Optoelectronic properties of phosphorene quantum dots functionalized with free base porphyrins
Electronic and optical properties of phosphorene quantum dots functionalized with an organic molecule, porphyrin, are investigated using density functional theory with two different van der Waals functionals. The electronic structure of this complex is obtained and with this information, the real an...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5741
- Acceso en línea:
- http://hdl.handle.net/11407/5741
- Palabra clave:
- DFT
Optical
Phosphorene
Quantum-dots
Binding energy
Density functional theory
Electronic structure
Molecules
Nanocrystals
Optical properties
Porphyrins
Van der Waals forces
Dielectric functions
Electronic and optical properties
Free base porphyrins
Optical
Optoelectronic properties
Phosphorene
Real and imaginary
Relative orientation
Semiconductor quantum dots
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_e871c5a89ac4a02465cf866c95e2ac9a |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5741 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Optoelectronic properties of phosphorene quantum dots functionalized with free base porphyrins |
title |
Optoelectronic properties of phosphorene quantum dots functionalized with free base porphyrins |
spellingShingle |
Optoelectronic properties of phosphorene quantum dots functionalized with free base porphyrins DFT Optical Phosphorene Quantum-dots Binding energy Density functional theory Electronic structure Molecules Nanocrystals Optical properties Porphyrins Van der Waals forces Dielectric functions Electronic and optical properties Free base porphyrins Optical Optoelectronic properties Phosphorene Real and imaginary Relative orientation Semiconductor quantum dots |
title_short |
Optoelectronic properties of phosphorene quantum dots functionalized with free base porphyrins |
title_full |
Optoelectronic properties of phosphorene quantum dots functionalized with free base porphyrins |
title_fullStr |
Optoelectronic properties of phosphorene quantum dots functionalized with free base porphyrins |
title_full_unstemmed |
Optoelectronic properties of phosphorene quantum dots functionalized with free base porphyrins |
title_sort |
Optoelectronic properties of phosphorene quantum dots functionalized with free base porphyrins |
dc.subject.none.fl_str_mv |
DFT Optical Phosphorene Quantum-dots Binding energy Density functional theory Electronic structure Molecules Nanocrystals Optical properties Porphyrins Van der Waals forces Dielectric functions Electronic and optical properties Free base porphyrins Optical Optoelectronic properties Phosphorene Real and imaginary Relative orientation Semiconductor quantum dots |
topic |
DFT Optical Phosphorene Quantum-dots Binding energy Density functional theory Electronic structure Molecules Nanocrystals Optical properties Porphyrins Van der Waals forces Dielectric functions Electronic and optical properties Free base porphyrins Optical Optoelectronic properties Phosphorene Real and imaginary Relative orientation Semiconductor quantum dots |
description |
Electronic and optical properties of phosphorene quantum dots functionalized with an organic molecule, porphyrin, are investigated using density functional theory with two different van der Waals functionals. The electronic structure of this complex is obtained and with this information, the real and imaginary parts of the dielectric function are calculated, from which, the interband optical response can be determined. Depending on the size of the quantum dot and the relative orientation between the dot and the organic molecule, it is found that the porphyrin physisorption leads to important modifications of the energy spectrum of the functionalized blue phosphorene quantum dots. These changes reflect in the optical response of the complex which shows features that come from both the blue phosphorene structure and the organic molecule. It is also found that the rotations of the molecule with respect to the phosphorene quantum dot do not practically alter the value of the binding energy. © 2019 Elsevier B.V. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-04-29T14:53:50Z |
dc.date.available.none.fl_str_mv |
2020-04-29T14:53:50Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
9270256 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5741 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.commatsci.2019.109278 |
identifier_str_mv |
9270256 10.1016/j.commatsci.2019.109278 |
url |
http://hdl.handle.net/11407/5741 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85072517436&doi=10.1016%2fj.commatsci.2019.109278&partnerID=40&md5=561d3c05a7b72502274e99fc86ba1484 |
dc.relation.citationvolume.none.fl_str_mv |
171 |
dc.relation.references.none.fl_str_mv |
Geim, A.K., Grigorieva, I.V., Van der Waals heterostructures (2013) Nature, 499 (7459), pp. 419-425. , http://www.nature.com/doifinder/10.1038/nature12385, URL: Xu, M., Liang, T., Shi, M., Chen, H., Graphene-like two-dimensional materials (2013) Chem. Rev., 113 (5), pp. 3766-3798. , http://pubs.acs.org/doi/abs/10.1021/cr300263a, URL: Gupta, A., Sakthivel, T., Seal, S., Recent development in 2D materials beyond graphene (2015) Prog. Mater Sci., 73, pp. 44-126 Butler, S.Z., Hollen, S.M., Cao, L., Cui, Y., Gupta, J.A., Gutiérrez, H.R., Heinz, T.F., Goldberger, J.E., Progress, challenges, and opportunities in two-dimensional materials beyond graphene (2013) ACS Nano, 7 (4), pp. 2898-2926. , http://pubs.acs.org/doi/abs/10.1021/nn400280c, URL: Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D., Phosphorene: an unexplored 2D semiconductor with a high hole mobility (2014) ACS Nano, 8 (4), pp. 4033-4041. , http://pubs.acs.org/doi/abs/10.1021/nn501226z, URL: Boehm, H.P., Clauss, A., Fischer, G.O., Hofmann, U., Dünnste kohlenstoff-folien (thin carbon leaves) (1961) Zeitschrift für Naturforschung B, 17, pp. 150-152 Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Electric field effect in atomically thin carbon films (2004) Science, 306 (5696), pp. 666-669 Kou, L., Chen, C., Smith, S.C., Phosphorene: fabrication, properties, and applications (2015) J. Phys. Chem. Lett., 6 (14), pp. 2794-2805. , http://pubs.acs.org/doi/abs/10.1021/acs.jpclett.5b01094, URL: Carvalho, A., Wang, M., Zhu, X., Rodin, A.S., Su, H., Castro Neto, A.H., Phosphorene: from theory to applications (2016) Nat. Rev. Mater., 1, p. 16061. , review Article Zhang, J.L., Zhao, S., Han, C., Wang, Z., Zhong, S., Sun, S., Guo, R., Yuan, K.D., Epitaxial growth of single layer blue phosphorus: a new phase of two-dimensional phosphorus (2016) Nano Lett., 16 (8), pp. 4903-4908 Xu, Y., Wang, X., Zhang, W.L., Lv, F., Guo, S., Recent progress in two-dimensional inorganic quantum dots (2018) Chem. Soc. Rev., 47 (2), pp. 586-625 Vishnoi, P., Mazumder, M., Barua, M., Pati, S.K., Rao, C.N., Phosphorene quantum dots (2018) Chem. Phys. Lett., 699, pp. 223-228 Abdelsalam, H., Saroka, V.A., Lukyanchuk, I., Portnoi, M.E., Multilayer phosphorene quantum dots in an electric field: energy levels and optical absorption (2018) J. Appl. Phys., 124 (12) Abdelsalam, H., Saroka, V.A., Younis, W.O., Phosphorene quantum dot electronic properties and gas sensing (2019) Phys. E: Low-Dimension. Syst. Nanostruct., 107 (November 2018), pp. 105-109 Tian, X., Duan, J., Wei, J., Feng, N., Wang, X., Gong, Z., Du, Y., Yakobson, B.I., Modulating blue phosphorene by synergetic codoping: indirect to direct gap transition and strong bandgap bowing (2019) Adv. Funct. Mater., 89 (3), p. 1808721 Jiang, Z.T., Liang, F.X., Lv, Z.T., Ren, Y.H., Han, Q.Z., Symmetry effect on the mechanism of the optical absorption of phosphorene quantum dots (2019) Phys. E: Low-Dimension. Syst. Nanostruct., 107 (November 2018), pp. 137-141 Zhou, S., Liu, N., Zhao, J., Phosphorus quantum dots as visible-light photocatalyst for water splitting (2017) Comput. Mater. Sci., 130, pp. 56-63 Safari, F., Moradinasab, M., Fathipour, M., Kosina, H., Adsorption of the NH3, NO, NO2, CO2, and CO gas molecules on blue phosphorene: a first-principles study (2019) Appl. Surf. Sci., 464 (September 2018), pp. 153-161 Checcoli, P., Conte, G., Salvatori, S., Paolesse, R., Bolognesi, A., Berliocchi, M., Brunetti, F., Lugli, P., Tetra-phenyl porphyrin based thin film transistors (2003) Synth. Met., 138 (1-2), pp. 261-266 Babonas, G., Snitka, V., Rodait?, R., imkien?, I., R?za, A., Treideris, M., Spectroscopic ellipsometry of porphyrin adsorbed in porous silicon (2005) Acta Phys. Polonica A, 107, pp. 319-323 Jarvis, S.P., Taylor, S., Baran, J.D., Thompson, D., Saywell, A., Mangham, B., Champness, N.R., Moriarty, P., Physisorption controls the conformation and density of states of an adsorbed porphyrin (2015) J. Phys. Chem. C, 119 (50), pp. 27982-27994 Niskanen, M., Kuisma, M., Cramariuc, O., Golovanov, V., Hukka, T.I., Tkachenko, N., Rantala, T.P., Porphyrin adsorbed on the (101¯0) surface of the wurtzite structure of ZNO conformation induced effects on the electron transfer characteristics (2013) PCCP, 15, pp. 17408-17418 Paredes-Gil, K., Mendizabal, F., Páez-Hernández, D., Arratia-Pérez, R., Electronic structure and optical properties calculation of Zn-porphyrin with N-annulated perylene adsorbed on TiO2 model for dye-sensitized solar cell applications: a DFT/TD-DFT study (2017) Comput. Mater. Sci., 126, pp. 514-527 Schneider, J., Berger, T., Diwald, O., Reactive porphyrin adsorption on TiO2 anatase particles: Solvent assistance and the effect of water addition (2018) ACS Appl. Mater. Interfaces, 10 (19), pp. 16836-16842 Mandal, B., Sarkar, S., Sarkar, P., Theoretical studies on understanding the feasibility of porphyrin-sensitized graphene quantum dot solar cell (2015) J. Phys. Chem. C, 119 (6), pp. 3400-3407 Rajbanshi, B., Sarkar, P., Optimizing the photovoltaic properties of CdTe quantum dot-porphyrin nanocomposites: a theoretical study (2016) J. Phys. Chem. C, 120 (32), pp. 17878-17886 Kar, M., Sarkar, R., Pal, S., Sarkar, P., Pathways for improving the photovoltaic efficiency of porphyrin and phosphorene antidot lattice nanocomposites: an insight from a theoretical study (2019) J. Phys. Chem. C, 123 (9), pp. 5303-5311 Gao, F., Yang, C.L., Wang, M.S., Ma, X.G., Computational studies on the absorption enhancement of nanocomposites of tetraphenylporphyrin and graphene quantum dot as sensitizers in solar cell (2018) J. Mater. Sci., 53 (7), pp. 5140-5150 Rajbanshi, B., Kar, M., Sarkar, P., Sarkar, P., Phosphorene quantum dot-fullerene nanocomposites for solar energy conversion: an unexplored inorganic-organic nanohybrid with novel photovoltaic properties (2017) Chem. Phys. Lett., 685, pp. 16-22 Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The siesta method for ab initio order-n materials simulation (2002) J. Phys.: Condens. Matter, 14 (11), p. 2745 Klime , J., Bowler, D.R., Michaelides, A., Chemical accuracy for the van der waals density functional (2009) J. Phys.: Condens. Matter, 22 (2) Berland, K., Hyldgaard, P., Exchange functional that tests the robustness of the plasmon description of the van der waals density functional (2014) Phys. Rev. B, 89 (3) Hoat, D., Silva, J., Blas, A., Rámirez, J., Effect of pressure on structural, electronic and optical properties of SrF2: a first principles study (2018) Rev. Mex. Fis., 64 (1), pp. 94-100 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
dc.publisher.program.none.fl_str_mv |
Facultad de Ciencias Básicas |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Computational Materials Science |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159199214501888 |
spelling |
20202020-04-29T14:53:50Z2020-04-29T14:53:50Z9270256http://hdl.handle.net/11407/574110.1016/j.commatsci.2019.109278Electronic and optical properties of phosphorene quantum dots functionalized with an organic molecule, porphyrin, are investigated using density functional theory with two different van der Waals functionals. The electronic structure of this complex is obtained and with this information, the real and imaginary parts of the dielectric function are calculated, from which, the interband optical response can be determined. Depending on the size of the quantum dot and the relative orientation between the dot and the organic molecule, it is found that the porphyrin physisorption leads to important modifications of the energy spectrum of the functionalized blue phosphorene quantum dots. These changes reflect in the optical response of the complex which shows features that come from both the blue phosphorene structure and the organic molecule. It is also found that the rotations of the molecule with respect to the phosphorene quantum dot do not practically alter the value of the binding energy. © 2019 Elsevier B.V.engElsevier B.V.Facultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www2.scopus.com/inward/record.uri?eid=2-s2.0-85072517436&doi=10.1016%2fj.commatsci.2019.109278&partnerID=40&md5=561d3c05a7b72502274e99fc86ba1484171Geim, A.K., Grigorieva, I.V., Van der Waals heterostructures (2013) Nature, 499 (7459), pp. 419-425. , http://www.nature.com/doifinder/10.1038/nature12385, URL:Xu, M., Liang, T., Shi, M., Chen, H., Graphene-like two-dimensional materials (2013) Chem. Rev., 113 (5), pp. 3766-3798. , http://pubs.acs.org/doi/abs/10.1021/cr300263a, URL:Gupta, A., Sakthivel, T., Seal, S., Recent development in 2D materials beyond graphene (2015) Prog. Mater Sci., 73, pp. 44-126Butler, S.Z., Hollen, S.M., Cao, L., Cui, Y., Gupta, J.A., Gutiérrez, H.R., Heinz, T.F., Goldberger, J.E., Progress, challenges, and opportunities in two-dimensional materials beyond graphene (2013) ACS Nano, 7 (4), pp. 2898-2926. , http://pubs.acs.org/doi/abs/10.1021/nn400280c, URL:Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D., Phosphorene: an unexplored 2D semiconductor with a high hole mobility (2014) ACS Nano, 8 (4), pp. 4033-4041. , http://pubs.acs.org/doi/abs/10.1021/nn501226z, URL:Boehm, H.P., Clauss, A., Fischer, G.O., Hofmann, U., Dünnste kohlenstoff-folien (thin carbon leaves) (1961) Zeitschrift für Naturforschung B, 17, pp. 150-152Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Electric field effect in atomically thin carbon films (2004) Science, 306 (5696), pp. 666-669Kou, L., Chen, C., Smith, S.C., Phosphorene: fabrication, properties, and applications (2015) J. Phys. Chem. Lett., 6 (14), pp. 2794-2805. , http://pubs.acs.org/doi/abs/10.1021/acs.jpclett.5b01094, URL:Carvalho, A., Wang, M., Zhu, X., Rodin, A.S., Su, H., Castro Neto, A.H., Phosphorene: from theory to applications (2016) Nat. Rev. Mater., 1, p. 16061. , review ArticleZhang, J.L., Zhao, S., Han, C., Wang, Z., Zhong, S., Sun, S., Guo, R., Yuan, K.D., Epitaxial growth of single layer blue phosphorus: a new phase of two-dimensional phosphorus (2016) Nano Lett., 16 (8), pp. 4903-4908Xu, Y., Wang, X., Zhang, W.L., Lv, F., Guo, S., Recent progress in two-dimensional inorganic quantum dots (2018) Chem. Soc. Rev., 47 (2), pp. 586-625Vishnoi, P., Mazumder, M., Barua, M., Pati, S.K., Rao, C.N., Phosphorene quantum dots (2018) Chem. Phys. Lett., 699, pp. 223-228Abdelsalam, H., Saroka, V.A., Lukyanchuk, I., Portnoi, M.E., Multilayer phosphorene quantum dots in an electric field: energy levels and optical absorption (2018) J. Appl. Phys., 124 (12)Abdelsalam, H., Saroka, V.A., Younis, W.O., Phosphorene quantum dot electronic properties and gas sensing (2019) Phys. E: Low-Dimension. Syst. Nanostruct., 107 (November 2018), pp. 105-109Tian, X., Duan, J., Wei, J., Feng, N., Wang, X., Gong, Z., Du, Y., Yakobson, B.I., Modulating blue phosphorene by synergetic codoping: indirect to direct gap transition and strong bandgap bowing (2019) Adv. Funct. Mater., 89 (3), p. 1808721Jiang, Z.T., Liang, F.X., Lv, Z.T., Ren, Y.H., Han, Q.Z., Symmetry effect on the mechanism of the optical absorption of phosphorene quantum dots (2019) Phys. E: Low-Dimension. Syst. Nanostruct., 107 (November 2018), pp. 137-141Zhou, S., Liu, N., Zhao, J., Phosphorus quantum dots as visible-light photocatalyst for water splitting (2017) Comput. Mater. Sci., 130, pp. 56-63Safari, F., Moradinasab, M., Fathipour, M., Kosina, H., Adsorption of the NH3, NO, NO2, CO2, and CO gas molecules on blue phosphorene: a first-principles study (2019) Appl. Surf. Sci., 464 (September 2018), pp. 153-161Checcoli, P., Conte, G., Salvatori, S., Paolesse, R., Bolognesi, A., Berliocchi, M., Brunetti, F., Lugli, P., Tetra-phenyl porphyrin based thin film transistors (2003) Synth. Met., 138 (1-2), pp. 261-266Babonas, G., Snitka, V., Rodait?, R., imkien?, I., R?za, A., Treideris, M., Spectroscopic ellipsometry of porphyrin adsorbed in porous silicon (2005) Acta Phys. Polonica A, 107, pp. 319-323Jarvis, S.P., Taylor, S., Baran, J.D., Thompson, D., Saywell, A., Mangham, B., Champness, N.R., Moriarty, P., Physisorption controls the conformation and density of states of an adsorbed porphyrin (2015) J. Phys. Chem. C, 119 (50), pp. 27982-27994Niskanen, M., Kuisma, M., Cramariuc, O., Golovanov, V., Hukka, T.I., Tkachenko, N., Rantala, T.P., Porphyrin adsorbed on the (101¯0) surface of the wurtzite structure of ZNO conformation induced effects on the electron transfer characteristics (2013) PCCP, 15, pp. 17408-17418Paredes-Gil, K., Mendizabal, F., Páez-Hernández, D., Arratia-Pérez, R., Electronic structure and optical properties calculation of Zn-porphyrin with N-annulated perylene adsorbed on TiO2 model for dye-sensitized solar cell applications: a DFT/TD-DFT study (2017) Comput. Mater. Sci., 126, pp. 514-527Schneider, J., Berger, T., Diwald, O., Reactive porphyrin adsorption on TiO2 anatase particles: Solvent assistance and the effect of water addition (2018) ACS Appl. Mater. Interfaces, 10 (19), pp. 16836-16842Mandal, B., Sarkar, S., Sarkar, P., Theoretical studies on understanding the feasibility of porphyrin-sensitized graphene quantum dot solar cell (2015) J. Phys. Chem. C, 119 (6), pp. 3400-3407Rajbanshi, B., Sarkar, P., Optimizing the photovoltaic properties of CdTe quantum dot-porphyrin nanocomposites: a theoretical study (2016) J. Phys. Chem. C, 120 (32), pp. 17878-17886Kar, M., Sarkar, R., Pal, S., Sarkar, P., Pathways for improving the photovoltaic efficiency of porphyrin and phosphorene antidot lattice nanocomposites: an insight from a theoretical study (2019) J. Phys. Chem. C, 123 (9), pp. 5303-5311Gao, F., Yang, C.L., Wang, M.S., Ma, X.G., Computational studies on the absorption enhancement of nanocomposites of tetraphenylporphyrin and graphene quantum dot as sensitizers in solar cell (2018) J. Mater. Sci., 53 (7), pp. 5140-5150Rajbanshi, B., Kar, M., Sarkar, P., Sarkar, P., Phosphorene quantum dot-fullerene nanocomposites for solar energy conversion: an unexplored inorganic-organic nanohybrid with novel photovoltaic properties (2017) Chem. Phys. Lett., 685, pp. 16-22Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The siesta method for ab initio order-n materials simulation (2002) J. Phys.: Condens. Matter, 14 (11), p. 2745Klime , J., Bowler, D.R., Michaelides, A., Chemical accuracy for the van der waals density functional (2009) J. Phys.: Condens. Matter, 22 (2)Berland, K., Hyldgaard, P., Exchange functional that tests the robustness of the plasmon description of the van der waals density functional (2014) Phys. Rev. B, 89 (3)Hoat, D., Silva, J., Blas, A., Rámirez, J., Effect of pressure on structural, electronic and optical properties of SrF2: a first principles study (2018) Rev. Mex. Fis., 64 (1), pp. 94-100Computational Materials ScienceDFTOpticalPhosphoreneQuantum-dotsBinding energyDensity functional theoryElectronic structureMoleculesNanocrystalsOptical propertiesPorphyrinsVan der Waals forcesDielectric functionsElectronic and optical propertiesFree base porphyrinsOpticalOptoelectronic propertiesPhosphoreneReal and imaginaryRelative orientationSemiconductor quantum dotsOptoelectronic properties of phosphorene quantum dots functionalized with free base porphyrinsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Samia, A., Group of Optoelectronic of Semiconductors and Nanomaterials, ENSET, Mohammed V University in Rabat, Rabat, Morocco; Feddi, E., Group of Optoelectronic of Semiconductors and Nanomaterials, ENSET, Mohammed V University in Rabat, Rabat, Morocco; Duque, C.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Mora-Ramos, M.E., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos CP 62209, Mexico; Akimov, V., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Correa, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecSamia A.Feddi E.Duque C.A.Mora-Ramos M.E.Akimov V.Correa J.D.11407/5741oai:repository.udem.edu.co:11407/57412020-05-27 18:18:00.144Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |