relation.citationissue.none.fl_str_mv 2
dc.relation.references.none.fl_str_mv Cao, C., Wu, M., Jiang, J., Cheng, H.-P., (2010) Phys. Rev. B, 81, p. 205424
Mannix, A.J., Kiraly, B., Hersam, M.C., Guisinger, N.P., (2017) Nat. Rev. Chem., 1, p. 0014
Ratinac, K.R., Yang, W., Ringer, S.P., Braet, F., (2010) Environ. Sci. Technol., 44, p. 1167
Sun, M., Hao, Y., Ren, Q., Zhao, Y., Du, Y., Tang, W., (2016) Solid State Commun., 242, p. 36
Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S., (2012) Nat. Nanotechnol., 7, p. 699
Zhou, S., Liu, N., Zhao, J., (2017) Comput. Mater. Sci., 130, p. 56
Yang, S., Jiang, C., Wei, S.-H., (2017) Appl Phys. Rev., 4, p. 021304
Liu, N., Zhou, S., (2017) Nanotechnology, 28, p. 175708
Ataca, C., Ciraci, S., (2010) Phys. Rev. B, 82, p. 165402
Ataca, C., Ciraci, S., (2011) J. Phys. Chem. C, 115, p. 13303
Ding, Y., Wang, Y., (2015) J. Phys. Chem. C, 119, p. 10610
Kuntz, K.L., Wells, R.A., Hu, J., Yang, T., Dong, B., Guo, H., Woomer, A.H., Warren, S.C., (2017) ACS Appl. Mater. Interfaces, 9, p. 9126
Bagheri, S., Mansouri, N., Aghaie, E., (2016) Int. J. Hydrogen Energy, 41, p. 4085
Xia, F., Wang, H., Jia, Y., (2014) Nat. Commun., 5, p. 4458
Kou, L., Frauenheim, T., Chen, C., (2014) J. Phys. Chem. Lett., 5, p. 2675
Abbas, A.N., Liu, B., Chen, L., Ma, Y., Cong, S., Aroonyadet, N., Köpf, M., Zhou, C., (2015) ACS Nano, 9, p. 5618
Zhu, Z., Tománek, D., (2014) Phys. Rev. Lett., 112, p. 176802
Zhang, J.L., Zhao, S., Han, C., Wang, Z., Zhong, S., Sun, S., Guo, R., Chen, W., (2016) Nano Lett., 16, p. 4903
Sun, M., Tang, W., Ren, Q., Wang, S.-K., Yu, J., Du, Y., (2015) Appl. Surf. Sci., 356, p. 110
Srivastava, P., Hembram, K., Mizuseki, H., Lee, K.-R., Han, S.S., Kim, S., (2015) J. Phys. Chem. C, 119, p. 6530
Agnihotri, S., Rastogi, P., Chauhan, Y.S., Agarwal, A., Bhowmick, S., (2018) J. Phys. Chem. C, 122, p. 5171
Xie, J., Si, M., Yang, D., Zhang, Z., Xue, D., (2014) J. Appl. Phys., 116, p. 073704
Ospina, D., Duque, C., Correa, J., Morell, E.S., (2016) Superlattices Microstruct., 97, p. 562
Safari, F., Moradinasab, M., Fathipour, M., Kosina, H., (2019) Appl. Surf. Sci., 464, p. 153
Wang, B.-J., Li, X.-H., Cai, X.-L., Yu, W.-Y., Zhang, L.-W., Zhao, R.-Q., Ke, S.-H., (2018) J. Phys. Chem. C, 122, p. 7075
Yi, Z., Ma, Y., Zheng, Y., Duan, Y., Li, H., (2019) Adv. Mate. Interfaces, 6, p. 1801175
Hao, F., Liao, X., Li, M., Xiao, H., Chen, X., (2018) J. Phys.: Condens. Matter, 30, p. 315302
Ziletti, A., Carvalho, A., Trevisanutto, P., Campbell, D., Coker, D., Neto, A.C., (2015) Phys. Rev. B, 91, p. 085407
Lee, S., Kang, S.-H., Kwon, Y.-K., (2019) Sci. Rep., 9, p. 5149
Huang, L., Li, J., (2016) Appl. Phys. Lett., 108, p. 083101
Yu, W., Zhu, Z., Niu, C.-Y., Li, C., Cho, J.-H., Jia, Y., (2016) Nanoscale Res. Lett., 11, p. 77
Zhu, X., Zhang, T., Sun, Z., Chen, H., Guan, J., Chen, X., Ji, H., Yang, S., (2017) Adv. Mater., 29, p. 1605776
Wang, Z., Zhao, D., Yu, S., Nie, Z., Li, Y., Zhang, L., (2019) Prog. Nat. Sci.: Mater. Int., 29, p. 316
Wang, G., Pandey, R., Karna, S.P., (2015) Nanoscale, 7, p. 524
Irshad, R., Tahir, K., Li, B., Sher, Z., Ali, J., Nazir, S., (2018) J. Ind. Eng. Chem., 64, p. 60
Zhu, L., Wang, S.-S., Guan, S., Liu, Y., Zhang, T., Chen, G., Yang, S.A., (2016) Nano Lett., 16, p. 6548
Zhang, J.L., Zhao, S., Telychko, M., Sun, S., Lian, X., Su, J., Tadich, A., Chen, W., (2019) Nano Lett., 19, p. 5340
Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., (2002) J. Phys.: Condens. Matter, 14, p. 2745
Dion, M., Rydberg, H., Schröder, E., Langreth, D.C., Lundqvist, B.I., (2004) Phys. Rev. Lett., 92, p. 246401
Klime , J., Bowler, D.R., Michaelides, A., (2009) J. Phys.: Condens. Matter, 22, p. 022201
Ospina, D., Duque, C., Mora-Ramos, M., Correa, J., (2017) Comput. Mater. Sci., 135, p. 43
Deml, A.M., Stevanovi?, V., Muhich, C.L., Musgrave, C.B., O'Hayre, R., (2014) Energy Environ. Sci., 7, p. 1996
Cai, Y., Ke, Q., Zhang, G., Yakobson, B.I., Zhang, Y.-W., (2016) J. Am. Chem. Soc., 138, p. 10199
Kistanov, A.A., Cai, Y., Zhou, K., Dmitriev, S.V., Zhang, Y.-W., (2016) 2D Mater., 4, p. 015010
Kong, L.-J., Liu, G.-H., Zhang, Y.-J., (2016) RSC Adv., 6, p. 10919
Aierken, Y., Çak?r, D., Sevik, C., Peeters, F.M., (2015) Phys. Rev. B, 92, p. 081408
Ganduglia-Pirovano, M.V., Hofmann, A., Sauer, J., (2007) Surf. Sci. Rep., 62, p. 219
Mahabal, M.S., Deshpande, M.D., Hussain, T., Ahuja, R., (2016) J. Phys. Chem. C, 120, p. 20428
Nørskov, J.K., Bligaard, T., Rossmeisl, J., Christensen, C.H., (2009) Nat. Chem., 1, p. 37
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv John Wiley and Sons Inc.
dc.publisher.program.none.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv John Wiley and Sons Inc.
dc.source.none.fl_str_mv International Journal of Quantum Chemistry
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1808481169244684288
spelling 20202020-04-29T14:53:50Z2020-04-29T14:53:50Z207608http://hdl.handle.net/11407/574010.1002/qua.26075Blue phosphorene is an attractive nanomaterial that exhibits some remarkable optoelectronic properties. Various studies have verified its ability to adsorb gaseous compounds and, in particular, to dissociate O2, forming covalent bonds between phosphorus and oxygen atoms. These covalent bonds could be the reason behind the oxidation reaction that affects the blue phosphorene in normal room conditions. Theoretically, it has been demonstrated that the blue phosphorene oxide (BPO) is just as stable as the blue phosphorene. Given that metallic oxides are widely used as catalyzers and gas sensors, this opens the possibility of the BPO being presented as a gas sensor as well. For all the above, in this work the optoelectronic properties of BPO were studied, along with the generation of the oxygen vacancies. The investigation was performed within the density functional theory (DFT). In the study of the oxygen vacancy, the formation energy was calculated, and the results are similar to the formation energies of oxygen vacancies in other known oxides. It was found that the BPO with a single vacancy has a favorable energetic stability. The characterization of the vacancy is achieved using the electronic structure and the optical response. Additionally, the analysis of the adsorption of a hydrogen atom on the BPO, and the subsequent formation of hydroxide is presented. © 2019 Wiley Periodicals, Inc.engJohn Wiley and Sons Inc.Facultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85074323263&doi=10.1002%2fqua.26075&partnerID=40&md5=47f44558cb3cf0860ed6f8a6f2753f141202Cao, C., Wu, M., Jiang, J., Cheng, H.-P., (2010) Phys. Rev. B, 81, p. 205424Mannix, A.J., Kiraly, B., Hersam, M.C., Guisinger, N.P., (2017) Nat. Rev. Chem., 1, p. 0014Ratinac, K.R., Yang, W., Ringer, S.P., Braet, F., (2010) Environ. Sci. Technol., 44, p. 1167Sun, M., Hao, Y., Ren, Q., Zhao, Y., Du, Y., Tang, W., (2016) Solid State Commun., 242, p. 36Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S., (2012) Nat. Nanotechnol., 7, p. 699Zhou, S., Liu, N., Zhao, J., (2017) Comput. Mater. Sci., 130, p. 56Yang, S., Jiang, C., Wei, S.-H., (2017) Appl Phys. Rev., 4, p. 021304Liu, N., Zhou, S., (2017) Nanotechnology, 28, p. 175708Ataca, C., Ciraci, S., (2010) Phys. Rev. B, 82, p. 165402Ataca, C., Ciraci, S., (2011) J. Phys. Chem. C, 115, p. 13303Ding, Y., Wang, Y., (2015) J. Phys. Chem. C, 119, p. 10610Kuntz, K.L., Wells, R.A., Hu, J., Yang, T., Dong, B., Guo, H., Woomer, A.H., Warren, S.C., (2017) ACS Appl. Mater. Interfaces, 9, p. 9126Bagheri, S., Mansouri, N., Aghaie, E., (2016) Int. J. Hydrogen Energy, 41, p. 4085Xia, F., Wang, H., Jia, Y., (2014) Nat. Commun., 5, p. 4458Kou, L., Frauenheim, T., Chen, C., (2014) J. Phys. Chem. Lett., 5, p. 2675Abbas, A.N., Liu, B., Chen, L., Ma, Y., Cong, S., Aroonyadet, N., Köpf, M., Zhou, C., (2015) ACS Nano, 9, p. 5618Zhu, Z., Tománek, D., (2014) Phys. Rev. Lett., 112, p. 176802Zhang, J.L., Zhao, S., Han, C., Wang, Z., Zhong, S., Sun, S., Guo, R., Chen, W., (2016) Nano Lett., 16, p. 4903Sun, M., Tang, W., Ren, Q., Wang, S.-K., Yu, J., Du, Y., (2015) Appl. Surf. Sci., 356, p. 110Srivastava, P., Hembram, K., Mizuseki, H., Lee, K.-R., Han, S.S., Kim, S., (2015) J. Phys. Chem. C, 119, p. 6530Agnihotri, S., Rastogi, P., Chauhan, Y.S., Agarwal, A., Bhowmick, S., (2018) J. Phys. Chem. C, 122, p. 5171Xie, J., Si, M., Yang, D., Zhang, Z., Xue, D., (2014) J. Appl. Phys., 116, p. 073704Ospina, D., Duque, C., Correa, J., Morell, E.S., (2016) Superlattices Microstruct., 97, p. 562Safari, F., Moradinasab, M., Fathipour, M., Kosina, H., (2019) Appl. Surf. Sci., 464, p. 153Wang, B.-J., Li, X.-H., Cai, X.-L., Yu, W.-Y., Zhang, L.-W., Zhao, R.-Q., Ke, S.-H., (2018) J. Phys. Chem. C, 122, p. 7075Yi, Z., Ma, Y., Zheng, Y., Duan, Y., Li, H., (2019) Adv. Mate. Interfaces, 6, p. 1801175Hao, F., Liao, X., Li, M., Xiao, H., Chen, X., (2018) J. Phys.: Condens. Matter, 30, p. 315302Ziletti, A., Carvalho, A., Trevisanutto, P., Campbell, D., Coker, D., Neto, A.C., (2015) Phys. Rev. B, 91, p. 085407Lee, S., Kang, S.-H., Kwon, Y.-K., (2019) Sci. Rep., 9, p. 5149Huang, L., Li, J., (2016) Appl. Phys. Lett., 108, p. 083101Yu, W., Zhu, Z., Niu, C.-Y., Li, C., Cho, J.-H., Jia, Y., (2016) Nanoscale Res. Lett., 11, p. 77Zhu, X., Zhang, T., Sun, Z., Chen, H., Guan, J., Chen, X., Ji, H., Yang, S., (2017) Adv. Mater., 29, p. 1605776Wang, Z., Zhao, D., Yu, S., Nie, Z., Li, Y., Zhang, L., (2019) Prog. Nat. Sci.: Mater. Int., 29, p. 316Wang, G., Pandey, R., Karna, S.P., (2015) Nanoscale, 7, p. 524Irshad, R., Tahir, K., Li, B., Sher, Z., Ali, J., Nazir, S., (2018) J. Ind. Eng. Chem., 64, p. 60Zhu, L., Wang, S.-S., Guan, S., Liu, Y., Zhang, T., Chen, G., Yang, S.A., (2016) Nano Lett., 16, p. 6548Zhang, J.L., Zhao, S., Telychko, M., Sun, S., Lian, X., Su, J., Tadich, A., Chen, W., (2019) Nano Lett., 19, p. 5340Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., (2002) J. Phys.: Condens. Matter, 14, p. 2745Dion, M., Rydberg, H., Schröder, E., Langreth, D.C., Lundqvist, B.I., (2004) Phys. Rev. Lett., 92, p. 246401Klime , J., Bowler, D.R., Michaelides, A., (2009) J. Phys.: Condens. Matter, 22, p. 022201Ospina, D., Duque, C., Mora-Ramos, M., Correa, J., (2017) Comput. Mater. Sci., 135, p. 43Deml, A.M., Stevanovi?, V., Muhich, C.L., Musgrave, C.B., O'Hayre, R., (2014) Energy Environ. Sci., 7, p. 1996Cai, Y., Ke, Q., Zhang, G., Yakobson, B.I., Zhang, Y.-W., (2016) J. Am. Chem. Soc., 138, p. 10199Kistanov, A.A., Cai, Y., Zhou, K., Dmitriev, S.V., Zhang, Y.-W., (2016) 2D Mater., 4, p. 015010Kong, L.-J., Liu, G.-H., Zhang, Y.-J., (2016) RSC Adv., 6, p. 10919Aierken, Y., Çak?r, D., Sevik, C., Peeters, F.M., (2015) Phys. Rev. B, 92, p. 081408Ganduglia-Pirovano, M.V., Hofmann, A., Sauer, J., (2007) Surf. Sci. Rep., 62, p. 219Mahabal, M.S., Deshpande, M.D., Hussain, T., Ahuja, R., (2016) J. Phys. Chem. C, 120, p. 20428Nørskov, J.K., Bligaard, T., Rossmeisl, J., Christensen, C.H., (2009) Nat. Chem., 1, p. 37International Journal of Quantum ChemistryBlue Phosphorene OxideDFToxygen vacanciesphosphoreneAtomsChemical sensorsDensity functional theoryElectronic propertiesElectronic structureGas detectorsMetallic compoundsMetalsEnergetic stabilityFormation energiesGaseous compoundsOptical responseOptoelectronic propertiesOxidation reactionsphosphoreneSingle vacanciesOxygen vacanciesOpto-electronic properties of blue phosphorene oxide with and without oxygen vacanciesArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Zuluaga-Hernández, E.A., Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia; Flórez, E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Dorkis, L., Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia; Mora-Ramos, M.E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Centro de Investigaci?n en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico; Correa, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecZuluaga-Hernández E.A.Flórez E.Dorkis L.Mora-Ramos M.E.Correa J.D.11407/5740oai:repository.udem.edu.co:11407/57402020-05-27 17:38:52.508Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co