A separation method for maximal covering location problems with fuzzy parameters
Our paper discusses a novel computational approach to the extended Maximal Covering Location Problem (MCLP). We consider a fuzzy-type formulation of the generic MCLP and develop the necessary theoretical and numerical aspects of the proposed Separation Method (SM). A speciffic structure of the origi...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/4286
- Acceso en línea:
- http://hdl.handle.net/11407/4286
- Palabra clave:
- Integer optimization
MCLP
Numerical optimization
Integer programming
Multiobjective optimization
Numerical methods
Separation
Site selection
Supply chains
Computational algorithm
Integer optimization
Maximal covering location problems
Maximal covering location problems (MCLP)
MCLP
Multi-objective optimization problem
Numerical optimizations
Supply chain optimization
Optimization
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_f27328cd26d1ee0080cd59eb31427c31 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/4286 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.spa.fl_str_mv |
A separation method for maximal covering location problems with fuzzy parameters |
title |
A separation method for maximal covering location problems with fuzzy parameters |
spellingShingle |
A separation method for maximal covering location problems with fuzzy parameters Integer optimization MCLP Numerical optimization Integer programming Multiobjective optimization Numerical methods Separation Site selection Supply chains Computational algorithm Integer optimization Maximal covering location problems Maximal covering location problems (MCLP) MCLP Multi-objective optimization problem Numerical optimizations Supply chain optimization Optimization |
title_short |
A separation method for maximal covering location problems with fuzzy parameters |
title_full |
A separation method for maximal covering location problems with fuzzy parameters |
title_fullStr |
A separation method for maximal covering location problems with fuzzy parameters |
title_full_unstemmed |
A separation method for maximal covering location problems with fuzzy parameters |
title_sort |
A separation method for maximal covering location problems with fuzzy parameters |
dc.contributor.affiliation.spa.fl_str_mv |
Azhmyakov, V., Department of Basic Sciences, Universidad de Medellin, Medellin, Colombia Fernandez-Gutierrez, J.P., Department of Basic Sciences, Universidad de Medellin, Medellin, Colombia Pickl, S., Institut fur Theoretische Informatik, Mathematik und Operations Research, Fakultat fur Informatik, Universitat der Bundeswehr Munchen, Munchen, Germany |
dc.subject.keyword.eng.fl_str_mv |
Integer optimization MCLP Numerical optimization Integer programming Multiobjective optimization Numerical methods Separation Site selection Supply chains Computational algorithm Integer optimization Maximal covering location problems Maximal covering location problems (MCLP) MCLP Multi-objective optimization problem Numerical optimizations Supply chain optimization Optimization |
topic |
Integer optimization MCLP Numerical optimization Integer programming Multiobjective optimization Numerical methods Separation Site selection Supply chains Computational algorithm Integer optimization Maximal covering location problems Maximal covering location problems (MCLP) MCLP Multi-objective optimization problem Numerical optimizations Supply chain optimization Optimization |
description |
Our paper discusses a novel computational approach to the extended Maximal Covering Location Problem (MCLP). We consider a fuzzy-type formulation of the generic MCLP and develop the necessary theoretical and numerical aspects of the proposed Separation Method (SM). A speciffic structure of the originally given MCLP makes it possible to reduce it to two auxiliary Knapsack-type problems. The equivalent separation we propose reduces essentially the complexity of the resulting computational algorithms. This algorithm also incorporates a conventional relaxation technique and the scalarizing method applied to an auxiliary multiobjective optimization problem. The proposed solution methodology is next applied to Supply Chain optimization in the presence of incomplete information. We study two illustrative examples and give a rigorous analysis of the obtained results. |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2017-12-19T19:36:45Z |
dc.date.available.none.fl_str_mv |
2017-12-19T19:36:45Z |
dc.date.created.none.fl_str_mv |
2017 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
11268042 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/4286 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad de Medellín |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de Medellín |
identifier_str_mv |
11268042 reponame:Repositorio Institucional Universidad de Medellín instname:Universidad de Medellín |
url |
http://hdl.handle.net/11407/4286 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029392455&partnerID=40&md5=6a4351f1e2812f81178c421a301bbbbb |
dc.relation.ispartofes.spa.fl_str_mv |
Italian Journal of Pure and Applied Mathematics Italian Journal of Pure and Applied Mathematics Issue 38, July 2017, Pages 653-670 |
dc.relation.references.spa.fl_str_mv |
Alexandris, G., & Giannikos, I. (2010). A new model for maximal coverage exploiting GIS capabilities. European Journal of Operational Research, 202(2), 328-338. doi:10.1016/j.ejor.2009.05.037 Atkinson, K., & Han, W. (2001). Theoretical Numerical Analysis. Aytug, H., & Saydam, C. (2002). Solving large-scale maximum expected covering location problems by genetic algorithms: A comparative study. European Journal of Operational Research, 141(3), 480-494. doi:10.1016/S0377-2217(01)00260-0 Azhmyakov, V., Basin, M., & Reincke-Collon, C. (2014). Optimal LQ-type switched control design for a class of linear systems with piecewise constant inputs. Paper presented at the IFAC Proceedings Volumes (IFAC-PapersOnline), , 19 6976-6981. Azhmyakov, V., & Fernandez-Gutierrez, J. P. (2016). St. pickl. A novel numerical ap-proach to the resilient MCLP based supply chain optimization. Proceed-Ings of the 12th IFAC Workshop on Intelligent Manufacturing Systems, , 145-150. Azhmyakov, V., Martinez, J. C., & Poznyak, A. (2016). Optimal fixed-levels control for nonlinear systems with quadratic cost-functionals. Optimal Control Applications and Methods, 37(5), 1035-1055. doi:10.1002/oca.2223 Azhmyakov, V., & Schmidt, W. (2006). Approximations of relaxed optimal control problems. Journal of Optimization Theory and Applications, 130(1), 61-77. doi:10.1007/s10957-006-9085-9 Batanović, V., Petrović, D., & Petrović, R. (2009). Fuzzy logic based algorithms for maximum covering location problems. Information Sciences, 179(1-2), 120-129. doi:10.1016/j.ins.2008.08.019 Berman, O., Kalcsics, J., Krass, D., & Nickel, S. (2009). The ordered gradual covering location problem on a network. Discrete Applied Mathematics, 157(18), 3689-3707. doi:10.1016/j.dam.2009.08.003 Berman, O., & Wang, J. (2011). The minmax regret gradual covering location problem on a network with incomplete information of demand weights. European Journal of Operational Research, 208(3), 233-238. doi:10.1016/j.ejor.2010.08.016 Bertsekas, D. P. (1995). Nonlinear Programming. Canbolat, M. S., & Massow, M. v. (2009). Planar maximal covering with ellipses. Computers and Industrial Engineering, 57(1), 201-208. doi:10.1016/j.cie.2008.11.015 Church, R., & ReVelle, C. (1974). The maximal covering location problem. Papers of the Regional Science Association, 32(1), 101-118. doi:10.1007/BF01942293 Galvão, R. D., Espejo, L. G. A., & Boffey, B. (2000). A comparison of lagrangean and surrogate relaxations for the maximal covering location problem. European Journal of Operational Research, 124(2), 377-389. Ji, G., & Han, S. (2014). A strategy analysis in dual-channel supply chain based on effort levels. Proceedings of the 1th International Conference on Service Systems and Service Management. Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Knapsack Problems. Mitsos, A., Chachuat, B., & Barton, P. I. (2009). Mccormick-based relaxations of algorithms. SIAM Journal on Optimization, 20(2), 573-601. doi:10.1137/080717341 Moore, G. C., & ReVelle, C. (1982). The hierarchical service location problem. Management Science, 28(7), 775-780. Polak, E. (1997). Optimization. ReVelle, C., Scholssberg, M., & Williams, J. (2008). Solving the maximal covering location problem with heuristic concentration. Computers and Operations Research, 35(2), 427-435. doi:10.1016/j.cor.2006.03.007 Roubíček, T. (1997). Relaxation in Optimization Theory and Variational Calculus. Shavandi, H., & Mahlooji, H. (2006). A fuzzy queuing location model with a genetic algorithm for congested systems. Applied Mathematics and Computation, 181(1), 440-456. doi:10.1016/j.amc.2005.12.058 Sitek, P., & Wikarek, J. (2013). A hybrid approach to modeling and optimization for supply chain management with multimodal transport. Paper presented at the 2013 18th International Conference on Methods and Models in Automation and Robotics, MMAR 2013, 777-782. Zarandi, M. H. F., Sisakht, A. H., & Davari, S. (2011). Design of a closed-loop supply chain (CLSC) model using an interactive fuzzy goal programming. International Journal of Advanced Manufacturing Technology, 56(5-8), 809-821. doi:10.1007/s00170-011-3212-y |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
Forum-Editrice Universitaria Udinese SRL |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
dc.source.spa.fl_str_mv |
Scopus |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159103265603584 |
spelling |
2017-12-19T19:36:45Z2017-12-19T19:36:45Z201711268042http://hdl.handle.net/11407/4286reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínOur paper discusses a novel computational approach to the extended Maximal Covering Location Problem (MCLP). We consider a fuzzy-type formulation of the generic MCLP and develop the necessary theoretical and numerical aspects of the proposed Separation Method (SM). A speciffic structure of the originally given MCLP makes it possible to reduce it to two auxiliary Knapsack-type problems. The equivalent separation we propose reduces essentially the complexity of the resulting computational algorithms. This algorithm also incorporates a conventional relaxation technique and the scalarizing method applied to an auxiliary multiobjective optimization problem. The proposed solution methodology is next applied to Supply Chain optimization in the presence of incomplete information. We study two illustrative examples and give a rigorous analysis of the obtained results.engForum-Editrice Universitaria Udinese SRLFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85029392455&partnerID=40&md5=6a4351f1e2812f81178c421a301bbbbbItalian Journal of Pure and Applied MathematicsItalian Journal of Pure and Applied Mathematics Issue 38, July 2017, Pages 653-670Alexandris, G., & Giannikos, I. (2010). A new model for maximal coverage exploiting GIS capabilities. European Journal of Operational Research, 202(2), 328-338. doi:10.1016/j.ejor.2009.05.037Atkinson, K., & Han, W. (2001). Theoretical Numerical Analysis.Aytug, H., & Saydam, C. (2002). Solving large-scale maximum expected covering location problems by genetic algorithms: A comparative study. European Journal of Operational Research, 141(3), 480-494. doi:10.1016/S0377-2217(01)00260-0Azhmyakov, V., Basin, M., & Reincke-Collon, C. (2014). Optimal LQ-type switched control design for a class of linear systems with piecewise constant inputs. Paper presented at the IFAC Proceedings Volumes (IFAC-PapersOnline), , 19 6976-6981.Azhmyakov, V., & Fernandez-Gutierrez, J. P. (2016). St. pickl. A novel numerical ap-proach to the resilient MCLP based supply chain optimization. Proceed-Ings of the 12th IFAC Workshop on Intelligent Manufacturing Systems, , 145-150.Azhmyakov, V., Martinez, J. C., & Poznyak, A. (2016). Optimal fixed-levels control for nonlinear systems with quadratic cost-functionals. Optimal Control Applications and Methods, 37(5), 1035-1055. doi:10.1002/oca.2223Azhmyakov, V., & Schmidt, W. (2006). Approximations of relaxed optimal control problems. Journal of Optimization Theory and Applications, 130(1), 61-77. doi:10.1007/s10957-006-9085-9Batanović, V., Petrović, D., & Petrović, R. (2009). Fuzzy logic based algorithms for maximum covering location problems. Information Sciences, 179(1-2), 120-129. doi:10.1016/j.ins.2008.08.019Berman, O., Kalcsics, J., Krass, D., & Nickel, S. (2009). The ordered gradual covering location problem on a network. Discrete Applied Mathematics, 157(18), 3689-3707. doi:10.1016/j.dam.2009.08.003Berman, O., & Wang, J. (2011). The minmax regret gradual covering location problem on a network with incomplete information of demand weights. European Journal of Operational Research, 208(3), 233-238. doi:10.1016/j.ejor.2010.08.016Bertsekas, D. P. (1995). Nonlinear Programming.Canbolat, M. S., & Massow, M. v. (2009). Planar maximal covering with ellipses. Computers and Industrial Engineering, 57(1), 201-208. doi:10.1016/j.cie.2008.11.015Church, R., & ReVelle, C. (1974). The maximal covering location problem. Papers of the Regional Science Association, 32(1), 101-118. doi:10.1007/BF01942293Galvão, R. D., Espejo, L. G. A., & Boffey, B. (2000). A comparison of lagrangean and surrogate relaxations for the maximal covering location problem. European Journal of Operational Research, 124(2), 377-389.Ji, G., & Han, S. (2014). A strategy analysis in dual-channel supply chain based on effort levels. Proceedings of the 1th International Conference on Service Systems and Service Management.Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Knapsack Problems.Mitsos, A., Chachuat, B., & Barton, P. I. (2009). Mccormick-based relaxations of algorithms. SIAM Journal on Optimization, 20(2), 573-601. doi:10.1137/080717341Moore, G. C., & ReVelle, C. (1982). The hierarchical service location problem. Management Science, 28(7), 775-780.Polak, E. (1997). Optimization.ReVelle, C., Scholssberg, M., & Williams, J. (2008). Solving the maximal covering location problem with heuristic concentration. Computers and Operations Research, 35(2), 427-435. doi:10.1016/j.cor.2006.03.007Roubíček, T. (1997). Relaxation in Optimization Theory and Variational Calculus.Shavandi, H., & Mahlooji, H. (2006). A fuzzy queuing location model with a genetic algorithm for congested systems. Applied Mathematics and Computation, 181(1), 440-456. doi:10.1016/j.amc.2005.12.058Sitek, P., & Wikarek, J. (2013). A hybrid approach to modeling and optimization for supply chain management with multimodal transport. Paper presented at the 2013 18th International Conference on Methods and Models in Automation and Robotics, MMAR 2013, 777-782.Zarandi, M. H. F., Sisakht, A. H., & Davari, S. (2011). Design of a closed-loop supply chain (CLSC) model using an interactive fuzzy goal programming. International Journal of Advanced Manufacturing Technology, 56(5-8), 809-821. doi:10.1007/s00170-011-3212-yScopusA separation method for maximal covering location problems with fuzzy parametersArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Azhmyakov, V., Department of Basic Sciences, Universidad de Medellin, Medellin, ColombiaFernandez-Gutierrez, J.P., Department of Basic Sciences, Universidad de Medellin, Medellin, ColombiaPickl, S., Institut fur Theoretische Informatik, Mathematik und Operations Research, Fakultat fur Informatik, Universitat der Bundeswehr Munchen, Munchen, GermanyAzhmyakov V.Fernandez-Gutierrez J.P.Pickl S.Department of Basic Sciences, Universidad de Medellin, Medellin, ColombiaInstitut fur Theoretische Informatik, Mathematik und Operations Research, Fakultat fur Informatik, Universitat der Bundeswehr Munchen, Munchen, GermanyInteger optimizationMCLPNumerical optimizationInteger programmingMultiobjective optimizationNumerical methodsSeparationSite selectionSupply chainsComputational algorithmInteger optimizationMaximal covering location problemsMaximal covering location problems (MCLP)MCLPMulti-objective optimization problemNumerical optimizationsSupply chain optimizationOptimizationOur paper discusses a novel computational approach to the extended Maximal Covering Location Problem (MCLP). We consider a fuzzy-type formulation of the generic MCLP and develop the necessary theoretical and numerical aspects of the proposed Separation Method (SM). A speciffic structure of the originally given MCLP makes it possible to reduce it to two auxiliary Knapsack-type problems. The equivalent separation we propose reduces essentially the complexity of the resulting computational algorithms. This algorithm also incorporates a conventional relaxation technique and the scalarizing method applied to an auxiliary multiobjective optimization problem. The proposed solution methodology is next applied to Supply Chain optimization in the presence of incomplete information. We study two illustrative examples and give a rigorous analysis of the obtained results.http://purl.org/coar/access_right/c_16ec11407/4286oai:repository.udem.edu.co:11407/42862020-05-27 15:44:54.527Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |