CO2 activation on small Cu-Ni and Cu-Pd bimetallic clusters
The use of CO2 to produce methanol is a reaction of growing interest, where bimetallic Cu-M catalysts become relevant as an alternative to the known Cu/Zn/Al2O3 catalyst. However, there is a lack in the understanding of bimetallic systems at atomic label and its capability towards CO2 activation, a...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5783
- Acceso en línea:
- http://hdl.handle.net/11407/5783
- Palabra clave:
- Bimetallic
Catalysis
Cluster
CO2
Hydrogenation
Activation energy
Binding energy
Carbon dioxide
Catalysis
Catalysts
Dissociation
Hydrogenation
Thermodynamics
Activation barriers
Adsorption energies
Bimetallic
Bimetallic clusters
Bimetallic systems
Catalytic potential
Charge migration
Cluster
Binary alloys
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_f19c7f84b41ba11c6f1cd37dc5ce452b |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5783 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
CO2 activation on small Cu-Ni and Cu-Pd bimetallic clusters |
title |
CO2 activation on small Cu-Ni and Cu-Pd bimetallic clusters |
spellingShingle |
CO2 activation on small Cu-Ni and Cu-Pd bimetallic clusters Bimetallic Catalysis Cluster CO2 Hydrogenation Activation energy Binding energy Carbon dioxide Catalysis Catalysts Dissociation Hydrogenation Thermodynamics Activation barriers Adsorption energies Bimetallic Bimetallic clusters Bimetallic systems Catalytic potential Charge migration Cluster Binary alloys |
title_short |
CO2 activation on small Cu-Ni and Cu-Pd bimetallic clusters |
title_full |
CO2 activation on small Cu-Ni and Cu-Pd bimetallic clusters |
title_fullStr |
CO2 activation on small Cu-Ni and Cu-Pd bimetallic clusters |
title_full_unstemmed |
CO2 activation on small Cu-Ni and Cu-Pd bimetallic clusters |
title_sort |
CO2 activation on small Cu-Ni and Cu-Pd bimetallic clusters |
dc.subject.none.fl_str_mv |
Bimetallic Catalysis Cluster CO2 Hydrogenation Activation energy Binding energy Carbon dioxide Catalysis Catalysts Dissociation Hydrogenation Thermodynamics Activation barriers Adsorption energies Bimetallic Bimetallic clusters Bimetallic systems Catalytic potential Charge migration Cluster Binary alloys |
topic |
Bimetallic Catalysis Cluster CO2 Hydrogenation Activation energy Binding energy Carbon dioxide Catalysis Catalysts Dissociation Hydrogenation Thermodynamics Activation barriers Adsorption energies Bimetallic Bimetallic clusters Bimetallic systems Catalytic potential Charge migration Cluster Binary alloys |
description |
The use of CO2 to produce methanol is a reaction of growing interest, where bimetallic Cu-M catalysts become relevant as an alternative to the known Cu/Zn/Al2O3 catalyst. However, there is a lack in the understanding of bimetallic systems at atomic label and its capability towards CO2 activation, a key step in CO2 valorization. In this work, Cu-Pd and Cu-Ni small clusters are studied using DFT. Among the evaluated bimetallic systems, the binding of CO2 on Cu3Pd has the highest thermodynamics stability (28.82 kcal/mol) and the lowest energy barrier (40.91 kcal/mol). The activation energy for the dissociation of CO2 (CO2 |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-04-29T14:54:00Z |
dc.date.available.none.fl_str_mv |
2020-04-29T14:54:00Z |
dc.date.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
24688231 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5783 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.mcat.2019.110733 |
identifier_str_mv |
24688231 10.1016/j.mcat.2019.110733 |
url |
http://hdl.handle.net/11407/5783 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076548106&doi=10.1016%2fj.mcat.2019.110733&partnerID=40&md5=48ea618c59aea3e280a50468d2b0783e |
dc.relation.references.none.fl_str_mv |
Hunt, A.J., Sin, E.H.K., Marriott, R., Clark, J.H., Generation, capture, and utilization of industrial carbon dioxide (2010) ChemSusChem, 3, pp. 306-322 Baciocchi, R., Costa, G., Zingaretti, D., Transformation and Utilization of Carbon Dioxide (2014) Pérez-fortes, M., Schöneberger, J.C., Boulamanti, A., Tzimas, E., Methanol synthesis using captured CO 2 as raw material?: techno-economic and environmental assessment (2016) Appl. Energy, 161, pp. 718-732 Ren, H., Xu, C.-H., Zhao, H.-Y., Wang, Y.-X., Liu, J.J.-Y., Liu, J.J.-Y., Methanol synthesis from CO2 hydrogenation over Cu/?-Al2O3 catalysts modified by ZnO, ZrO2 and MgO (2015) J. Ind. Eng. Chem., 28, pp. 261-267 Waugh, K.C., Methanol synthesis (2012) Catal. Lett., 142, pp. 1153-1166 Centi, G.G., Perathoner, S., Green Carbon Dioxide: Advances in CO2 Utilization (2014) Atsonios, K., Panopoulos, K.D., Kakaras, E., Investigation of technical and economic aspects for methanol production through CO2 hydrogenation (2016) Int. J. Hydrogen Energy, 41, pp. 2202-2214 Boretti, A., Renewable hydrogen to recycle CO2 to methanol (2013) Int. J. Hydrogen Energy, 38, pp. 1806-1812 Dwivedi, A., Gudi, R., Biswas, P., An improved tri-reforming based methanol production process for enhanced CO2valorization (2017) Int. J. Hydrogen Energy, 42, pp. 23227-23241 Shaharun, M.S., Alotaibi, M.A., Alharthi, A.I., Recent developments on heterogeneous catalytic CO 2 reduction to methanol (2019) J. CO2 Util., 34, pp. 20-33 Olah, G., Goeppert, A., Prakash, S., Beyong Oil and Gas: The Methanol Economy (2009), Willey-VCH Germany Behrens, M., Studt, F., Kasatkin, I., Kühl, S., Hävecker, M., Abild-pedersen, F., Zander, S., Schlögl, R., The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts (2012) Science (80-.), 336, pp. 893-898 Liu, X.M., Lu, G.Q., Yan, Z.F., Beltramini, J., Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2 (2003) Ind. Eng. Chem. Res., 42, pp. 6518-6530 Sinfelt, J., Bimetallic Catalysts Discoveries, Concepts, and Applications (1983), Wiley United state Yu, W., Porosoff, M.D., Chen, J.G., Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts (2012) Chem. Rev., 112, pp. 5780-5817 Jeong, E., Hee, Y., Lee, D., Moon, D., Lee, K., Hydrogenation of CO 2 to methanol over Pd Cu/CeO2 catalysts (2017) Mol. Catal., 434, pp. 146-153 Deerattrakul, V., Dittanet, P., Sawangphruk, M., Kongkachuichay, P., CO2 hydrogenation to methanol using Cu-Zn catalyst supported on reduced graphene oxide nanosheets (2016) J. CO2 Util., 16, pp. 104-113 Jiang, X., Koizumi, N., Guo, X., Song, C., Bimetallic Pd-Cu catalysts for selective CO2 hydrogenation to methanol (2015) Appl. Catal. B Environ., 170-171, pp. 173-185 Liu, Y., Liu, D., Study of bimetallic Cu-Ni/-Al2O3 catalysts for carbon dioxide hydrogenation (1999) Int. J. Hydrogen Energy, 24, pp. 351-354 Klaja, O., Szczygie?, J., Trawczy?ski, J., Szyja, B.M., The CO2 dissociation mechanism on the small copper clusters the influence of geometry (2017) Theor. Chem. Acc., 136, pp. 1-9 Liu, C., Yang, B., Tyo, E., Seifert, S., DeBartolo, J., von Issendorff, B., Zapol, P., Curtiss, L.A., Carbon dioxide conversion to methanol over size-selected Cu 4 clusters at low pressures (2015) J. Am. Chem. Soc., 137, pp. 8676-8679 Yang, B., Liu, C., Halder, A., Tyo, E.C., Martinson, A.B.F., Seifert, S., Zapol, P., Vajda, S., Copper cluster size effect in methanol synthesis from CO2 (2017) J. Phys. Chem. C, 121, pp. 10406-10412 Tao, H., Li, Y., Cai, X., Zhou, H., Li, Y., Lin, W., Huang, S., Zhang, Y., What is the best size of subnanometer copper clusters for CO 2 conversion to methanol at Cu/TiO 2 interfaces? A density functional theory study (2019) J. Phys. Chem. C, 123, pp. 24118-24132 Rodriguez, J.A., Evans, J., Feria, L., Vidal, A.B., Liu, P., Nakamura, K., Illas, F., CO2 hydrogenation on Au/TiC, Cu/TiC, and Ni/TiC catalysts: production of CO, methanol, and methane (2013) J. Catal., 307, pp. 162-169 Maleki, F., Schlexer, P., Pacchioni, G., Support effects and reaction mechanism of acetylene trimerization over silica-supported Cu4 clusters: a DFT study (2018) Surf. Sci., 668, pp. 125-133 Mehmood, F., Greeley, J., Zapol, P., Curtiss, L.A., Comparative density functional study of methanol descomposition on Cu4 and Co4 (2010) J. Phys. Chem. B, 114, pp. 14458-14466 Kansara, S., Gupta, S.K., Sonvane, Y., Catalytic activity of Cu4-cluster to adsorb H2S gas: H -BN nanosheet (2018) AIP Conf. Proc., 1961 Reina, M., Martínez, A., Silybin interacting with Cu4, Ag4 and Au4 clusters: do these constitute antioxidant materials? (2017) Comput. Theor. Chem., 1112, pp. 1-9 Niu, J., Ran, J., Ou, Z., Du, X., Wang, R., Qi, W., CO2 dissociation over PtxNi4-x bimetallic clusters with and without hydrogen sources: a density functional theory study (2016) J. CO2 Util., 16, pp. 431-441 Gálvez-González, L.E., Juárez-Sánchez, J.O., Pacheco-Contreras, R., Garzón, I.L., Paz-Borbón, L.O., Posada-Amarillas, A., CO 2 adsorption on gas-phase Cu 4?x Pt x (x = 0 4) clusters: a DFT study (2018) Phys. Chem. Chem. Phys., 20, pp. 17071-17080 Adamo, C., Barone, V., Toward reliable density functional methods without adjustable parameters: the PBE0 model (1999) J. Chem. Phys., 110, pp. 6158-6170 Fuentealba, P., Preuss, H., Stoll, H., Von Szentpaly, L., A proper account of core-polarization with pseudopotentials: single valence-electron alkali compounds (1982) Chem. Phys. Lett., 89, pp. 418-422 Cao, X., Dolg, M., Segmented contraction scheme for small-core actinide pseudopotential basis sets (2002) J. Mol. Struct. Theochem., 581, pp. 139-147 Rodríguez-Kessler, P.L., Pan, S., Florez, E., Cabellos, J.L., Merino, G., Structural evolution of the rhodium-doped silver clusters AgnRh (n ? 15) and their reactivity toward NO (2017) J. Phys. Chem. C, 121, pp. 19420-19427 Rodríguez-Kessler, P.L., Murillo, F., Rodríguez-Domínguez, A.R., Navarro-Santos, P., Merino, G., Structure of V-doped Pd n (n = 2 12) clusters and their ability for H 2 dissociation (2018) Int. J. Hydrogen Energy, 43, pp. 20636-20644 Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Li, M., Gaussian 09. Revision A.02, Wallingford CT (2016) Leopold, D.G., Ho, J., Lineberger, W.C., Photoelectron spectroscopy of mass-selected metal cluster anions. I. Cu ? n, n =1 10 (2002) J. Chem. Phys., 86, pp. 1715-1726 Ho, W.C.L.J., Ervin, K.M., Photoelectron spectroscopy of metal cluster anions: Cun, Agn, and Aun (1990) J. Chem. Phys., 93, pp. 6987-7002 James, A.M., Lemire, G.W., Langridge-Smith, P.R., Threshold photoionisation spectroscopy of the CuAg molecule (1994) Chem. Phys. Lett., 227, pp. 503-510 Ho, J., Ervin, K.M., Polak, M.L., Gilles, M.K., Lineberger, W.C., A study of the electronic structures of Pd?2 and Pd2 by photoelectron spectroscopy (1991) J. Chem. Phys., 95, p. 4845 Reed, A.E., Weinstock, R.B., Weinhold, F., Natural population analysis (1985) J. Chem. Phys., 83, pp. 735-746 Wiberg, K.B., Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane (1968) Tetrahedron., 24, pp. 1083-1096 Sizova, O.V., Skripnikov, L.V., Sokolov, A.Y., Symmetry decomposition of quantum chemical bond orders (2008) J. Mol. Struct. THEOCHEM., 870, pp. 1-9 Peng, C., Schlegel, H.B., Combining STQN methods to find transition states (1993) Isr. J. Chem., 33, pp. 449-454 Florez, E., Tiznado, W., Mondragón, F., Fuentealba, P., Theoretical study of the interaction of molecular oxygen with copper clusters (2005) J. Phys. Chem. A, 109, pp. 7815-7821 Fernandez, E., Boronat, M., Corma, A., Trends in the reactivity of molecular O2 with copper clusters: influence of size and shape (2015) J. Phys. Chem. C, 119, pp. 19832-19846 González-Torres, J.C., Bertin, V., Poulain, E., Olvera-Neria, O., The CO oxidation mechanism on small Pd clusters. A theoretical study (2015) J. Mol. Model., 21 Ling, L., Fan, L., Feng, X., Wang, B., Zhang, R., Effects of the size and Cu modulation of Pdn(n ? 38) clusters on Hg0adsorption (2017) Chem. Eng. J., 308, pp. 289-298 Goel, S., Mansunov, A.E., Density functional theory of small nickel clusters (2012) J. Mol. Model., 18, pp. 783-790 Jia, T.T., Lu, C.H., Ding, K.N., Zhang, Y.F., Chen, W.K., Oxidation of Pdn(n=1-5) clusters on single vacancy graphene: a first-principles study (2013) Comput. Theor. Chem., 1020, pp. 91-99 Gibbs, G.V., Downs, R.T., Prewitt, C.T., Rosso, K.M., Ross, N.L., Cox, D.F., Electron density distributions calculated for the nickel sulfides millerite, vaesite, and heazlewoodite and nickel metal: a case for the importance of Ni-Ni bond paths for electron transport (2005) J. Phys. Chem. B, 109, pp. 21788-21795 Pauling, L., Atomic radii and interatomic distances in metals (1947) J. Am. Chem. Soc., 69, pp. 542-553 Jayaprakash, R., Shanker, J., Correlation between electronegativity and high temperature superconductivity (1993) J. Phys. Chem. Solids, 54, pp. 365-369 Kabir, M., Mookerjee, A., Bhattacharya, A.K., Structure and stability of copper clusters: a tight-binding molecular dynamics study (2004) Phys. Rev. A - At. Mol. Opt. Phys., 69, pp. 1-10 Cortés-Arriagada, D., Oyarzún, M.P., Sanhueza, L., Toro-Labbé, A., Binding of trivalent arsenic onto the tetrahedral Au20 and Au19Pt clusters: implications in adsorption and sensing (2015) J. Phys. Chem. A, 119, pp. 6909-6918 Li, G., Chen, X., Zhou, Z., Wang, F., Yang, H., Yang, J., Xu, B., Liu, D., Theoretical insights into the structural, relative stable, electronic, and gas sensing properties of Pb:NAun (n = 2-12) clusters: a DFT study (2017) RSC Adv., 7, pp. 45432-45441 Luo, C., Al, E., First principles study of small palladium cluster growth and isomerization (2007) Int. J. Quantum Chem., 107, pp. 1632-1641 Jug, K., Zimmermann, B., Calaminici, P., Köster, A.M., Structure and stability of small copper clusters (2002) J. Chem. Phys., 116, pp. 4497-4507 Preda, G., Pacchioni, G., Chiesa, M., Giamello, E., Formation of CO2? Radical Anions from CO2 Adsorption on an Electron-Rich MgO Surface a Combined Ab Initio and Pulse EPR Study (2008), pp. 19568-19576 Yanagimachi, A., Koyasu, K., Valdivielso, D.Y., Gewinner, S., Schöllkopf, W., Fielicke, A., Tsukuda, T., Size-specific, dissociative activation of carbon dioxide by cobalt cluster anions (2016) J. Phys. Chem. C, 120, pp. 14209-14215 Gautam, S., Dharamvir, K., Goel, N., CO2 adsorption and activation over medium sized Cun (n=7, 13 and 19) clusters: a density functional study (2013) Comput. Theor. Chem., 1009, pp. 8-16 Saputro, A.G., Agusta, M.K., Wungu, T.D.K., Suprijadi, F.R., Dipojono, H.K., DFT study of adsorption of CO2 on palladium cluster doped by transition metal (2016) J. Phys. Conf. Ser., 739 Álvarez, A., Borges, M., Corral-Pérez, J.J., Olcina, J.G., Hu, L., Cornu, D., Huang, R., Urakawa, A., CO2Activation over catalytic surfaces (2017) ChemPhysChem., 18, pp. 3135-3141 Han, S.L., Xue, X., Nie, X.C., Zhai, H., Wang, F., Sun, Q., Jia, Y., Guo, Z.X., First-principles calculations on the role of ni-doping in Cun clusters: from geometric and electronic structures to chemical activities towards CO2 (2010) Phys. Lett. Sect. A Gen. At. Solid State Phys., 374, pp. 4324-4330 Kattel, S., Ramírez, P.J., Chen, J.G., Rodriguez, J.A., Liu, P., Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts (2017) Science (80-.), 355, pp. 1296-1299 Li, Y., Chan, S.H., Sun, Q., Heterogeneous catalytic conversion of CO2: a comprehensive theoretical review (2015) Nanoscale, 7, pp. 8663-8683 Mackenzie, S., Green, A., Fielicke, A., Gentleman, A.S., Justen, J., Schoellkopf, W., IR signature of size-selective CO2 activation on small platinum cluster anions, ptn- (n = 4-7) (2018) Angew. Chem. Int. Ed., pp. 4-6 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
dc.publisher.program.none.fl_str_mv |
Facultad de Ciencias Básicas |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Molecular Catalysis |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159139533750272 |
spelling |
20192020-04-29T14:54:00Z2020-04-29T14:54:00Z24688231http://hdl.handle.net/11407/578310.1016/j.mcat.2019.110733The use of CO2 to produce methanol is a reaction of growing interest, where bimetallic Cu-M catalysts become relevant as an alternative to the known Cu/Zn/Al2O3 catalyst. However, there is a lack in the understanding of bimetallic systems at atomic label and its capability towards CO2 activation, a key step in CO2 valorization. In this work, Cu-Pd and Cu-Ni small clusters are studied using DFT. Among the evaluated bimetallic systems, the binding of CO2 on Cu3Pd has the highest thermodynamics stability (28.82 kcal/mol) and the lowest energy barrier (40.91 kcal/mol). The activation energy for the dissociation of CO2 (CO2? CO+ O) follows the trend: Cu4 < Cu3Pd < Pd4 < CuPd3 < Cu2Pd2. Therefore, the ideal composition in terms of adsorption energy and activation barrier is the Cu3Pd bimetallic system. The interaction O-M is weak while C-M is responsible of the binding, a charge migration from cluster to CO2 was seen, and the band around 1150 cm?1 in the IR was only found in activated CO2. The results of this work indicate that the Cu3Pd cluster has catalytic potential towards CO2 activation and dissociation, opening the doors to explore further the Cu3Pd system both theoretically and experimentally. © 2019 Elsevier B.V.engElsevier B.V.Facultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85076548106&doi=10.1016%2fj.mcat.2019.110733&partnerID=40&md5=48ea618c59aea3e280a50468d2b0783eHunt, A.J., Sin, E.H.K., Marriott, R., Clark, J.H., Generation, capture, and utilization of industrial carbon dioxide (2010) ChemSusChem, 3, pp. 306-322Baciocchi, R., Costa, G., Zingaretti, D., Transformation and Utilization of Carbon Dioxide (2014)Pérez-fortes, M., Schöneberger, J.C., Boulamanti, A., Tzimas, E., Methanol synthesis using captured CO 2 as raw material?: techno-economic and environmental assessment (2016) Appl. Energy, 161, pp. 718-732Ren, H., Xu, C.-H., Zhao, H.-Y., Wang, Y.-X., Liu, J.J.-Y., Liu, J.J.-Y., Methanol synthesis from CO2 hydrogenation over Cu/?-Al2O3 catalysts modified by ZnO, ZrO2 and MgO (2015) J. Ind. Eng. Chem., 28, pp. 261-267Waugh, K.C., Methanol synthesis (2012) Catal. Lett., 142, pp. 1153-1166Centi, G.G., Perathoner, S., Green Carbon Dioxide: Advances in CO2 Utilization (2014)Atsonios, K., Panopoulos, K.D., Kakaras, E., Investigation of technical and economic aspects for methanol production through CO2 hydrogenation (2016) Int. J. Hydrogen Energy, 41, pp. 2202-2214Boretti, A., Renewable hydrogen to recycle CO2 to methanol (2013) Int. J. Hydrogen Energy, 38, pp. 1806-1812Dwivedi, A., Gudi, R., Biswas, P., An improved tri-reforming based methanol production process for enhanced CO2valorization (2017) Int. J. Hydrogen Energy, 42, pp. 23227-23241Shaharun, M.S., Alotaibi, M.A., Alharthi, A.I., Recent developments on heterogeneous catalytic CO 2 reduction to methanol (2019) J. CO2 Util., 34, pp. 20-33Olah, G., Goeppert, A., Prakash, S., Beyong Oil and Gas: The Methanol Economy (2009), Willey-VCH GermanyBehrens, M., Studt, F., Kasatkin, I., Kühl, S., Hävecker, M., Abild-pedersen, F., Zander, S., Schlögl, R., The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts (2012) Science (80-.), 336, pp. 893-898Liu, X.M., Lu, G.Q., Yan, Z.F., Beltramini, J., Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2 (2003) Ind. Eng. Chem. Res., 42, pp. 6518-6530Sinfelt, J., Bimetallic Catalysts Discoveries, Concepts, and Applications (1983), Wiley United stateYu, W., Porosoff, M.D., Chen, J.G., Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts (2012) Chem. Rev., 112, pp. 5780-5817Jeong, E., Hee, Y., Lee, D., Moon, D., Lee, K., Hydrogenation of CO 2 to methanol over Pd Cu/CeO2 catalysts (2017) Mol. Catal., 434, pp. 146-153Deerattrakul, V., Dittanet, P., Sawangphruk, M., Kongkachuichay, P., CO2 hydrogenation to methanol using Cu-Zn catalyst supported on reduced graphene oxide nanosheets (2016) J. CO2 Util., 16, pp. 104-113Jiang, X., Koizumi, N., Guo, X., Song, C., Bimetallic Pd-Cu catalysts for selective CO2 hydrogenation to methanol (2015) Appl. Catal. B Environ., 170-171, pp. 173-185Liu, Y., Liu, D., Study of bimetallic Cu-Ni/-Al2O3 catalysts for carbon dioxide hydrogenation (1999) Int. J. Hydrogen Energy, 24, pp. 351-354Klaja, O., Szczygie?, J., Trawczy?ski, J., Szyja, B.M., The CO2 dissociation mechanism on the small copper clusters the influence of geometry (2017) Theor. Chem. Acc., 136, pp. 1-9Liu, C., Yang, B., Tyo, E., Seifert, S., DeBartolo, J., von Issendorff, B., Zapol, P., Curtiss, L.A., Carbon dioxide conversion to methanol over size-selected Cu 4 clusters at low pressures (2015) J. Am. Chem. Soc., 137, pp. 8676-8679Yang, B., Liu, C., Halder, A., Tyo, E.C., Martinson, A.B.F., Seifert, S., Zapol, P., Vajda, S., Copper cluster size effect in methanol synthesis from CO2 (2017) J. Phys. Chem. C, 121, pp. 10406-10412Tao, H., Li, Y., Cai, X., Zhou, H., Li, Y., Lin, W., Huang, S., Zhang, Y., What is the best size of subnanometer copper clusters for CO 2 conversion to methanol at Cu/TiO 2 interfaces? A density functional theory study (2019) J. Phys. Chem. C, 123, pp. 24118-24132Rodriguez, J.A., Evans, J., Feria, L., Vidal, A.B., Liu, P., Nakamura, K., Illas, F., CO2 hydrogenation on Au/TiC, Cu/TiC, and Ni/TiC catalysts: production of CO, methanol, and methane (2013) J. Catal., 307, pp. 162-169Maleki, F., Schlexer, P., Pacchioni, G., Support effects and reaction mechanism of acetylene trimerization over silica-supported Cu4 clusters: a DFT study (2018) Surf. Sci., 668, pp. 125-133Mehmood, F., Greeley, J., Zapol, P., Curtiss, L.A., Comparative density functional study of methanol descomposition on Cu4 and Co4 (2010) J. Phys. Chem. B, 114, pp. 14458-14466Kansara, S., Gupta, S.K., Sonvane, Y., Catalytic activity of Cu4-cluster to adsorb H2S gas: H -BN nanosheet (2018) AIP Conf. Proc., 1961Reina, M., Martínez, A., Silybin interacting with Cu4, Ag4 and Au4 clusters: do these constitute antioxidant materials? (2017) Comput. Theor. Chem., 1112, pp. 1-9Niu, J., Ran, J., Ou, Z., Du, X., Wang, R., Qi, W., CO2 dissociation over PtxNi4-x bimetallic clusters with and without hydrogen sources: a density functional theory study (2016) J. CO2 Util., 16, pp. 431-441Gálvez-González, L.E., Juárez-Sánchez, J.O., Pacheco-Contreras, R., Garzón, I.L., Paz-Borbón, L.O., Posada-Amarillas, A., CO 2 adsorption on gas-phase Cu 4?x Pt x (x = 0 4) clusters: a DFT study (2018) Phys. Chem. Chem. Phys., 20, pp. 17071-17080Adamo, C., Barone, V., Toward reliable density functional methods without adjustable parameters: the PBE0 model (1999) J. Chem. Phys., 110, pp. 6158-6170Fuentealba, P., Preuss, H., Stoll, H., Von Szentpaly, L., A proper account of core-polarization with pseudopotentials: single valence-electron alkali compounds (1982) Chem. Phys. Lett., 89, pp. 418-422Cao, X., Dolg, M., Segmented contraction scheme for small-core actinide pseudopotential basis sets (2002) J. Mol. Struct. Theochem., 581, pp. 139-147Rodríguez-Kessler, P.L., Pan, S., Florez, E., Cabellos, J.L., Merino, G., Structural evolution of the rhodium-doped silver clusters AgnRh (n ? 15) and their reactivity toward NO (2017) J. Phys. Chem. C, 121, pp. 19420-19427Rodríguez-Kessler, P.L., Murillo, F., Rodríguez-Domínguez, A.R., Navarro-Santos, P., Merino, G., Structure of V-doped Pd n (n = 2 12) clusters and their ability for H 2 dissociation (2018) Int. J. Hydrogen Energy, 43, pp. 20636-20644Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Li, M., Gaussian 09. Revision A.02, Wallingford CT (2016)Leopold, D.G., Ho, J., Lineberger, W.C., Photoelectron spectroscopy of mass-selected metal cluster anions. I. Cu ? n, n =1 10 (2002) J. Chem. Phys., 86, pp. 1715-1726Ho, W.C.L.J., Ervin, K.M., Photoelectron spectroscopy of metal cluster anions: Cun, Agn, and Aun (1990) J. Chem. Phys., 93, pp. 6987-7002James, A.M., Lemire, G.W., Langridge-Smith, P.R., Threshold photoionisation spectroscopy of the CuAg molecule (1994) Chem. Phys. Lett., 227, pp. 503-510Ho, J., Ervin, K.M., Polak, M.L., Gilles, M.K., Lineberger, W.C., A study of the electronic structures of Pd?2 and Pd2 by photoelectron spectroscopy (1991) J. Chem. Phys., 95, p. 4845Reed, A.E., Weinstock, R.B., Weinhold, F., Natural population analysis (1985) J. Chem. Phys., 83, pp. 735-746Wiberg, K.B., Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane (1968) Tetrahedron., 24, pp. 1083-1096Sizova, O.V., Skripnikov, L.V., Sokolov, A.Y., Symmetry decomposition of quantum chemical bond orders (2008) J. Mol. Struct. THEOCHEM., 870, pp. 1-9Peng, C., Schlegel, H.B., Combining STQN methods to find transition states (1993) Isr. J. Chem., 33, pp. 449-454Florez, E., Tiznado, W., Mondragón, F., Fuentealba, P., Theoretical study of the interaction of molecular oxygen with copper clusters (2005) J. Phys. Chem. A, 109, pp. 7815-7821Fernandez, E., Boronat, M., Corma, A., Trends in the reactivity of molecular O2 with copper clusters: influence of size and shape (2015) J. Phys. Chem. C, 119, pp. 19832-19846González-Torres, J.C., Bertin, V., Poulain, E., Olvera-Neria, O., The CO oxidation mechanism on small Pd clusters. A theoretical study (2015) J. Mol. Model., 21Ling, L., Fan, L., Feng, X., Wang, B., Zhang, R., Effects of the size and Cu modulation of Pdn(n ? 38) clusters on Hg0adsorption (2017) Chem. Eng. J., 308, pp. 289-298Goel, S., Mansunov, A.E., Density functional theory of small nickel clusters (2012) J. Mol. Model., 18, pp. 783-790Jia, T.T., Lu, C.H., Ding, K.N., Zhang, Y.F., Chen, W.K., Oxidation of Pdn(n=1-5) clusters on single vacancy graphene: a first-principles study (2013) Comput. Theor. Chem., 1020, pp. 91-99Gibbs, G.V., Downs, R.T., Prewitt, C.T., Rosso, K.M., Ross, N.L., Cox, D.F., Electron density distributions calculated for the nickel sulfides millerite, vaesite, and heazlewoodite and nickel metal: a case for the importance of Ni-Ni bond paths for electron transport (2005) J. Phys. Chem. B, 109, pp. 21788-21795Pauling, L., Atomic radii and interatomic distances in metals (1947) J. Am. Chem. Soc., 69, pp. 542-553Jayaprakash, R., Shanker, J., Correlation between electronegativity and high temperature superconductivity (1993) J. Phys. Chem. Solids, 54, pp. 365-369Kabir, M., Mookerjee, A., Bhattacharya, A.K., Structure and stability of copper clusters: a tight-binding molecular dynamics study (2004) Phys. Rev. A - At. Mol. Opt. Phys., 69, pp. 1-10Cortés-Arriagada, D., Oyarzún, M.P., Sanhueza, L., Toro-Labbé, A., Binding of trivalent arsenic onto the tetrahedral Au20 and Au19Pt clusters: implications in adsorption and sensing (2015) J. Phys. Chem. A, 119, pp. 6909-6918Li, G., Chen, X., Zhou, Z., Wang, F., Yang, H., Yang, J., Xu, B., Liu, D., Theoretical insights into the structural, relative stable, electronic, and gas sensing properties of Pb:NAun (n = 2-12) clusters: a DFT study (2017) RSC Adv., 7, pp. 45432-45441Luo, C., Al, E., First principles study of small palladium cluster growth and isomerization (2007) Int. J. Quantum Chem., 107, pp. 1632-1641Jug, K., Zimmermann, B., Calaminici, P., Köster, A.M., Structure and stability of small copper clusters (2002) J. Chem. Phys., 116, pp. 4497-4507Preda, G., Pacchioni, G., Chiesa, M., Giamello, E., Formation of CO2? Radical Anions from CO2 Adsorption on an Electron-Rich MgO Surface a Combined Ab Initio and Pulse EPR Study (2008), pp. 19568-19576Yanagimachi, A., Koyasu, K., Valdivielso, D.Y., Gewinner, S., Schöllkopf, W., Fielicke, A., Tsukuda, T., Size-specific, dissociative activation of carbon dioxide by cobalt cluster anions (2016) J. Phys. Chem. C, 120, pp. 14209-14215Gautam, S., Dharamvir, K., Goel, N., CO2 adsorption and activation over medium sized Cun (n=7, 13 and 19) clusters: a density functional study (2013) Comput. Theor. Chem., 1009, pp. 8-16Saputro, A.G., Agusta, M.K., Wungu, T.D.K., Suprijadi, F.R., Dipojono, H.K., DFT study of adsorption of CO2 on palladium cluster doped by transition metal (2016) J. Phys. Conf. Ser., 739Álvarez, A., Borges, M., Corral-Pérez, J.J., Olcina, J.G., Hu, L., Cornu, D., Huang, R., Urakawa, A., CO2Activation over catalytic surfaces (2017) ChemPhysChem., 18, pp. 3135-3141Han, S.L., Xue, X., Nie, X.C., Zhai, H., Wang, F., Sun, Q., Jia, Y., Guo, Z.X., First-principles calculations on the role of ni-doping in Cun clusters: from geometric and electronic structures to chemical activities towards CO2 (2010) Phys. Lett. Sect. A Gen. At. Solid State Phys., 374, pp. 4324-4330Kattel, S., Ramírez, P.J., Chen, J.G., Rodriguez, J.A., Liu, P., Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts (2017) Science (80-.), 355, pp. 1296-1299Li, Y., Chan, S.H., Sun, Q., Heterogeneous catalytic conversion of CO2: a comprehensive theoretical review (2015) Nanoscale, 7, pp. 8663-8683Mackenzie, S., Green, A., Fielicke, A., Gentleman, A.S., Justen, J., Schoellkopf, W., IR signature of size-selective CO2 activation on small platinum cluster anions, ptn- (n = 4-7) (2018) Angew. Chem. Int. Ed., pp. 4-6Molecular CatalysisBimetallicCatalysisClusterCO2HydrogenationActivation energyBinding energyCarbon dioxideCatalysisCatalystsDissociationHydrogenationThermodynamicsActivation barriersAdsorption energiesBimetallicBimetallic clustersBimetallic systemsCatalytic potentialCharge migrationClusterBinary alloysCO2 activation on small Cu-Ni and Cu-Pd bimetallic clustersArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Alvarez-Garcia, A., Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia; Flórez, E., Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No 30-65, Medellín, Colombia; Moreno, A., Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia; Jimenez-Orozco, C., Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No 30-65, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecAlvarez-Garcia A.Flórez E.Moreno A.Jimenez-Orozco C.11407/5783oai:repository.udem.edu.co:11407/57832020-05-27 16:24:52.675Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |