Opto-electronic properties of blue phosphorene oxide with and without oxygen vacancies
Blue phosphorene is an attractive nanomaterial that exhibits some remarkable optoelectronic properties. Various studies have verified its ability to adsorb gaseous compounds and, in particular, to dissociate O2, forming covalent bonds between phosphorus and oxygen atoms. These covalent bonds could b...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5740
- Acceso en línea:
- http://hdl.handle.net/11407/5740
- Palabra clave:
- Blue Phosphorene Oxide
DFT
oxygen vacancies
phosphorene
Atoms
Chemical sensors
Density functional theory
Electronic properties
Electronic structure
Gas detectors
Metallic compounds
Metals
Energetic stability
Formation energies
Gaseous compounds
Optical response
Optoelectronic properties
Oxidation reactions
phosphorene
Single vacancies
Oxygen vacancies
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_f27f454279f9aca33fc40f2b0292307e |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5740 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Opto-electronic properties of blue phosphorene oxide with and without oxygen vacancies |
title |
Opto-electronic properties of blue phosphorene oxide with and without oxygen vacancies |
spellingShingle |
Opto-electronic properties of blue phosphorene oxide with and without oxygen vacancies Blue Phosphorene Oxide DFT oxygen vacancies phosphorene Atoms Chemical sensors Density functional theory Electronic properties Electronic structure Gas detectors Metallic compounds Metals Energetic stability Formation energies Gaseous compounds Optical response Optoelectronic properties Oxidation reactions phosphorene Single vacancies Oxygen vacancies |
title_short |
Opto-electronic properties of blue phosphorene oxide with and without oxygen vacancies |
title_full |
Opto-electronic properties of blue phosphorene oxide with and without oxygen vacancies |
title_fullStr |
Opto-electronic properties of blue phosphorene oxide with and without oxygen vacancies |
title_full_unstemmed |
Opto-electronic properties of blue phosphorene oxide with and without oxygen vacancies |
title_sort |
Opto-electronic properties of blue phosphorene oxide with and without oxygen vacancies |
dc.subject.none.fl_str_mv |
Blue Phosphorene Oxide DFT oxygen vacancies phosphorene Atoms Chemical sensors Density functional theory Electronic properties Electronic structure Gas detectors Metallic compounds Metals Energetic stability Formation energies Gaseous compounds Optical response Optoelectronic properties Oxidation reactions phosphorene Single vacancies Oxygen vacancies |
topic |
Blue Phosphorene Oxide DFT oxygen vacancies phosphorene Atoms Chemical sensors Density functional theory Electronic properties Electronic structure Gas detectors Metallic compounds Metals Energetic stability Formation energies Gaseous compounds Optical response Optoelectronic properties Oxidation reactions phosphorene Single vacancies Oxygen vacancies |
description |
Blue phosphorene is an attractive nanomaterial that exhibits some remarkable optoelectronic properties. Various studies have verified its ability to adsorb gaseous compounds and, in particular, to dissociate O2, forming covalent bonds between phosphorus and oxygen atoms. These covalent bonds could be the reason behind the oxidation reaction that affects the blue phosphorene in normal room conditions. Theoretically, it has been demonstrated that the blue phosphorene oxide (BPO) is just as stable as the blue phosphorene. Given that metallic oxides are widely used as catalyzers and gas sensors, this opens the possibility of the BPO being presented as a gas sensor as well. For all the above, in this work the optoelectronic properties of BPO were studied, along with the generation of the oxygen vacancies. The investigation was performed within the density functional theory (DFT). In the study of the oxygen vacancy, the formation energy was calculated, and the results are similar to the formation energies of oxygen vacancies in other known oxides. It was found that the BPO with a single vacancy has a favorable energetic stability. The characterization of the vacancy is achieved using the electronic structure and the optical response. Additionally, the analysis of the adsorption of a hydrogen atom on the BPO, and the subsequent formation of hydroxide is presented. © 2019 Wiley Periodicals, Inc. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-04-29T14:53:50Z |
dc.date.available.none.fl_str_mv |
2020-04-29T14:53:50Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
207608 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5740 |
dc.identifier.doi.none.fl_str_mv |
10.1002/qua.26075 |
identifier_str_mv |
207608 10.1002/qua.26075 |
url |
http://hdl.handle.net/11407/5740 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074323263&doi=10.1002%2fqua.26075&partnerID=40&md5=47f44558cb3cf0860ed6f8a6f2753f14 |
dc.relation.citationvolume.none.fl_str_mv |
120 |
dc.relation.citationissue.none.fl_str_mv |
2 |
dc.relation.references.none.fl_str_mv |
Cao, C., Wu, M., Jiang, J., Cheng, H.-P., (2010) Phys. Rev. B, 81, p. 205424 Mannix, A.J., Kiraly, B., Hersam, M.C., Guisinger, N.P., (2017) Nat. Rev. Chem., 1, p. 0014 Ratinac, K.R., Yang, W., Ringer, S.P., Braet, F., (2010) Environ. Sci. Technol., 44, p. 1167 Sun, M., Hao, Y., Ren, Q., Zhao, Y., Du, Y., Tang, W., (2016) Solid State Commun., 242, p. 36 Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S., (2012) Nat. Nanotechnol., 7, p. 699 Zhou, S., Liu, N., Zhao, J., (2017) Comput. Mater. Sci., 130, p. 56 Yang, S., Jiang, C., Wei, S.-H., (2017) Appl Phys. Rev., 4, p. 021304 Liu, N., Zhou, S., (2017) Nanotechnology, 28, p. 175708 Ataca, C., Ciraci, S., (2010) Phys. Rev. B, 82, p. 165402 Ataca, C., Ciraci, S., (2011) J. Phys. Chem. C, 115, p. 13303 Ding, Y., Wang, Y., (2015) J. Phys. Chem. C, 119, p. 10610 Kuntz, K.L., Wells, R.A., Hu, J., Yang, T., Dong, B., Guo, H., Woomer, A.H., Warren, S.C., (2017) ACS Appl. Mater. Interfaces, 9, p. 9126 Bagheri, S., Mansouri, N., Aghaie, E., (2016) Int. J. Hydrogen Energy, 41, p. 4085 Xia, F., Wang, H., Jia, Y., (2014) Nat. Commun., 5, p. 4458 Kou, L., Frauenheim, T., Chen, C., (2014) J. Phys. Chem. Lett., 5, p. 2675 Abbas, A.N., Liu, B., Chen, L., Ma, Y., Cong, S., Aroonyadet, N., Köpf, M., Zhou, C., (2015) ACS Nano, 9, p. 5618 Zhu, Z., Tománek, D., (2014) Phys. Rev. Lett., 112, p. 176802 Zhang, J.L., Zhao, S., Han, C., Wang, Z., Zhong, S., Sun, S., Guo, R., Chen, W., (2016) Nano Lett., 16, p. 4903 Sun, M., Tang, W., Ren, Q., Wang, S.-K., Yu, J., Du, Y., (2015) Appl. Surf. Sci., 356, p. 110 Srivastava, P., Hembram, K., Mizuseki, H., Lee, K.-R., Han, S.S., Kim, S., (2015) J. Phys. Chem. C, 119, p. 6530 Agnihotri, S., Rastogi, P., Chauhan, Y.S., Agarwal, A., Bhowmick, S., (2018) J. Phys. Chem. C, 122, p. 5171 Xie, J., Si, M., Yang, D., Zhang, Z., Xue, D., (2014) J. Appl. Phys., 116, p. 073704 Ospina, D., Duque, C., Correa, J., Morell, E.S., (2016) Superlattices Microstruct., 97, p. 562 Safari, F., Moradinasab, M., Fathipour, M., Kosina, H., (2019) Appl. Surf. Sci., 464, p. 153 Wang, B.-J., Li, X.-H., Cai, X.-L., Yu, W.-Y., Zhang, L.-W., Zhao, R.-Q., Ke, S.-H., (2018) J. Phys. Chem. C, 122, p. 7075 Yi, Z., Ma, Y., Zheng, Y., Duan, Y., Li, H., (2019) Adv. Mate. Interfaces, 6, p. 1801175 Hao, F., Liao, X., Li, M., Xiao, H., Chen, X., (2018) J. Phys.: Condens. Matter, 30, p. 315302 Ziletti, A., Carvalho, A., Trevisanutto, P., Campbell, D., Coker, D., Neto, A.C., (2015) Phys. Rev. B, 91, p. 085407 Lee, S., Kang, S.-H., Kwon, Y.-K., (2019) Sci. Rep., 9, p. 5149 Huang, L., Li, J., (2016) Appl. Phys. Lett., 108, p. 083101 Yu, W., Zhu, Z., Niu, C.-Y., Li, C., Cho, J.-H., Jia, Y., (2016) Nanoscale Res. Lett., 11, p. 77 Zhu, X., Zhang, T., Sun, Z., Chen, H., Guan, J., Chen, X., Ji, H., Yang, S., (2017) Adv. Mater., 29, p. 1605776 Wang, Z., Zhao, D., Yu, S., Nie, Z., Li, Y., Zhang, L., (2019) Prog. Nat. Sci.: Mater. Int., 29, p. 316 Wang, G., Pandey, R., Karna, S.P., (2015) Nanoscale, 7, p. 524 Irshad, R., Tahir, K., Li, B., Sher, Z., Ali, J., Nazir, S., (2018) J. Ind. Eng. Chem., 64, p. 60 Zhu, L., Wang, S.-S., Guan, S., Liu, Y., Zhang, T., Chen, G., Yang, S.A., (2016) Nano Lett., 16, p. 6548 Zhang, J.L., Zhao, S., Telychko, M., Sun, S., Lian, X., Su, J., Tadich, A., Chen, W., (2019) Nano Lett., 19, p. 5340 Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., (2002) J. Phys.: Condens. Matter, 14, p. 2745 Dion, M., Rydberg, H., Schröder, E., Langreth, D.C., Lundqvist, B.I., (2004) Phys. Rev. Lett., 92, p. 246401 Klime , J., Bowler, D.R., Michaelides, A., (2009) J. Phys.: Condens. Matter, 22, p. 022201 Ospina, D., Duque, C., Mora-Ramos, M., Correa, J., (2017) Comput. Mater. Sci., 135, p. 43 Deml, A.M., Stevanovi?, V., Muhich, C.L., Musgrave, C.B., O'Hayre, R., (2014) Energy Environ. Sci., 7, p. 1996 Cai, Y., Ke, Q., Zhang, G., Yakobson, B.I., Zhang, Y.-W., (2016) J. Am. Chem. Soc., 138, p. 10199 Kistanov, A.A., Cai, Y., Zhou, K., Dmitriev, S.V., Zhang, Y.-W., (2016) 2D Mater., 4, p. 015010 Kong, L.-J., Liu, G.-H., Zhang, Y.-J., (2016) RSC Adv., 6, p. 10919 Aierken, Y., Çak?r, D., Sevik, C., Peeters, F.M., (2015) Phys. Rev. B, 92, p. 081408 Ganduglia-Pirovano, M.V., Hofmann, A., Sauer, J., (2007) Surf. Sci. Rep., 62, p. 219 Mahabal, M.S., Deshpande, M.D., Hussain, T., Ahuja, R., (2016) J. Phys. Chem. C, 120, p. 20428 Nørskov, J.K., Bligaard, T., Rossmeisl, J., Christensen, C.H., (2009) Nat. Chem., 1, p. 37 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
John Wiley and Sons Inc. |
dc.publisher.program.none.fl_str_mv |
Facultad de Ciencias Básicas |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
John Wiley and Sons Inc. |
dc.source.none.fl_str_mv |
International Journal of Quantum Chemistry |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159174964084736 |
spelling |
20202020-04-29T14:53:50Z2020-04-29T14:53:50Z207608http://hdl.handle.net/11407/574010.1002/qua.26075Blue phosphorene is an attractive nanomaterial that exhibits some remarkable optoelectronic properties. Various studies have verified its ability to adsorb gaseous compounds and, in particular, to dissociate O2, forming covalent bonds between phosphorus and oxygen atoms. These covalent bonds could be the reason behind the oxidation reaction that affects the blue phosphorene in normal room conditions. Theoretically, it has been demonstrated that the blue phosphorene oxide (BPO) is just as stable as the blue phosphorene. Given that metallic oxides are widely used as catalyzers and gas sensors, this opens the possibility of the BPO being presented as a gas sensor as well. For all the above, in this work the optoelectronic properties of BPO were studied, along with the generation of the oxygen vacancies. The investigation was performed within the density functional theory (DFT). In the study of the oxygen vacancy, the formation energy was calculated, and the results are similar to the formation energies of oxygen vacancies in other known oxides. It was found that the BPO with a single vacancy has a favorable energetic stability. The characterization of the vacancy is achieved using the electronic structure and the optical response. Additionally, the analysis of the adsorption of a hydrogen atom on the BPO, and the subsequent formation of hydroxide is presented. © 2019 Wiley Periodicals, Inc.engJohn Wiley and Sons Inc.Facultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85074323263&doi=10.1002%2fqua.26075&partnerID=40&md5=47f44558cb3cf0860ed6f8a6f2753f141202Cao, C., Wu, M., Jiang, J., Cheng, H.-P., (2010) Phys. Rev. B, 81, p. 205424Mannix, A.J., Kiraly, B., Hersam, M.C., Guisinger, N.P., (2017) Nat. Rev. Chem., 1, p. 0014Ratinac, K.R., Yang, W., Ringer, S.P., Braet, F., (2010) Environ. Sci. Technol., 44, p. 1167Sun, M., Hao, Y., Ren, Q., Zhao, Y., Du, Y., Tang, W., (2016) Solid State Commun., 242, p. 36Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S., (2012) Nat. Nanotechnol., 7, p. 699Zhou, S., Liu, N., Zhao, J., (2017) Comput. Mater. Sci., 130, p. 56Yang, S., Jiang, C., Wei, S.-H., (2017) Appl Phys. Rev., 4, p. 021304Liu, N., Zhou, S., (2017) Nanotechnology, 28, p. 175708Ataca, C., Ciraci, S., (2010) Phys. Rev. B, 82, p. 165402Ataca, C., Ciraci, S., (2011) J. Phys. Chem. C, 115, p. 13303Ding, Y., Wang, Y., (2015) J. Phys. Chem. C, 119, p. 10610Kuntz, K.L., Wells, R.A., Hu, J., Yang, T., Dong, B., Guo, H., Woomer, A.H., Warren, S.C., (2017) ACS Appl. Mater. Interfaces, 9, p. 9126Bagheri, S., Mansouri, N., Aghaie, E., (2016) Int. J. Hydrogen Energy, 41, p. 4085Xia, F., Wang, H., Jia, Y., (2014) Nat. Commun., 5, p. 4458Kou, L., Frauenheim, T., Chen, C., (2014) J. Phys. Chem. Lett., 5, p. 2675Abbas, A.N., Liu, B., Chen, L., Ma, Y., Cong, S., Aroonyadet, N., Köpf, M., Zhou, C., (2015) ACS Nano, 9, p. 5618Zhu, Z., Tománek, D., (2014) Phys. Rev. Lett., 112, p. 176802Zhang, J.L., Zhao, S., Han, C., Wang, Z., Zhong, S., Sun, S., Guo, R., Chen, W., (2016) Nano Lett., 16, p. 4903Sun, M., Tang, W., Ren, Q., Wang, S.-K., Yu, J., Du, Y., (2015) Appl. Surf. Sci., 356, p. 110Srivastava, P., Hembram, K., Mizuseki, H., Lee, K.-R., Han, S.S., Kim, S., (2015) J. Phys. Chem. C, 119, p. 6530Agnihotri, S., Rastogi, P., Chauhan, Y.S., Agarwal, A., Bhowmick, S., (2018) J. Phys. Chem. C, 122, p. 5171Xie, J., Si, M., Yang, D., Zhang, Z., Xue, D., (2014) J. Appl. Phys., 116, p. 073704Ospina, D., Duque, C., Correa, J., Morell, E.S., (2016) Superlattices Microstruct., 97, p. 562Safari, F., Moradinasab, M., Fathipour, M., Kosina, H., (2019) Appl. Surf. Sci., 464, p. 153Wang, B.-J., Li, X.-H., Cai, X.-L., Yu, W.-Y., Zhang, L.-W., Zhao, R.-Q., Ke, S.-H., (2018) J. Phys. Chem. C, 122, p. 7075Yi, Z., Ma, Y., Zheng, Y., Duan, Y., Li, H., (2019) Adv. Mate. Interfaces, 6, p. 1801175Hao, F., Liao, X., Li, M., Xiao, H., Chen, X., (2018) J. Phys.: Condens. Matter, 30, p. 315302Ziletti, A., Carvalho, A., Trevisanutto, P., Campbell, D., Coker, D., Neto, A.C., (2015) Phys. Rev. B, 91, p. 085407Lee, S., Kang, S.-H., Kwon, Y.-K., (2019) Sci. Rep., 9, p. 5149Huang, L., Li, J., (2016) Appl. Phys. Lett., 108, p. 083101Yu, W., Zhu, Z., Niu, C.-Y., Li, C., Cho, J.-H., Jia, Y., (2016) Nanoscale Res. Lett., 11, p. 77Zhu, X., Zhang, T., Sun, Z., Chen, H., Guan, J., Chen, X., Ji, H., Yang, S., (2017) Adv. Mater., 29, p. 1605776Wang, Z., Zhao, D., Yu, S., Nie, Z., Li, Y., Zhang, L., (2019) Prog. Nat. Sci.: Mater. Int., 29, p. 316Wang, G., Pandey, R., Karna, S.P., (2015) Nanoscale, 7, p. 524Irshad, R., Tahir, K., Li, B., Sher, Z., Ali, J., Nazir, S., (2018) J. Ind. Eng. Chem., 64, p. 60Zhu, L., Wang, S.-S., Guan, S., Liu, Y., Zhang, T., Chen, G., Yang, S.A., (2016) Nano Lett., 16, p. 6548Zhang, J.L., Zhao, S., Telychko, M., Sun, S., Lian, X., Su, J., Tadich, A., Chen, W., (2019) Nano Lett., 19, p. 5340Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., (2002) J. Phys.: Condens. Matter, 14, p. 2745Dion, M., Rydberg, H., Schröder, E., Langreth, D.C., Lundqvist, B.I., (2004) Phys. Rev. Lett., 92, p. 246401Klime , J., Bowler, D.R., Michaelides, A., (2009) J. Phys.: Condens. Matter, 22, p. 022201Ospina, D., Duque, C., Mora-Ramos, M., Correa, J., (2017) Comput. Mater. Sci., 135, p. 43Deml, A.M., Stevanovi?, V., Muhich, C.L., Musgrave, C.B., O'Hayre, R., (2014) Energy Environ. Sci., 7, p. 1996Cai, Y., Ke, Q., Zhang, G., Yakobson, B.I., Zhang, Y.-W., (2016) J. Am. Chem. Soc., 138, p. 10199Kistanov, A.A., Cai, Y., Zhou, K., Dmitriev, S.V., Zhang, Y.-W., (2016) 2D Mater., 4, p. 015010Kong, L.-J., Liu, G.-H., Zhang, Y.-J., (2016) RSC Adv., 6, p. 10919Aierken, Y., Çak?r, D., Sevik, C., Peeters, F.M., (2015) Phys. Rev. B, 92, p. 081408Ganduglia-Pirovano, M.V., Hofmann, A., Sauer, J., (2007) Surf. Sci. Rep., 62, p. 219Mahabal, M.S., Deshpande, M.D., Hussain, T., Ahuja, R., (2016) J. Phys. Chem. C, 120, p. 20428Nørskov, J.K., Bligaard, T., Rossmeisl, J., Christensen, C.H., (2009) Nat. Chem., 1, p. 37International Journal of Quantum ChemistryBlue Phosphorene OxideDFToxygen vacanciesphosphoreneAtomsChemical sensorsDensity functional theoryElectronic propertiesElectronic structureGas detectorsMetallic compoundsMetalsEnergetic stabilityFormation energiesGaseous compoundsOptical responseOptoelectronic propertiesOxidation reactionsphosphoreneSingle vacanciesOxygen vacanciesOpto-electronic properties of blue phosphorene oxide with and without oxygen vacanciesArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Zuluaga-Hernández, E.A., Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia; Flórez, E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Dorkis, L., Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia; Mora-Ramos, M.E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Centro de Investigaci?n en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico; Correa, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecZuluaga-Hernández E.A.Flórez E.Dorkis L.Mora-Ramos M.E.Correa J.D.11407/5740oai:repository.udem.edu.co:11407/57402020-05-27 17:38:52.508Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |