Density functional theory studies of the adsorption of Cr (VI) on Fe-(hydr) oxide: Gibbs free energies and pH effect
Adsorption of chromium (VI) on iron oxides is a potential removal method from industrial wastewater. Cr (VI) is a toxic specie for human health due to its easy mobility in the environment. Currently, US EPA drinking water standards establish a maximum Cr level of 100 ?g/L. Since the adsorption proce...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5795
- Acceso en línea:
- http://hdl.handle.net/11407/5795
- Palabra clave:
- Adsorption
Chemicals removal (water treatment)
Computation theory
Density functional theory
Engineering research
Environmental Protection Agency
Gibbs free energy
Hydraulic servomechanisms
Iron oxides
pH effects
Potable water
Adsorption energies
Bidentate complexes
Density functional theory studies
Drinking water standards
Environmental transport
Industrial wastewaters
Molecular geometries
Solid/liquid interfaces
Chromium compounds
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_ef286469be677476b08c720dc4f3c612 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5795 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Density functional theory studies of the adsorption of Cr (VI) on Fe-(hydr) oxide: Gibbs free energies and pH effect |
title |
Density functional theory studies of the adsorption of Cr (VI) on Fe-(hydr) oxide: Gibbs free energies and pH effect |
spellingShingle |
Density functional theory studies of the adsorption of Cr (VI) on Fe-(hydr) oxide: Gibbs free energies and pH effect Adsorption Chemicals removal (water treatment) Computation theory Density functional theory Engineering research Environmental Protection Agency Gibbs free energy Hydraulic servomechanisms Iron oxides pH effects Potable water Adsorption energies Bidentate complexes Density functional theory studies Drinking water standards Environmental transport Industrial wastewaters Molecular geometries Solid/liquid interfaces Chromium compounds |
title_short |
Density functional theory studies of the adsorption of Cr (VI) on Fe-(hydr) oxide: Gibbs free energies and pH effect |
title_full |
Density functional theory studies of the adsorption of Cr (VI) on Fe-(hydr) oxide: Gibbs free energies and pH effect |
title_fullStr |
Density functional theory studies of the adsorption of Cr (VI) on Fe-(hydr) oxide: Gibbs free energies and pH effect |
title_full_unstemmed |
Density functional theory studies of the adsorption of Cr (VI) on Fe-(hydr) oxide: Gibbs free energies and pH effect |
title_sort |
Density functional theory studies of the adsorption of Cr (VI) on Fe-(hydr) oxide: Gibbs free energies and pH effect |
dc.subject.none.fl_str_mv |
Adsorption Chemicals removal (water treatment) Computation theory Density functional theory Engineering research Environmental Protection Agency Gibbs free energy Hydraulic servomechanisms Iron oxides pH effects Potable water Adsorption energies Bidentate complexes Density functional theory studies Drinking water standards Environmental transport Industrial wastewaters Molecular geometries Solid/liquid interfaces Chromium compounds |
topic |
Adsorption Chemicals removal (water treatment) Computation theory Density functional theory Engineering research Environmental Protection Agency Gibbs free energy Hydraulic servomechanisms Iron oxides pH effects Potable water Adsorption energies Bidentate complexes Density functional theory studies Drinking water standards Environmental transport Industrial wastewaters Molecular geometries Solid/liquid interfaces Chromium compounds |
description |
Adsorption of chromium (VI) on iron oxides is a potential removal method from industrial wastewater. Cr (VI) is a toxic specie for human health due to its easy mobility in the environment. Currently, US EPA drinking water standards establish a maximum Cr level of 100 ?g/L. Since the adsorption process occurs in the solid/liquid interface, pH is one of the main factors that affect this process and it is a very important parameter to study. Understanding the adsorption process and the molecular geometries of complexes, is essential to predict the environmental transport of Cr (VI) and to develop appropriate models for the remediation of Cr (VI). Therefore, in this work, we describe the adsorption of Cr (VI) onto Fe-hydr (oxides) through computational methods. A complete characterization of the adsorbed surface complexes was performed, and three different pH conditions were simulated (acidic, intermediate and basic). It was found that, the thermodynamic favourability of the different adsorbed complexes was directly related to the pH. Bidentate complex (BB) was the most thermodynamically favourable complex with an adsorption energy of -143.3 kJ/mol under acidic pH conditions. © Published under licence by IOP Publishing Ltd. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-04-29T14:54:03Z |
dc.date.available.none.fl_str_mv |
2020-04-29T14:54:03Z |
dc.date.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
Conference Paper |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
17426588 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5795 |
dc.identifier.doi.none.fl_str_mv |
10.1088/1742-6596/1247/1/012051 |
identifier_str_mv |
17426588 10.1088/1742-6596/1247/1/012051 |
url |
http://hdl.handle.net/11407/5795 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071067978&doi=10.1088%2f1742-6596%2f1247%2f1%2f012051&partnerID=40&md5=a02e925f250c431fde570bfcfef245b8 |
dc.relation.citationvolume.none.fl_str_mv |
1247 |
dc.relation.citationissue.none.fl_str_mv |
1 |
dc.relation.references.none.fl_str_mv |
Mamun, A.A., Morita, M., Matsuoka, M., Tokoro, C., Sorption mechanisms of chromate with coprecipitated ferrihydrite in aqueous solution (2017) J. Hazard. Mater., 334, pp. 142-149 Sari, T.K., Takahashi, F., Jin, J., Zein, R., Munaf, E., Electrochemical Determination of Chromium(VI) in River Water with Gold Nanoparticles-Graphene Nanocomposites Modified Electrodes (2018) Anal. Sci., 34 (2), pp. 155-160 Agency, U.S.E.P., Edition of the Drinking Water Standards and Health Advisories Tables (2018) United States Environmental Protection Agency: Washington, DC, USA Johnston, C.P., Chrysochoou, M., Mechanisms of chromate adsorption on hematite (2014) Geochim. Cosmochim. Acta, 138, pp. 146-157 Zhou, L., Zhang, G., Wang, M., Wang, D., Cai, D., Wu, Z., Efficient removal of hexavalent chromium from water and soil using magnetic ceramsite coated by functionalized nano carbon spheres (2018) Chem. Eng. J., 334, pp. 400-409 Sharma, A., Thakur, K.K., Mehta, P., Pathania, D., Efficient adsorption of chlorpheniramine and hexavalent chromium (Cr(VI)) from water system using agronomic waste material (2018) Sustainable Chem. Pharm., 9, pp. 1-11 Acelas, N.Y., Hadad, C., Restrepo, A., Ibarguen, C., Flórez, E., Adsorption of Nitrate and Bicarbonate on Fe-(Hydr)oxide (2017) Inor. Chem., 56 (9), pp. 5455-5464 Burakov, A.E., Galunin, E.V., Burakova, I.V., Kucherova, A.E., Agarwal, S., Tkachev, A.G., Gupta, V.K., Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review (2018) Ecotoxicol. Environ. Saf., 148, pp. 702-712 Vilardi, G., Ochando-Pulido, J.M., Verdone, N., Stoller, M., Di Palma, L., On the removal of hexavalent chromium by olive stones coated by iron-based nanoparticles: Equilibrium study and chromium recovery (2018) J. Cleaner Prod., 190, pp. 200-210 Jin, X., Liu, Y., Tan, J., Owens, G., Chen, Z., Removal of Cr(VI) from aqueous solutions via reduction and absorption by green synthesized iron nanoparticles (2018) J. Cleaner Prod., 176, pp. 929-936 Acelas, N.Y., Martin, B.D., López, D., Jefferson, B., Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media (2015) Chemosphere, 119, pp. 1353-1360 Acelas, N.Y., Flórez, E., Theoretical study of phosphate adsorption from wastewater using Al-(hydr)oxide (2017) Desalin. Water Treat, 60, pp. 88-105 Castro, L., Blázquez, M.L., González, F., Muñoz, J.A., Ballester, A., Heavy metal adsorption using biogenic iron compounds (2018) Hydrometallurgy, 179, pp. 44-51 Johnston, C.P., Chrysochoou, M., Mechanisms of chromate adsorption on boehmite (2015) J. Hazard. Mater., 281, pp. 56-63 Vilela, P.B., Dalalibera, A., Duminelli, E.C., Becegato, V.A., Paulino, A.T., Adsorption and removal of chromium (VI) contained in aqueous solutions using a chitosan-based hydrogel (2018) Environ Sci Pollut Res Int, pp. 1-9 Derdour, K., Bouchelta, C., Khorief Naser-Eddine, A., Medjram, M.S., Magri, P., Removal of Cr(VI) from aqueous solutions by using activated carbon supported iron catalysts as efficient adsorbents (2018) World Journal of Engineering, 15, pp. 3-13 Johnston, C.P., Chrysochoou, M., Investigation of Chromate Coordination on Ferrihydrite by in Situ ATR-FTIR Spectroscopy and Theoretical Frequency Calculations (2012) Environ. Sci. Technol, 46 (11), pp. 5851-5858 Adamescu, A., Hamilton, I.P., Al-Abadleh, H.A., Density Functional Theory Calculations on the Complexation of p-Arsanilic Acid with Hydrated Iron Oxide Clusters: Structures, Reaction Energies, and Transition States (2014) J. Phys. Chem. A, 118 (30), pp. 5667-5679 Pérez, J.F., Restrepo, A., (2008) ASCEC V-02, Annealing Simulado Con Energiá Cuántica, Property, Development and Implementation, , (Medellin, Colombia: Theoretical Chemical Physics Group, UdeA) Frisch, M.J., (2009) Gaussian 09 I.W. Revision D.01, , ed C Gaussian Guesmi, H., Tielens, F., Chromium Oxide Species Supported on Silica: A Representative Periodic DFT Model (2012) J. Phys.Chem C, 116 (1), pp. 994-1001 Veselská, V., Fajgar, R., ?íhalová, S., Bolanz, R.M., Göttlicher, J., Steininger, R., Siddique, J.A., Komárek, M., Chromate adsorption on selected soil minerals: Surface complexation modeling coupled with spectroscopic investigation (2016) J. Hazard. Mater, 318, pp. 433-442 Yin, S., Ellis, D.E., DFT studies of Cr(VI) complex adsorption on hydroxylated hematite (1102) surfaces (2009) Surf. Sci., 603 (4), pp. 736-746 Fendorf, S., Eick, M.J., Grossl, P., Sparks, D.L., Arsenate and Chromate Retention Mechanisms on Goethite. 1. Surface Structure (1997) Environ. Sci. Technol, 31 (2), pp. 315-320 Dzombak, D.A., Morel, F., Surface Complexation Modeling: Hydrous Ferric Oxide (1990) Ed. JW Sons, pp. 325-400 Xie, J., Gu, X., Tong, F., Zhao, Y., Tan, Y., Surface complexation modeling of Cr(VI) adsorption at the goethite-water interface (2015) J. Colloid Interface Sci 455, 455, pp. 55-62 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Institute of Physics Publishing |
dc.publisher.program.none.fl_str_mv |
Facultad de Ciencias Básicas |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
Institute of Physics Publishing |
dc.source.none.fl_str_mv |
Journal of Physics: Conference Series |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159203011395584 |
spelling |
20192020-04-29T14:54:03Z2020-04-29T14:54:03Z17426588http://hdl.handle.net/11407/579510.1088/1742-6596/1247/1/012051Adsorption of chromium (VI) on iron oxides is a potential removal method from industrial wastewater. Cr (VI) is a toxic specie for human health due to its easy mobility in the environment. Currently, US EPA drinking water standards establish a maximum Cr level of 100 ?g/L. Since the adsorption process occurs in the solid/liquid interface, pH is one of the main factors that affect this process and it is a very important parameter to study. Understanding the adsorption process and the molecular geometries of complexes, is essential to predict the environmental transport of Cr (VI) and to develop appropriate models for the remediation of Cr (VI). Therefore, in this work, we describe the adsorption of Cr (VI) onto Fe-hydr (oxides) through computational methods. A complete characterization of the adsorbed surface complexes was performed, and three different pH conditions were simulated (acidic, intermediate and basic). It was found that, the thermodynamic favourability of the different adsorbed complexes was directly related to the pH. Bidentate complex (BB) was the most thermodynamically favourable complex with an adsorption energy of -143.3 kJ/mol under acidic pH conditions. © Published under licence by IOP Publishing Ltd.engInstitute of Physics PublishingFacultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85071067978&doi=10.1088%2f1742-6596%2f1247%2f1%2f012051&partnerID=40&md5=a02e925f250c431fde570bfcfef245b812471Mamun, A.A., Morita, M., Matsuoka, M., Tokoro, C., Sorption mechanisms of chromate with coprecipitated ferrihydrite in aqueous solution (2017) J. Hazard. Mater., 334, pp. 142-149Sari, T.K., Takahashi, F., Jin, J., Zein, R., Munaf, E., Electrochemical Determination of Chromium(VI) in River Water with Gold Nanoparticles-Graphene Nanocomposites Modified Electrodes (2018) Anal. Sci., 34 (2), pp. 155-160Agency, U.S.E.P., Edition of the Drinking Water Standards and Health Advisories Tables (2018) United States Environmental Protection Agency: Washington, DC, USAJohnston, C.P., Chrysochoou, M., Mechanisms of chromate adsorption on hematite (2014) Geochim. Cosmochim. Acta, 138, pp. 146-157Zhou, L., Zhang, G., Wang, M., Wang, D., Cai, D., Wu, Z., Efficient removal of hexavalent chromium from water and soil using magnetic ceramsite coated by functionalized nano carbon spheres (2018) Chem. Eng. J., 334, pp. 400-409Sharma, A., Thakur, K.K., Mehta, P., Pathania, D., Efficient adsorption of chlorpheniramine and hexavalent chromium (Cr(VI)) from water system using agronomic waste material (2018) Sustainable Chem. Pharm., 9, pp. 1-11Acelas, N.Y., Hadad, C., Restrepo, A., Ibarguen, C., Flórez, E., Adsorption of Nitrate and Bicarbonate on Fe-(Hydr)oxide (2017) Inor. Chem., 56 (9), pp. 5455-5464Burakov, A.E., Galunin, E.V., Burakova, I.V., Kucherova, A.E., Agarwal, S., Tkachev, A.G., Gupta, V.K., Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review (2018) Ecotoxicol. Environ. Saf., 148, pp. 702-712Vilardi, G., Ochando-Pulido, J.M., Verdone, N., Stoller, M., Di Palma, L., On the removal of hexavalent chromium by olive stones coated by iron-based nanoparticles: Equilibrium study and chromium recovery (2018) J. Cleaner Prod., 190, pp. 200-210Jin, X., Liu, Y., Tan, J., Owens, G., Chen, Z., Removal of Cr(VI) from aqueous solutions via reduction and absorption by green synthesized iron nanoparticles (2018) J. Cleaner Prod., 176, pp. 929-936Acelas, N.Y., Martin, B.D., López, D., Jefferson, B., Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media (2015) Chemosphere, 119, pp. 1353-1360Acelas, N.Y., Flórez, E., Theoretical study of phosphate adsorption from wastewater using Al-(hydr)oxide (2017) Desalin. Water Treat, 60, pp. 88-105Castro, L., Blázquez, M.L., González, F., Muñoz, J.A., Ballester, A., Heavy metal adsorption using biogenic iron compounds (2018) Hydrometallurgy, 179, pp. 44-51Johnston, C.P., Chrysochoou, M., Mechanisms of chromate adsorption on boehmite (2015) J. Hazard. Mater., 281, pp. 56-63Vilela, P.B., Dalalibera, A., Duminelli, E.C., Becegato, V.A., Paulino, A.T., Adsorption and removal of chromium (VI) contained in aqueous solutions using a chitosan-based hydrogel (2018) Environ Sci Pollut Res Int, pp. 1-9Derdour, K., Bouchelta, C., Khorief Naser-Eddine, A., Medjram, M.S., Magri, P., Removal of Cr(VI) from aqueous solutions by using activated carbon supported iron catalysts as efficient adsorbents (2018) World Journal of Engineering, 15, pp. 3-13Johnston, C.P., Chrysochoou, M., Investigation of Chromate Coordination on Ferrihydrite by in Situ ATR-FTIR Spectroscopy and Theoretical Frequency Calculations (2012) Environ. Sci. Technol, 46 (11), pp. 5851-5858Adamescu, A., Hamilton, I.P., Al-Abadleh, H.A., Density Functional Theory Calculations on the Complexation of p-Arsanilic Acid with Hydrated Iron Oxide Clusters: Structures, Reaction Energies, and Transition States (2014) J. Phys. Chem. A, 118 (30), pp. 5667-5679Pérez, J.F., Restrepo, A., (2008) ASCEC V-02, Annealing Simulado Con Energiá Cuántica, Property, Development and Implementation, , (Medellin, Colombia: Theoretical Chemical Physics Group, UdeA)Frisch, M.J., (2009) Gaussian 09 I.W. Revision D.01, , ed C GaussianGuesmi, H., Tielens, F., Chromium Oxide Species Supported on Silica: A Representative Periodic DFT Model (2012) J. Phys.Chem C, 116 (1), pp. 994-1001Veselská, V., Fajgar, R., ?íhalová, S., Bolanz, R.M., Göttlicher, J., Steininger, R., Siddique, J.A., Komárek, M., Chromate adsorption on selected soil minerals: Surface complexation modeling coupled with spectroscopic investigation (2016) J. Hazard. Mater, 318, pp. 433-442Yin, S., Ellis, D.E., DFT studies of Cr(VI) complex adsorption on hydroxylated hematite (1102) surfaces (2009) Surf. Sci., 603 (4), pp. 736-746Fendorf, S., Eick, M.J., Grossl, P., Sparks, D.L., Arsenate and Chromate Retention Mechanisms on Goethite. 1. Surface Structure (1997) Environ. Sci. Technol, 31 (2), pp. 315-320Dzombak, D.A., Morel, F., Surface Complexation Modeling: Hydrous Ferric Oxide (1990) Ed. JW Sons, pp. 325-400Xie, J., Gu, X., Tong, F., Zhao, Y., Tan, Y., Surface complexation modeling of Cr(VI) adsorption at the goethite-water interface (2015) J. Colloid Interface Sci 455, 455, pp. 55-62Journal of Physics: Conference SeriesAdsorptionChemicals removal (water treatment)Computation theoryDensity functional theoryEngineering researchEnvironmental Protection AgencyGibbs free energyHydraulic servomechanismsIron oxidespH effectsPotable waterAdsorption energiesBidentate complexesDensity functional theory studiesDrinking water standardsEnvironmental transportIndustrial wastewatersMolecular geometriesSolid/liquid interfacesChromium compoundsDensity functional theory studies of the adsorption of Cr (VI) on Fe-(hydr) oxide: Gibbs free energies and pH effectConference Paperinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Acelas, N.Y., Grupo de Materiales Con Impacto Matandmpac, Facultad de Ciencias Básicas, Universidad de Medellin, Medellin, Colombia; Flórez, E., Grupo de Materiales Con Impacto Matandmpac, Facultad de Ciencias Básicas, Universidad de Medellin, Medellin, Colombiahttp://purl.org/coar/access_right/c_16ecAcelas N.Y.Flórez E.11407/5795oai:repository.udem.edu.co:11407/57952020-05-27 18:20:55.099Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |