Density functional theory studies of the adsorption of Cr (VI) on Fe-(hydr) oxide: Gibbs free energies and pH effect

Adsorption of chromium (VI) on iron oxides is a potential removal method from industrial wastewater. Cr (VI) is a toxic specie for human health due to its easy mobility in the environment. Currently, US EPA drinking water standards establish a maximum Cr level of 100 ?g/L. Since the adsorption proce...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5795
Acceso en línea:
http://hdl.handle.net/11407/5795
Palabra clave:
Adsorption
Chemicals removal (water treatment)
Computation theory
Density functional theory
Engineering research
Environmental Protection Agency
Gibbs free energy
Hydraulic servomechanisms
Iron oxides
pH effects
Potable water
Adsorption energies
Bidentate complexes
Density functional theory studies
Drinking water standards
Environmental transport
Industrial wastewaters
Molecular geometries
Solid/liquid interfaces
Chromium compounds
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_ef286469be677476b08c720dc4f3c612
oai_identifier_str oai:repository.udem.edu.co:11407/5795
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Density functional theory studies of the adsorption of Cr (VI) on Fe-(hydr) oxide: Gibbs free energies and pH effect
title Density functional theory studies of the adsorption of Cr (VI) on Fe-(hydr) oxide: Gibbs free energies and pH effect
spellingShingle Density functional theory studies of the adsorption of Cr (VI) on Fe-(hydr) oxide: Gibbs free energies and pH effect
Adsorption
Chemicals removal (water treatment)
Computation theory
Density functional theory
Engineering research
Environmental Protection Agency
Gibbs free energy
Hydraulic servomechanisms
Iron oxides
pH effects
Potable water
Adsorption energies
Bidentate complexes
Density functional theory studies
Drinking water standards
Environmental transport
Industrial wastewaters
Molecular geometries
Solid/liquid interfaces
Chromium compounds
title_short Density functional theory studies of the adsorption of Cr (VI) on Fe-(hydr) oxide: Gibbs free energies and pH effect
title_full Density functional theory studies of the adsorption of Cr (VI) on Fe-(hydr) oxide: Gibbs free energies and pH effect
title_fullStr Density functional theory studies of the adsorption of Cr (VI) on Fe-(hydr) oxide: Gibbs free energies and pH effect
title_full_unstemmed Density functional theory studies of the adsorption of Cr (VI) on Fe-(hydr) oxide: Gibbs free energies and pH effect
title_sort Density functional theory studies of the adsorption of Cr (VI) on Fe-(hydr) oxide: Gibbs free energies and pH effect
dc.subject.none.fl_str_mv Adsorption
Chemicals removal (water treatment)
Computation theory
Density functional theory
Engineering research
Environmental Protection Agency
Gibbs free energy
Hydraulic servomechanisms
Iron oxides
pH effects
Potable water
Adsorption energies
Bidentate complexes
Density functional theory studies
Drinking water standards
Environmental transport
Industrial wastewaters
Molecular geometries
Solid/liquid interfaces
Chromium compounds
topic Adsorption
Chemicals removal (water treatment)
Computation theory
Density functional theory
Engineering research
Environmental Protection Agency
Gibbs free energy
Hydraulic servomechanisms
Iron oxides
pH effects
Potable water
Adsorption energies
Bidentate complexes
Density functional theory studies
Drinking water standards
Environmental transport
Industrial wastewaters
Molecular geometries
Solid/liquid interfaces
Chromium compounds
description Adsorption of chromium (VI) on iron oxides is a potential removal method from industrial wastewater. Cr (VI) is a toxic specie for human health due to its easy mobility in the environment. Currently, US EPA drinking water standards establish a maximum Cr level of 100 ?g/L. Since the adsorption process occurs in the solid/liquid interface, pH is one of the main factors that affect this process and it is a very important parameter to study. Understanding the adsorption process and the molecular geometries of complexes, is essential to predict the environmental transport of Cr (VI) and to develop appropriate models for the remediation of Cr (VI). Therefore, in this work, we describe the adsorption of Cr (VI) onto Fe-hydr (oxides) through computational methods. A complete characterization of the adsorbed surface complexes was performed, and three different pH conditions were simulated (acidic, intermediate and basic). It was found that, the thermodynamic favourability of the different adsorbed complexes was directly related to the pH. Bidentate complex (BB) was the most thermodynamically favourable complex with an adsorption energy of -143.3 kJ/mol under acidic pH conditions. © Published under licence by IOP Publishing Ltd.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:54:03Z
dc.date.available.none.fl_str_mv 2020-04-29T14:54:03Z
dc.date.none.fl_str_mv 2019
dc.type.eng.fl_str_mv Conference Paper
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 17426588
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5795
dc.identifier.doi.none.fl_str_mv 10.1088/1742-6596/1247/1/012051
identifier_str_mv 17426588
10.1088/1742-6596/1247/1/012051
url http://hdl.handle.net/11407/5795
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071067978&doi=10.1088%2f1742-6596%2f1247%2f1%2f012051&partnerID=40&md5=a02e925f250c431fde570bfcfef245b8
dc.relation.citationvolume.none.fl_str_mv 1247
dc.relation.citationissue.none.fl_str_mv 1
dc.relation.references.none.fl_str_mv Mamun, A.A., Morita, M., Matsuoka, M., Tokoro, C., Sorption mechanisms of chromate with coprecipitated ferrihydrite in aqueous solution (2017) J. Hazard. Mater., 334, pp. 142-149
Sari, T.K., Takahashi, F., Jin, J., Zein, R., Munaf, E., Electrochemical Determination of Chromium(VI) in River Water with Gold Nanoparticles-Graphene Nanocomposites Modified Electrodes (2018) Anal. Sci., 34 (2), pp. 155-160
Agency, U.S.E.P., Edition of the Drinking Water Standards and Health Advisories Tables (2018) United States Environmental Protection Agency: Washington, DC, USA
Johnston, C.P., Chrysochoou, M., Mechanisms of chromate adsorption on hematite (2014) Geochim. Cosmochim. Acta, 138, pp. 146-157
Zhou, L., Zhang, G., Wang, M., Wang, D., Cai, D., Wu, Z., Efficient removal of hexavalent chromium from water and soil using magnetic ceramsite coated by functionalized nano carbon spheres (2018) Chem. Eng. J., 334, pp. 400-409
Sharma, A., Thakur, K.K., Mehta, P., Pathania, D., Efficient adsorption of chlorpheniramine and hexavalent chromium (Cr(VI)) from water system using agronomic waste material (2018) Sustainable Chem. Pharm., 9, pp. 1-11
Acelas, N.Y., Hadad, C., Restrepo, A., Ibarguen, C., Flórez, E., Adsorption of Nitrate and Bicarbonate on Fe-(Hydr)oxide (2017) Inor. Chem., 56 (9), pp. 5455-5464
Burakov, A.E., Galunin, E.V., Burakova, I.V., Kucherova, A.E., Agarwal, S., Tkachev, A.G., Gupta, V.K., Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review (2018) Ecotoxicol. Environ. Saf., 148, pp. 702-712
Vilardi, G., Ochando-Pulido, J.M., Verdone, N., Stoller, M., Di Palma, L., On the removal of hexavalent chromium by olive stones coated by iron-based nanoparticles: Equilibrium study and chromium recovery (2018) J. Cleaner Prod., 190, pp. 200-210
Jin, X., Liu, Y., Tan, J., Owens, G., Chen, Z., Removal of Cr(VI) from aqueous solutions via reduction and absorption by green synthesized iron nanoparticles (2018) J. Cleaner Prod., 176, pp. 929-936
Acelas, N.Y., Martin, B.D., López, D., Jefferson, B., Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media (2015) Chemosphere, 119, pp. 1353-1360
Acelas, N.Y., Flórez, E., Theoretical study of phosphate adsorption from wastewater using Al-(hydr)oxide (2017) Desalin. Water Treat, 60, pp. 88-105
Castro, L., Blázquez, M.L., González, F., Muñoz, J.A., Ballester, A., Heavy metal adsorption using biogenic iron compounds (2018) Hydrometallurgy, 179, pp. 44-51
Johnston, C.P., Chrysochoou, M., Mechanisms of chromate adsorption on boehmite (2015) J. Hazard. Mater., 281, pp. 56-63
Vilela, P.B., Dalalibera, A., Duminelli, E.C., Becegato, V.A., Paulino, A.T., Adsorption and removal of chromium (VI) contained in aqueous solutions using a chitosan-based hydrogel (2018) Environ Sci Pollut Res Int, pp. 1-9
Derdour, K., Bouchelta, C., Khorief Naser-Eddine, A., Medjram, M.S., Magri, P., Removal of Cr(VI) from aqueous solutions by using activated carbon supported iron catalysts as efficient adsorbents (2018) World Journal of Engineering, 15, pp. 3-13
Johnston, C.P., Chrysochoou, M., Investigation of Chromate Coordination on Ferrihydrite by in Situ ATR-FTIR Spectroscopy and Theoretical Frequency Calculations (2012) Environ. Sci. Technol, 46 (11), pp. 5851-5858
Adamescu, A., Hamilton, I.P., Al-Abadleh, H.A., Density Functional Theory Calculations on the Complexation of p-Arsanilic Acid with Hydrated Iron Oxide Clusters: Structures, Reaction Energies, and Transition States (2014) J. Phys. Chem. A, 118 (30), pp. 5667-5679
Pérez, J.F., Restrepo, A., (2008) ASCEC V-02, Annealing Simulado Con Energiá Cuántica, Property, Development and Implementation, , (Medellin, Colombia: Theoretical Chemical Physics Group, UdeA)
Frisch, M.J., (2009) Gaussian 09 I.W. Revision D.01, , ed C Gaussian
Guesmi, H., Tielens, F., Chromium Oxide Species Supported on Silica: A Representative Periodic DFT Model (2012) J. Phys.Chem C, 116 (1), pp. 994-1001
Veselská, V., Fajgar, R., ?íhalová, S., Bolanz, R.M., Göttlicher, J., Steininger, R., Siddique, J.A., Komárek, M., Chromate adsorption on selected soil minerals: Surface complexation modeling coupled with spectroscopic investigation (2016) J. Hazard. Mater, 318, pp. 433-442
Yin, S., Ellis, D.E., DFT studies of Cr(VI) complex adsorption on hydroxylated hematite (1102) surfaces (2009) Surf. Sci., 603 (4), pp. 736-746
Fendorf, S., Eick, M.J., Grossl, P., Sparks, D.L., Arsenate and Chromate Retention Mechanisms on Goethite. 1. Surface Structure (1997) Environ. Sci. Technol, 31 (2), pp. 315-320
Dzombak, D.A., Morel, F., Surface Complexation Modeling: Hydrous Ferric Oxide (1990) Ed. JW Sons, pp. 325-400
Xie, J., Gu, X., Tong, F., Zhao, Y., Tan, Y., Surface complexation modeling of Cr(VI) adsorption at the goethite-water interface (2015) J. Colloid Interface Sci 455, 455, pp. 55-62
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Institute of Physics Publishing
dc.publisher.program.none.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Institute of Physics Publishing
dc.source.none.fl_str_mv Journal of Physics: Conference Series
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159203011395584
spelling 20192020-04-29T14:54:03Z2020-04-29T14:54:03Z17426588http://hdl.handle.net/11407/579510.1088/1742-6596/1247/1/012051Adsorption of chromium (VI) on iron oxides is a potential removal method from industrial wastewater. Cr (VI) is a toxic specie for human health due to its easy mobility in the environment. Currently, US EPA drinking water standards establish a maximum Cr level of 100 ?g/L. Since the adsorption process occurs in the solid/liquid interface, pH is one of the main factors that affect this process and it is a very important parameter to study. Understanding the adsorption process and the molecular geometries of complexes, is essential to predict the environmental transport of Cr (VI) and to develop appropriate models for the remediation of Cr (VI). Therefore, in this work, we describe the adsorption of Cr (VI) onto Fe-hydr (oxides) through computational methods. A complete characterization of the adsorbed surface complexes was performed, and three different pH conditions were simulated (acidic, intermediate and basic). It was found that, the thermodynamic favourability of the different adsorbed complexes was directly related to the pH. Bidentate complex (BB) was the most thermodynamically favourable complex with an adsorption energy of -143.3 kJ/mol under acidic pH conditions. © Published under licence by IOP Publishing Ltd.engInstitute of Physics PublishingFacultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85071067978&doi=10.1088%2f1742-6596%2f1247%2f1%2f012051&partnerID=40&md5=a02e925f250c431fde570bfcfef245b812471Mamun, A.A., Morita, M., Matsuoka, M., Tokoro, C., Sorption mechanisms of chromate with coprecipitated ferrihydrite in aqueous solution (2017) J. Hazard. Mater., 334, pp. 142-149Sari, T.K., Takahashi, F., Jin, J., Zein, R., Munaf, E., Electrochemical Determination of Chromium(VI) in River Water with Gold Nanoparticles-Graphene Nanocomposites Modified Electrodes (2018) Anal. Sci., 34 (2), pp. 155-160Agency, U.S.E.P., Edition of the Drinking Water Standards and Health Advisories Tables (2018) United States Environmental Protection Agency: Washington, DC, USAJohnston, C.P., Chrysochoou, M., Mechanisms of chromate adsorption on hematite (2014) Geochim. Cosmochim. Acta, 138, pp. 146-157Zhou, L., Zhang, G., Wang, M., Wang, D., Cai, D., Wu, Z., Efficient removal of hexavalent chromium from water and soil using magnetic ceramsite coated by functionalized nano carbon spheres (2018) Chem. Eng. J., 334, pp. 400-409Sharma, A., Thakur, K.K., Mehta, P., Pathania, D., Efficient adsorption of chlorpheniramine and hexavalent chromium (Cr(VI)) from water system using agronomic waste material (2018) Sustainable Chem. Pharm., 9, pp. 1-11Acelas, N.Y., Hadad, C., Restrepo, A., Ibarguen, C., Flórez, E., Adsorption of Nitrate and Bicarbonate on Fe-(Hydr)oxide (2017) Inor. Chem., 56 (9), pp. 5455-5464Burakov, A.E., Galunin, E.V., Burakova, I.V., Kucherova, A.E., Agarwal, S., Tkachev, A.G., Gupta, V.K., Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review (2018) Ecotoxicol. Environ. Saf., 148, pp. 702-712Vilardi, G., Ochando-Pulido, J.M., Verdone, N., Stoller, M., Di Palma, L., On the removal of hexavalent chromium by olive stones coated by iron-based nanoparticles: Equilibrium study and chromium recovery (2018) J. Cleaner Prod., 190, pp. 200-210Jin, X., Liu, Y., Tan, J., Owens, G., Chen, Z., Removal of Cr(VI) from aqueous solutions via reduction and absorption by green synthesized iron nanoparticles (2018) J. Cleaner Prod., 176, pp. 929-936Acelas, N.Y., Martin, B.D., López, D., Jefferson, B., Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media (2015) Chemosphere, 119, pp. 1353-1360Acelas, N.Y., Flórez, E., Theoretical study of phosphate adsorption from wastewater using Al-(hydr)oxide (2017) Desalin. Water Treat, 60, pp. 88-105Castro, L., Blázquez, M.L., González, F., Muñoz, J.A., Ballester, A., Heavy metal adsorption using biogenic iron compounds (2018) Hydrometallurgy, 179, pp. 44-51Johnston, C.P., Chrysochoou, M., Mechanisms of chromate adsorption on boehmite (2015) J. Hazard. Mater., 281, pp. 56-63Vilela, P.B., Dalalibera, A., Duminelli, E.C., Becegato, V.A., Paulino, A.T., Adsorption and removal of chromium (VI) contained in aqueous solutions using a chitosan-based hydrogel (2018) Environ Sci Pollut Res Int, pp. 1-9Derdour, K., Bouchelta, C., Khorief Naser-Eddine, A., Medjram, M.S., Magri, P., Removal of Cr(VI) from aqueous solutions by using activated carbon supported iron catalysts as efficient adsorbents (2018) World Journal of Engineering, 15, pp. 3-13Johnston, C.P., Chrysochoou, M., Investigation of Chromate Coordination on Ferrihydrite by in Situ ATR-FTIR Spectroscopy and Theoretical Frequency Calculations (2012) Environ. Sci. Technol, 46 (11), pp. 5851-5858Adamescu, A., Hamilton, I.P., Al-Abadleh, H.A., Density Functional Theory Calculations on the Complexation of p-Arsanilic Acid with Hydrated Iron Oxide Clusters: Structures, Reaction Energies, and Transition States (2014) J. Phys. Chem. A, 118 (30), pp. 5667-5679Pérez, J.F., Restrepo, A., (2008) ASCEC V-02, Annealing Simulado Con Energiá Cuántica, Property, Development and Implementation, , (Medellin, Colombia: Theoretical Chemical Physics Group, UdeA)Frisch, M.J., (2009) Gaussian 09 I.W. Revision D.01, , ed C GaussianGuesmi, H., Tielens, F., Chromium Oxide Species Supported on Silica: A Representative Periodic DFT Model (2012) J. Phys.Chem C, 116 (1), pp. 994-1001Veselská, V., Fajgar, R., ?íhalová, S., Bolanz, R.M., Göttlicher, J., Steininger, R., Siddique, J.A., Komárek, M., Chromate adsorption on selected soil minerals: Surface complexation modeling coupled with spectroscopic investigation (2016) J. Hazard. Mater, 318, pp. 433-442Yin, S., Ellis, D.E., DFT studies of Cr(VI) complex adsorption on hydroxylated hematite (1102) surfaces (2009) Surf. Sci., 603 (4), pp. 736-746Fendorf, S., Eick, M.J., Grossl, P., Sparks, D.L., Arsenate and Chromate Retention Mechanisms on Goethite. 1. Surface Structure (1997) Environ. Sci. Technol, 31 (2), pp. 315-320Dzombak, D.A., Morel, F., Surface Complexation Modeling: Hydrous Ferric Oxide (1990) Ed. JW Sons, pp. 325-400Xie, J., Gu, X., Tong, F., Zhao, Y., Tan, Y., Surface complexation modeling of Cr(VI) adsorption at the goethite-water interface (2015) J. Colloid Interface Sci 455, 455, pp. 55-62Journal of Physics: Conference SeriesAdsorptionChemicals removal (water treatment)Computation theoryDensity functional theoryEngineering researchEnvironmental Protection AgencyGibbs free energyHydraulic servomechanismsIron oxidespH effectsPotable waterAdsorption energiesBidentate complexesDensity functional theory studiesDrinking water standardsEnvironmental transportIndustrial wastewatersMolecular geometriesSolid/liquid interfacesChromium compoundsDensity functional theory studies of the adsorption of Cr (VI) on Fe-(hydr) oxide: Gibbs free energies and pH effectConference Paperinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Acelas, N.Y., Grupo de Materiales Con Impacto Matandmpac, Facultad de Ciencias Básicas, Universidad de Medellin, Medellin, Colombia; Flórez, E., Grupo de Materiales Con Impacto Matandmpac, Facultad de Ciencias Básicas, Universidad de Medellin, Medellin, Colombiahttp://purl.org/coar/access_right/c_16ecAcelas N.Y.Flórez E.11407/5795oai:repository.udem.edu.co:11407/57952020-05-27 18:20:55.099Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co