Evaluation of 3B42V7 and IMERG daily-precipitation products for a very high-precipitation region in northwestern South America

The availability of water is critical in determining the distribution of species by favoring or limiting their development, and leading to the formation of different ecosystems. Thus, analyzing the trends and fluctuations of the precipitation is a key factor to understanding our planet's biodiv...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/6073
Acceso en línea:
http://hdl.handle.net/11407/6073
Palabra clave:
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_ec70826abc31d89cd0eff49361fd09c5
oai_identifier_str oai:repository.udem.edu.co:11407/6073
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Evaluation of 3B42V7 and IMERG daily-precipitation products for a very high-precipitation region in northwestern South America
title Evaluation of 3B42V7 and IMERG daily-precipitation products for a very high-precipitation region in northwestern South America
spellingShingle Evaluation of 3B42V7 and IMERG daily-precipitation products for a very high-precipitation region in northwestern South America
title_short Evaluation of 3B42V7 and IMERG daily-precipitation products for a very high-precipitation region in northwestern South America
title_full Evaluation of 3B42V7 and IMERG daily-precipitation products for a very high-precipitation region in northwestern South America
title_fullStr Evaluation of 3B42V7 and IMERG daily-precipitation products for a very high-precipitation region in northwestern South America
title_full_unstemmed Evaluation of 3B42V7 and IMERG daily-precipitation products for a very high-precipitation region in northwestern South America
title_sort Evaluation of 3B42V7 and IMERG daily-precipitation products for a very high-precipitation region in northwestern South America
description The availability of water is critical in determining the distribution of species by favoring or limiting their development, and leading to the formation of different ecosystems. Thus, analyzing the trends and fluctuations of the precipitation is a key factor to understanding our planet's biodiversity. Different physical conditions exist in northwestern South America that cause extreme climate conditions, especially on the west coast of the continent. This region, known as Biogeographic Chocó has high annual precipitation caused by interactions between the humid currents of the Pacific Ocean and the Andes Mountains. A limited network of hydro-meteorological stations are available in the region to monitor precipitation. Satellite precipitation products can provide valuable information in the absence of field stations, complementing the network of field stations in remote areas, and completing time series for stations that have stopped working. However, remote sensing data must be validated before being used. The goal of this study is thus to evaluate the accuracy of the products of the Tropical Rainfall Measuring Mission 3B42V7 and the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG), under very high precipitation conditions, and evaluate their strengths and shortcomings. These programs provide daily-precipitation information with a spatial resolution of 0.25° for the former and 0.1° for the latter. The validation was done by using a time series of daily-precipitation data obtained from 185 hydro-meteorological stations distributed over the Biogeographic Chocó. Different statistic metrics were used in the evaluation and comparison: error metrics (mean difference MD, relative mean difference RMD, and root mean square error RMSE), a correlation metric (Pearson correlation CP), contingency metrics (probability of detection POD, false-alarm ratio FAR, and critical success index CSI). We also evaluate the grid and areal scale. The results show that (i) the 3B42V7 and IMERG daily-precipitation products represent well the spatial and temporal distribution of mean daily precipitation over the Biographic Chocó and both products are accurate for detecting precipitation events. (ii) Mean daily precipitation tends to be overestimated in areas with relative low precipitation and medium-to-high altitude whereas, on the contrary, mean daily precipitation tends to be underestimated in areas with very high precipitation and medium-to-low altitude. (iii) Finally, copious precipitation (i.e., an annual accumulated precipitation over 5000 mm, which is common for over 55% of the study area) strongly affects the accuracy of the satellite products, leading to significant errors in estimates of daily precipitation for some regions. This study constitutes one of the first exhaustive validation of the IMERG daily precipitation product over the Biogeographic Chocó and the results provide important information about the potential for using this product in the study area and over regions with high precipitation. © 2018
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:59:08Z
dc.date.available.none.fl_str_mv 2021-02-05T14:59:08Z
dc.date.none.fl_str_mv 2019
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 1698095
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/6073
dc.identifier.doi.none.fl_str_mv 10.1016/j.atmosres.2018.10.012
identifier_str_mv 1698095
10.1016/j.atmosres.2018.10.012
url http://hdl.handle.net/11407/6073
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055739547&doi=10.1016%2fj.atmosres.2018.10.012&partnerID=40&md5=4c4b1bba5877a1ec42941d4ebf1d84a1
dc.relation.citationvolume.none.fl_str_mv 217
dc.relation.citationstartpage.none.fl_str_mv 37
dc.relation.citationendpage.none.fl_str_mv 48
dc.relation.references.none.fl_str_mv Asong, Z.E., Razavi, S., Wheater, H.S., Wong, J.S., Evaluation of Integrated Multisatellite Retrievals for GPM (IMERG) over Southern Canada against Ground Precipitation Observations: a preliminary Assessment (2017) J. Hydrometeorol., 18 (4), pp. 1033-1050
Audesirk, T., Audesirk, G., Bruce, E., Biología: La vida en la Tierra (2008), PRENTICE HALL INC
Brown, J.E.M., An analysis of the performance of hybrid infrared and microwave satellite precipitation algorithms over India and adjacent regions (2006) Remote Sens. Environ., 101 (1), pp. 63-81
Chen, F., Li, X., Evaluation of IMERG and TRMM 3B43 monthly precipitation products over mainland China (2016) Remote Sens., 8 (6), pp. 1-18
Dinku, T., Ceccato, P., Grover-Kopec, E., Lemma, M., Connor, S.J., Ropelewski, C.F., Validation of satellite rainfall products over East Africa's complex topography (2007) Int. J. Remote Sens., 28 (7), pp. 1503-1526
Dinku, T., Ruiz, F., Connor, S.J., Ceccato, P., Validation and intercomparison of satellite rainfall estimates over Colombia (2010) J. Appl. Meteorol. Climatol., 49 (5), pp. 1004-1014
Guo, H., Chen, S., Bao, A., Behrangi, A., Hong, Y., Ndayisaba, F., Stepanian, P.M., Early assessment of Integrated Multi-satellite Retrievals for Global Precipitation Measurement over China (2016) Atmos. Res., 176-177, pp. 121-133
Guzmán, D., Ruíz, J.F., Cadena, M., Regionalización de Colombia según la estacionalidad de la precipitación media mensual, a través de Análisis de Componentes Principales (ACP) (2014), Bogotá Colombia
Ha, K.J., Jeon, E.H., Oh, H.M., Spatial and temporal characteristics of precipitation using an extensive network of ground gauge in the Korean Peninsula (2007) Atmos. Res., 86 (3-4), pp. 330-339
Hobouchian, M.P., Salio, P., García Skabar, Y., Vila, D., Garreaud, R., Assessment of satellite precipitation estimates over the slopes of the subtropical Andes (2017) Atmos. Res., 190, pp. 43-54
Hsu, K., Gao, X., Sorooshian, S., Gupta, H.V., Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (1997) J. Appl. Meteorol., 36 (9), pp. 1176-1190
Huang, Y., Chen, S., Cao, Q., Hong, Y., Wu, B., Huang, M., Yang, X., Evaluation of version-7 TRMM multi-satellite precipitation analysis product during the Beijing extreme heavy rainfall event of 21 July 2012 (2014) Water (Switzerland), 6 (1), pp. 32-44
Huffman, G., Adler, R., Curtis, S., Bolvin, D., Nelkin, E., Global rainfall analyses at monthly and 3-hr time scales (2007) Measuring Precipitation from Space: EURAINSAT and the Future, pp. 291-306. , V. Levizzani P. Bauer F.J. Turk Kluwer Academic Pub. B.V. Dordrecht. The Netherlands
Huffman, G.J., Adler, R.F., Bolvin, D.T., Gu, G., Improving the global precipitation record: GPCP Version 2.1 (2009) Geophys. Res. Lett., 36 (17), pp. 1-5
Huffman, G., Bolvin, D., Nelkin, E., Integrated multi-satellitE retrievals for GPM (IMERG) technical documentation, (June), 1–48. NASA/GSFC code 612, 47 pp (2015), http://pmm.nasa.gov/sites/default/files/document_files/IMERG_doc.pdf
IDEAM, Portal de solicitud de información (2016), http://www.ideam.gov.co/solicitud-de-informacion, Retrieved from
Jaramillo, Á., Chaves, B., Distribución de la precipitación en Colombia analizada mediante conglomeración estadística (2000) Cenicafé, 51 (2), pp. 102-113
Javanmard, S., Yatagai, A., Nodzu, M.I., Bodaghjamali, J., Kawamoto, H., Comparing high-resolution gridded precipitation data with satellite rainfall estimates of TRMM-3B42 over Iran (2010) Adv. Geosci., 25, pp. 119-125
Joyce, R.J., Janowiak, J.E., Arkin, P.A., Xie, P., CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution (2004) J. Hydrometeorol., 5 (3), pp. 487-503
Kumar, T., Patnaik, C., Discrimination of mangrove forests and characterization of adjoining land cover classes using temporal C-band Synthetic Aperture Radar data: a case study of Sundarbans (2013) Int. J. Appl. Earth Obs. Geoinf., 23, pp. 119-131
Kummerow, C., Simpson, J., Thiele, O., Barnes, W., Chang, A.T., Stocker, E., Nakamura, K., The status of the tropical rainfall measuring mission (TRMM) after two years in orbit (2000) J. Appl. Meteorol., 39 (12), pp. 1965-1982
Li, X.H., Zhang, Q., Xu, C.Y., Suitability of the TRMM satellite rainfalls in driving a distributed hydrological model for water balance computations in Xinjiang catchment, Poyang lake basin (2012) J. Hydrol., 426-427, pp. 28-38
Li, N., Tang, G., Zhao, P., Hong, Y., Gou, Y., Yang, K., Statistical assessment and hydrological utility of the latest multi-satellite precipitation analysis IMERG in Ganjiang River basin (2017) Atmos. Res., 183, pp. 212-223
Moazami, S., Golian, S., Kavianpour, M.R., Hong, Y., Comparison of PERSIANN and V7 TRMM Multi-satellite Precipitation Analysis (TMPA) products with rain gauge data over Iran (2013) Int. J. Remote Sens., 34 (22), pp. 8156-8171
Motohka, T., Nasahara, K., Oguma, H., Tsuchida, S., Applicability of green-red vegetation index for remote sensing of vegetation phenology (2010) Remote Sensing, 2, pp. 2369-2387. , http://www.mdpi.com/2072-4292/2/10/2369?trendmd-shared=0, Retrieved from
Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Kent, J., Biodiversity hotspots for conservation priorities (2000) Nature, 403 (6772), pp. 853-858
Nastos, P.T., Kapsomenakis, J., Philandras, K.M., Evaluation of the TRMM 3B43 gridded precipitation estimates over Greece (2016) Atmos. Res., 169, pp. 497-514
Pabón-Caicedo, J.D., Eslava-Ramírez, J.A., Gómez-Torres, R.E., Generalidades De La Distribución Espacial Y Temporal De La Temperatura Del Aire Y De La Precipitación En Colombia (2001) Meteorología Colombiana, 4, pp. 47-59
Pombo, S., de Oliveira, R.P., Mendes, A., Validation of remote-sensing precipitation products for Angola (2015) Meteorol. Appl., 22 (3), pp. 395-409
Poveda, G., Waylen, P.R., Pulwarty, R.S., Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica (2006) Palaeogeogr. Palaeoclimatol. Palaeoecol., 234 (1), pp. 3-27
Prakash, S., Mitra, A.K., Pai, D.S., Aghakouchak, A., From TRMM to GPM: how well can heavy rainfall be detected from space? (2016) Adv. Water Resour., 88 (December 2014), pp. 1-7
Prakash, S., Mitra, A.K., Aghakouchak, A., Liu, Z., Norouzi, H., Pai, D.S., A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region (2018) J. Hydrol., 556 (February 2014), pp. 865-876
Prat, O.P., Nelson, B.R., Characteristics of annual, seasonal, and diurnal precipitation in the Southeastern United States derived from long-term remotely sensed data (2014) Atmos. Res., 144, pp. 4-20
Rangel, J.O., Arellano, P., Clima del Chocó Biogeográfico: Costa Pacífica de Colombia (2004) Diversidad Biótica IV, pp. 39-82. , http://issuu.com/diversidadbiotica/docs/dbivcap3._clima?e=2165212/3337291, Retrieved from
Rueda, O., Poveda, G., Variabilidad espacial y temporal del chorro del Chocó y su efecto en la hidroclimatología de la región del Pacífico Colombiano (2006) Meteorología Colombiana, 10, pp. 132-145
Schulz, J., Albert, P., Behr, H.-D., Caprion, D., Deneke, H., Dewitte, S., Zelenka, A., Operational climate monitoring from space: the EUMETSAT satellite application facility on climate monitoring (CM-SAF) (2008) Atmospheric Chem. Phys. Discus., 8 (3), pp. 8517-8563
Segan, D.B., Murray, K.A., Watson, J.E.M., A global assessment of current and future biodiversity vulnerability to habitat loss-climate change interactions (2016) Global Ecol. Conserv., 5, pp. 12-21
Shao, Y., Lunetta, R.S., Wheeler, B., Iiames, J.S., Campbell, J.B., An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data (2016) Remote Sens. Environ., 174, pp. 258-265
Sharifi, E., Steinacker, R., Saghafian, B., Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: preliminary results (2016) Remote Sens., 8 (2)
Suepa, T., Qi, J., Lawawirojwong, S., Messina, J.P., Understanding spatio-temporal variation of vegetation phenology and rainfall seasonality in the monsoon Southeast Asia (2016) Environ. Res., 147, pp. 621-629
Sutikno, S., Handayani, Y.L., Fauzi, M., Kurnia, A., Hydrologic modelling using TRMM-based rainfall products for flood analysis, 05015(January) (2017), pp. 2-6
Tan, J., Petersen, W.A., Kirstetter, P.-E., Tian, Y., Performance of IMERG as a Function of Spatiotemporal Scale (2017) J. Hydrometeorol., 18 (2), pp. 307-319
Tang, G., Ma, Y., Long, D., Zhong, L., Hong, Y., Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over mainland China at multiple spatiotemporal scales (2016) J. Hydrol., 533, pp. 152-167
Watson, J.E.M., Iwamura, T., Butt, N., Mapping vulnerability and conservation adaptation strategies under climate change (2013) Nat. Clim. Chang., 3, pp. 989-994
Worqlul, A.W., Maathuis, B., Adem, A.A., Demissie, S.S., Langan, S., Steenhuis, T.S., Comparison of rainfall estimations by TRMM 3B42, MPEG and CFSR with ground-observed data for the Lake Tana basin in Ethiopia (2014) Hydrol. Earth Syst. Sci., 18 (12), pp. 4871-4881
Xu, R., Tian, F., Yang, L., Hu, H., Lu, H., Hou, A., Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network (2017) J. Geophys. Res. D Atmospheres, 122 (2), pp. 910-924
Zhao, T., Yatagai, A., Evaluation of TRMM 3B42 product using a new gauge-based analysis of daily precipitation over China (2014) Int. J. Climatol., 34 (8), pp. 2749-2762
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Elsevier Ltd
dc.publisher.program.spa.fl_str_mv Ingeniería Ambiental
Ingeniería Civil
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
publisher.none.fl_str_mv Elsevier Ltd
dc.source.none.fl_str_mv Atmospheric Research
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159252743258112
spelling 20192021-02-05T14:59:08Z2021-02-05T14:59:08Z1698095http://hdl.handle.net/11407/607310.1016/j.atmosres.2018.10.012The availability of water is critical in determining the distribution of species by favoring or limiting their development, and leading to the formation of different ecosystems. Thus, analyzing the trends and fluctuations of the precipitation is a key factor to understanding our planet's biodiversity. Different physical conditions exist in northwestern South America that cause extreme climate conditions, especially on the west coast of the continent. This region, known as Biogeographic Chocó has high annual precipitation caused by interactions between the humid currents of the Pacific Ocean and the Andes Mountains. A limited network of hydro-meteorological stations are available in the region to monitor precipitation. Satellite precipitation products can provide valuable information in the absence of field stations, complementing the network of field stations in remote areas, and completing time series for stations that have stopped working. However, remote sensing data must be validated before being used. The goal of this study is thus to evaluate the accuracy of the products of the Tropical Rainfall Measuring Mission 3B42V7 and the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG), under very high precipitation conditions, and evaluate their strengths and shortcomings. These programs provide daily-precipitation information with a spatial resolution of 0.25° for the former and 0.1° for the latter. The validation was done by using a time series of daily-precipitation data obtained from 185 hydro-meteorological stations distributed over the Biogeographic Chocó. Different statistic metrics were used in the evaluation and comparison: error metrics (mean difference MD, relative mean difference RMD, and root mean square error RMSE), a correlation metric (Pearson correlation CP), contingency metrics (probability of detection POD, false-alarm ratio FAR, and critical success index CSI). We also evaluate the grid and areal scale. The results show that (i) the 3B42V7 and IMERG daily-precipitation products represent well the spatial and temporal distribution of mean daily precipitation over the Biographic Chocó and both products are accurate for detecting precipitation events. (ii) Mean daily precipitation tends to be overestimated in areas with relative low precipitation and medium-to-high altitude whereas, on the contrary, mean daily precipitation tends to be underestimated in areas with very high precipitation and medium-to-low altitude. (iii) Finally, copious precipitation (i.e., an annual accumulated precipitation over 5000 mm, which is common for over 55% of the study area) strongly affects the accuracy of the satellite products, leading to significant errors in estimates of daily precipitation for some regions. This study constitutes one of the first exhaustive validation of the IMERG daily precipitation product over the Biogeographic Chocó and the results provide important information about the potential for using this product in the study area and over regions with high precipitation. © 2018engElsevier LtdIngeniería AmbientalIngeniería CivilFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85055739547&doi=10.1016%2fj.atmosres.2018.10.012&partnerID=40&md5=4c4b1bba5877a1ec42941d4ebf1d84a12173748Asong, Z.E., Razavi, S., Wheater, H.S., Wong, J.S., Evaluation of Integrated Multisatellite Retrievals for GPM (IMERG) over Southern Canada against Ground Precipitation Observations: a preliminary Assessment (2017) J. Hydrometeorol., 18 (4), pp. 1033-1050Audesirk, T., Audesirk, G., Bruce, E., Biología: La vida en la Tierra (2008), PRENTICE HALL INCBrown, J.E.M., An analysis of the performance of hybrid infrared and microwave satellite precipitation algorithms over India and adjacent regions (2006) Remote Sens. Environ., 101 (1), pp. 63-81Chen, F., Li, X., Evaluation of IMERG and TRMM 3B43 monthly precipitation products over mainland China (2016) Remote Sens., 8 (6), pp. 1-18Dinku, T., Ceccato, P., Grover-Kopec, E., Lemma, M., Connor, S.J., Ropelewski, C.F., Validation of satellite rainfall products over East Africa's complex topography (2007) Int. J. Remote Sens., 28 (7), pp. 1503-1526Dinku, T., Ruiz, F., Connor, S.J., Ceccato, P., Validation and intercomparison of satellite rainfall estimates over Colombia (2010) J. Appl. Meteorol. Climatol., 49 (5), pp. 1004-1014Guo, H., Chen, S., Bao, A., Behrangi, A., Hong, Y., Ndayisaba, F., Stepanian, P.M., Early assessment of Integrated Multi-satellite Retrievals for Global Precipitation Measurement over China (2016) Atmos. Res., 176-177, pp. 121-133Guzmán, D., Ruíz, J.F., Cadena, M., Regionalización de Colombia según la estacionalidad de la precipitación media mensual, a través de Análisis de Componentes Principales (ACP) (2014), Bogotá ColombiaHa, K.J., Jeon, E.H., Oh, H.M., Spatial and temporal characteristics of precipitation using an extensive network of ground gauge in the Korean Peninsula (2007) Atmos. Res., 86 (3-4), pp. 330-339Hobouchian, M.P., Salio, P., García Skabar, Y., Vila, D., Garreaud, R., Assessment of satellite precipitation estimates over the slopes of the subtropical Andes (2017) Atmos. Res., 190, pp. 43-54Hsu, K., Gao, X., Sorooshian, S., Gupta, H.V., Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (1997) J. Appl. Meteorol., 36 (9), pp. 1176-1190Huang, Y., Chen, S., Cao, Q., Hong, Y., Wu, B., Huang, M., Yang, X., Evaluation of version-7 TRMM multi-satellite precipitation analysis product during the Beijing extreme heavy rainfall event of 21 July 2012 (2014) Water (Switzerland), 6 (1), pp. 32-44Huffman, G., Adler, R., Curtis, S., Bolvin, D., Nelkin, E., Global rainfall analyses at monthly and 3-hr time scales (2007) Measuring Precipitation from Space: EURAINSAT and the Future, pp. 291-306. , V. Levizzani P. Bauer F.J. Turk Kluwer Academic Pub. B.V. Dordrecht. The NetherlandsHuffman, G.J., Adler, R.F., Bolvin, D.T., Gu, G., Improving the global precipitation record: GPCP Version 2.1 (2009) Geophys. Res. Lett., 36 (17), pp. 1-5Huffman, G., Bolvin, D., Nelkin, E., Integrated multi-satellitE retrievals for GPM (IMERG) technical documentation, (June), 1–48. NASA/GSFC code 612, 47 pp (2015), http://pmm.nasa.gov/sites/default/files/document_files/IMERG_doc.pdfIDEAM, Portal de solicitud de información (2016), http://www.ideam.gov.co/solicitud-de-informacion, Retrieved fromJaramillo, Á., Chaves, B., Distribución de la precipitación en Colombia analizada mediante conglomeración estadística (2000) Cenicafé, 51 (2), pp. 102-113Javanmard, S., Yatagai, A., Nodzu, M.I., Bodaghjamali, J., Kawamoto, H., Comparing high-resolution gridded precipitation data with satellite rainfall estimates of TRMM-3B42 over Iran (2010) Adv. Geosci., 25, pp. 119-125Joyce, R.J., Janowiak, J.E., Arkin, P.A., Xie, P., CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution (2004) J. Hydrometeorol., 5 (3), pp. 487-503Kumar, T., Patnaik, C., Discrimination of mangrove forests and characterization of adjoining land cover classes using temporal C-band Synthetic Aperture Radar data: a case study of Sundarbans (2013) Int. J. Appl. Earth Obs. Geoinf., 23, pp. 119-131Kummerow, C., Simpson, J., Thiele, O., Barnes, W., Chang, A.T., Stocker, E., Nakamura, K., The status of the tropical rainfall measuring mission (TRMM) after two years in orbit (2000) J. Appl. Meteorol., 39 (12), pp. 1965-1982Li, X.H., Zhang, Q., Xu, C.Y., Suitability of the TRMM satellite rainfalls in driving a distributed hydrological model for water balance computations in Xinjiang catchment, Poyang lake basin (2012) J. Hydrol., 426-427, pp. 28-38Li, N., Tang, G., Zhao, P., Hong, Y., Gou, Y., Yang, K., Statistical assessment and hydrological utility of the latest multi-satellite precipitation analysis IMERG in Ganjiang River basin (2017) Atmos. Res., 183, pp. 212-223Moazami, S., Golian, S., Kavianpour, M.R., Hong, Y., Comparison of PERSIANN and V7 TRMM Multi-satellite Precipitation Analysis (TMPA) products with rain gauge data over Iran (2013) Int. J. Remote Sens., 34 (22), pp. 8156-8171Motohka, T., Nasahara, K., Oguma, H., Tsuchida, S., Applicability of green-red vegetation index for remote sensing of vegetation phenology (2010) Remote Sensing, 2, pp. 2369-2387. , http://www.mdpi.com/2072-4292/2/10/2369?trendmd-shared=0, Retrieved fromMyers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Kent, J., Biodiversity hotspots for conservation priorities (2000) Nature, 403 (6772), pp. 853-858Nastos, P.T., Kapsomenakis, J., Philandras, K.M., Evaluation of the TRMM 3B43 gridded precipitation estimates over Greece (2016) Atmos. Res., 169, pp. 497-514Pabón-Caicedo, J.D., Eslava-Ramírez, J.A., Gómez-Torres, R.E., Generalidades De La Distribución Espacial Y Temporal De La Temperatura Del Aire Y De La Precipitación En Colombia (2001) Meteorología Colombiana, 4, pp. 47-59Pombo, S., de Oliveira, R.P., Mendes, A., Validation of remote-sensing precipitation products for Angola (2015) Meteorol. Appl., 22 (3), pp. 395-409Poveda, G., Waylen, P.R., Pulwarty, R.S., Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica (2006) Palaeogeogr. Palaeoclimatol. Palaeoecol., 234 (1), pp. 3-27Prakash, S., Mitra, A.K., Pai, D.S., Aghakouchak, A., From TRMM to GPM: how well can heavy rainfall be detected from space? (2016) Adv. Water Resour., 88 (December 2014), pp. 1-7Prakash, S., Mitra, A.K., Aghakouchak, A., Liu, Z., Norouzi, H., Pai, D.S., A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region (2018) J. Hydrol., 556 (February 2014), pp. 865-876Prat, O.P., Nelson, B.R., Characteristics of annual, seasonal, and diurnal precipitation in the Southeastern United States derived from long-term remotely sensed data (2014) Atmos. Res., 144, pp. 4-20Rangel, J.O., Arellano, P., Clima del Chocó Biogeográfico: Costa Pacífica de Colombia (2004) Diversidad Biótica IV, pp. 39-82. , http://issuu.com/diversidadbiotica/docs/dbivcap3._clima?e=2165212/3337291, Retrieved fromRueda, O., Poveda, G., Variabilidad espacial y temporal del chorro del Chocó y su efecto en la hidroclimatología de la región del Pacífico Colombiano (2006) Meteorología Colombiana, 10, pp. 132-145Schulz, J., Albert, P., Behr, H.-D., Caprion, D., Deneke, H., Dewitte, S., Zelenka, A., Operational climate monitoring from space: the EUMETSAT satellite application facility on climate monitoring (CM-SAF) (2008) Atmospheric Chem. Phys. Discus., 8 (3), pp. 8517-8563Segan, D.B., Murray, K.A., Watson, J.E.M., A global assessment of current and future biodiversity vulnerability to habitat loss-climate change interactions (2016) Global Ecol. Conserv., 5, pp. 12-21Shao, Y., Lunetta, R.S., Wheeler, B., Iiames, J.S., Campbell, J.B., An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data (2016) Remote Sens. Environ., 174, pp. 258-265Sharifi, E., Steinacker, R., Saghafian, B., Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: preliminary results (2016) Remote Sens., 8 (2)Suepa, T., Qi, J., Lawawirojwong, S., Messina, J.P., Understanding spatio-temporal variation of vegetation phenology and rainfall seasonality in the monsoon Southeast Asia (2016) Environ. Res., 147, pp. 621-629Sutikno, S., Handayani, Y.L., Fauzi, M., Kurnia, A., Hydrologic modelling using TRMM-based rainfall products for flood analysis, 05015(January) (2017), pp. 2-6Tan, J., Petersen, W.A., Kirstetter, P.-E., Tian, Y., Performance of IMERG as a Function of Spatiotemporal Scale (2017) J. Hydrometeorol., 18 (2), pp. 307-319Tang, G., Ma, Y., Long, D., Zhong, L., Hong, Y., Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over mainland China at multiple spatiotemporal scales (2016) J. Hydrol., 533, pp. 152-167Watson, J.E.M., Iwamura, T., Butt, N., Mapping vulnerability and conservation adaptation strategies under climate change (2013) Nat. Clim. Chang., 3, pp. 989-994Worqlul, A.W., Maathuis, B., Adem, A.A., Demissie, S.S., Langan, S., Steenhuis, T.S., Comparison of rainfall estimations by TRMM 3B42, MPEG and CFSR with ground-observed data for the Lake Tana basin in Ethiopia (2014) Hydrol. Earth Syst. Sci., 18 (12), pp. 4871-4881Xu, R., Tian, F., Yang, L., Hu, H., Lu, H., Hou, A., Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network (2017) J. Geophys. Res. D Atmospheres, 122 (2), pp. 910-924Zhao, T., Yatagai, A., Evaluation of TRMM 3B42 product using a new gauge-based analysis of daily precipitation over China (2014) Int. J. Climatol., 34 (8), pp. 2749-2762Atmospheric ResearchEvaluation of 3B42V7 and IMERG daily-precipitation products for a very high-precipitation region in northwestern South AmericaArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Palomino-Ángel, S., Facultad de Ingeniería, Universidad de Medellín, Carrera 87 N° 30 – 65, Medellín, ColombiaAnaya-Acevedo, J.A., Facultad de Ingeniería, Universidad de Medellín, Carrera 87 N° 30 – 65, Medellín, ColombiaBotero, B.A., Facultad de Ingeniería, Universidad de Medellín, Carrera 87 N° 30 – 65, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecPalomino-Ángel S.Anaya-Acevedo J.A.Botero B.A.11407/6073oai:repository.udem.edu.co:11407/60732021-02-05 09:59:08.708Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co