Optoelectronic properties of phosphorene quantum dots functionalized with free base porphyrins

Electronic and optical properties of phosphorene quantum dots functionalized with an organic molecule, porphyrin, are investigated using density functional theory with two different van der Waals functionals. The electronic structure of this complex is obtained and with this information, the real an...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5741
Acceso en línea:
http://hdl.handle.net/11407/5741
Palabra clave:
DFT
Optical
Phosphorene
Quantum-dots
Binding energy
Density functional theory
Electronic structure
Molecules
Nanocrystals
Optical properties
Porphyrins
Van der Waals forces
Dielectric functions
Electronic and optical properties
Free base porphyrins
Optical
Optoelectronic properties
Phosphorene
Real and imaginary
Relative orientation
Semiconductor quantum dots
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_e871c5a89ac4a02465cf866c95e2ac9a
oai_identifier_str oai:repository.udem.edu.co:11407/5741
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Optoelectronic properties of phosphorene quantum dots functionalized with free base porphyrins
title Optoelectronic properties of phosphorene quantum dots functionalized with free base porphyrins
spellingShingle Optoelectronic properties of phosphorene quantum dots functionalized with free base porphyrins
DFT
Optical
Phosphorene
Quantum-dots
Binding energy
Density functional theory
Electronic structure
Molecules
Nanocrystals
Optical properties
Porphyrins
Van der Waals forces
Dielectric functions
Electronic and optical properties
Free base porphyrins
Optical
Optoelectronic properties
Phosphorene
Real and imaginary
Relative orientation
Semiconductor quantum dots
title_short Optoelectronic properties of phosphorene quantum dots functionalized with free base porphyrins
title_full Optoelectronic properties of phosphorene quantum dots functionalized with free base porphyrins
title_fullStr Optoelectronic properties of phosphorene quantum dots functionalized with free base porphyrins
title_full_unstemmed Optoelectronic properties of phosphorene quantum dots functionalized with free base porphyrins
title_sort Optoelectronic properties of phosphorene quantum dots functionalized with free base porphyrins
dc.subject.none.fl_str_mv DFT
Optical
Phosphorene
Quantum-dots
Binding energy
Density functional theory
Electronic structure
Molecules
Nanocrystals
Optical properties
Porphyrins
Van der Waals forces
Dielectric functions
Electronic and optical properties
Free base porphyrins
Optical
Optoelectronic properties
Phosphorene
Real and imaginary
Relative orientation
Semiconductor quantum dots
topic DFT
Optical
Phosphorene
Quantum-dots
Binding energy
Density functional theory
Electronic structure
Molecules
Nanocrystals
Optical properties
Porphyrins
Van der Waals forces
Dielectric functions
Electronic and optical properties
Free base porphyrins
Optical
Optoelectronic properties
Phosphorene
Real and imaginary
Relative orientation
Semiconductor quantum dots
description Electronic and optical properties of phosphorene quantum dots functionalized with an organic molecule, porphyrin, are investigated using density functional theory with two different van der Waals functionals. The electronic structure of this complex is obtained and with this information, the real and imaginary parts of the dielectric function are calculated, from which, the interband optical response can be determined. Depending on the size of the quantum dot and the relative orientation between the dot and the organic molecule, it is found that the porphyrin physisorption leads to important modifications of the energy spectrum of the functionalized blue phosphorene quantum dots. These changes reflect in the optical response of the complex which shows features that come from both the blue phosphorene structure and the organic molecule. It is also found that the rotations of the molecule with respect to the phosphorene quantum dot do not practically alter the value of the binding energy. © 2019 Elsevier B.V.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:53:50Z
dc.date.available.none.fl_str_mv 2020-04-29T14:53:50Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 9270256
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5741
dc.identifier.doi.none.fl_str_mv 10.1016/j.commatsci.2019.109278
identifier_str_mv 9270256
10.1016/j.commatsci.2019.109278
url http://hdl.handle.net/11407/5741
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85072517436&doi=10.1016%2fj.commatsci.2019.109278&partnerID=40&md5=561d3c05a7b72502274e99fc86ba1484
dc.relation.citationvolume.none.fl_str_mv 171
dc.relation.references.none.fl_str_mv Geim, A.K., Grigorieva, I.V., Van der Waals heterostructures (2013) Nature, 499 (7459), pp. 419-425. , http://www.nature.com/doifinder/10.1038/nature12385, URL:
Xu, M., Liang, T., Shi, M., Chen, H., Graphene-like two-dimensional materials (2013) Chem. Rev., 113 (5), pp. 3766-3798. , http://pubs.acs.org/doi/abs/10.1021/cr300263a, URL:
Gupta, A., Sakthivel, T., Seal, S., Recent development in 2D materials beyond graphene (2015) Prog. Mater Sci., 73, pp. 44-126
Butler, S.Z., Hollen, S.M., Cao, L., Cui, Y., Gupta, J.A., Gutiérrez, H.R., Heinz, T.F., Goldberger, J.E., Progress, challenges, and opportunities in two-dimensional materials beyond graphene (2013) ACS Nano, 7 (4), pp. 2898-2926. , http://pubs.acs.org/doi/abs/10.1021/nn400280c, URL:
Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D., Phosphorene: an unexplored 2D semiconductor with a high hole mobility (2014) ACS Nano, 8 (4), pp. 4033-4041. , http://pubs.acs.org/doi/abs/10.1021/nn501226z, URL:
Boehm, H.P., Clauss, A., Fischer, G.O., Hofmann, U., Dünnste kohlenstoff-folien (thin carbon leaves) (1961) Zeitschrift für Naturforschung B, 17, pp. 150-152
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Electric field effect in atomically thin carbon films (2004) Science, 306 (5696), pp. 666-669
Kou, L., Chen, C., Smith, S.C., Phosphorene: fabrication, properties, and applications (2015) J. Phys. Chem. Lett., 6 (14), pp. 2794-2805. , http://pubs.acs.org/doi/abs/10.1021/acs.jpclett.5b01094, URL:
Carvalho, A., Wang, M., Zhu, X., Rodin, A.S., Su, H., Castro Neto, A.H., Phosphorene: from theory to applications (2016) Nat. Rev. Mater., 1, p. 16061. , review Article
Zhang, J.L., Zhao, S., Han, C., Wang, Z., Zhong, S., Sun, S., Guo, R., Yuan, K.D., Epitaxial growth of single layer blue phosphorus: a new phase of two-dimensional phosphorus (2016) Nano Lett., 16 (8), pp. 4903-4908
Xu, Y., Wang, X., Zhang, W.L., Lv, F., Guo, S., Recent progress in two-dimensional inorganic quantum dots (2018) Chem. Soc. Rev., 47 (2), pp. 586-625
Vishnoi, P., Mazumder, M., Barua, M., Pati, S.K., Rao, C.N., Phosphorene quantum dots (2018) Chem. Phys. Lett., 699, pp. 223-228
Abdelsalam, H., Saroka, V.A., Lukyanchuk, I., Portnoi, M.E., Multilayer phosphorene quantum dots in an electric field: energy levels and optical absorption (2018) J. Appl. Phys., 124 (12)
Abdelsalam, H., Saroka, V.A., Younis, W.O., Phosphorene quantum dot electronic properties and gas sensing (2019) Phys. E: Low-Dimension. Syst. Nanostruct., 107 (November 2018), pp. 105-109
Tian, X., Duan, J., Wei, J., Feng, N., Wang, X., Gong, Z., Du, Y., Yakobson, B.I., Modulating blue phosphorene by synergetic codoping: indirect to direct gap transition and strong bandgap bowing (2019) Adv. Funct. Mater., 89 (3), p. 1808721
Jiang, Z.T., Liang, F.X., Lv, Z.T., Ren, Y.H., Han, Q.Z., Symmetry effect on the mechanism of the optical absorption of phosphorene quantum dots (2019) Phys. E: Low-Dimension. Syst. Nanostruct., 107 (November 2018), pp. 137-141
Zhou, S., Liu, N., Zhao, J., Phosphorus quantum dots as visible-light photocatalyst for water splitting (2017) Comput. Mater. Sci., 130, pp. 56-63
Safari, F., Moradinasab, M., Fathipour, M., Kosina, H., Adsorption of the NH3, NO, NO2, CO2, and CO gas molecules on blue phosphorene: a first-principles study (2019) Appl. Surf. Sci., 464 (September 2018), pp. 153-161
Checcoli, P., Conte, G., Salvatori, S., Paolesse, R., Bolognesi, A., Berliocchi, M., Brunetti, F., Lugli, P., Tetra-phenyl porphyrin based thin film transistors (2003) Synth. Met., 138 (1-2), pp. 261-266
Babonas, G., Snitka, V., Rodait?, R., imkien?, I., R?za, A., Treideris, M., Spectroscopic ellipsometry of porphyrin adsorbed in porous silicon (2005) Acta Phys. Polonica A, 107, pp. 319-323
Jarvis, S.P., Taylor, S., Baran, J.D., Thompson, D., Saywell, A., Mangham, B., Champness, N.R., Moriarty, P., Physisorption controls the conformation and density of states of an adsorbed porphyrin (2015) J. Phys. Chem. C, 119 (50), pp. 27982-27994
Niskanen, M., Kuisma, M., Cramariuc, O., Golovanov, V., Hukka, T.I., Tkachenko, N., Rantala, T.P., Porphyrin adsorbed on the (101¯0) surface of the wurtzite structure of ZNO conformation induced effects on the electron transfer characteristics (2013) PCCP, 15, pp. 17408-17418
Paredes-Gil, K., Mendizabal, F., Páez-Hernández, D., Arratia-Pérez, R., Electronic structure and optical properties calculation of Zn-porphyrin with N-annulated perylene adsorbed on TiO2 model for dye-sensitized solar cell applications: a DFT/TD-DFT study (2017) Comput. Mater. Sci., 126, pp. 514-527
Schneider, J., Berger, T., Diwald, O., Reactive porphyrin adsorption on TiO2 anatase particles: Solvent assistance and the effect of water addition (2018) ACS Appl. Mater. Interfaces, 10 (19), pp. 16836-16842
Mandal, B., Sarkar, S., Sarkar, P., Theoretical studies on understanding the feasibility of porphyrin-sensitized graphene quantum dot solar cell (2015) J. Phys. Chem. C, 119 (6), pp. 3400-3407
Rajbanshi, B., Sarkar, P., Optimizing the photovoltaic properties of CdTe quantum dot-porphyrin nanocomposites: a theoretical study (2016) J. Phys. Chem. C, 120 (32), pp. 17878-17886
Kar, M., Sarkar, R., Pal, S., Sarkar, P., Pathways for improving the photovoltaic efficiency of porphyrin and phosphorene antidot lattice nanocomposites: an insight from a theoretical study (2019) J. Phys. Chem. C, 123 (9), pp. 5303-5311
Gao, F., Yang, C.L., Wang, M.S., Ma, X.G., Computational studies on the absorption enhancement of nanocomposites of tetraphenylporphyrin and graphene quantum dot as sensitizers in solar cell (2018) J. Mater. Sci., 53 (7), pp. 5140-5150
Rajbanshi, B., Kar, M., Sarkar, P., Sarkar, P., Phosphorene quantum dot-fullerene nanocomposites for solar energy conversion: an unexplored inorganic-organic nanohybrid with novel photovoltaic properties (2017) Chem. Phys. Lett., 685, pp. 16-22
Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The siesta method for ab initio order-n materials simulation (2002) J. Phys.: Condens. Matter, 14 (11), p. 2745
Klime , J., Bowler, D.R., Michaelides, A., Chemical accuracy for the van der waals density functional (2009) J. Phys.: Condens. Matter, 22 (2)
Berland, K., Hyldgaard, P., Exchange functional that tests the robustness of the plasmon description of the van der waals density functional (2014) Phys. Rev. B, 89 (3)
Hoat, D., Silva, J., Blas, A., Rámirez, J., Effect of pressure on structural, electronic and optical properties of SrF2: a first principles study (2018) Rev. Mex. Fis., 64 (1), pp. 94-100
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Elsevier B.V.
dc.publisher.program.none.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Computational Materials Science
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159199214501888
spelling 20202020-04-29T14:53:50Z2020-04-29T14:53:50Z9270256http://hdl.handle.net/11407/574110.1016/j.commatsci.2019.109278Electronic and optical properties of phosphorene quantum dots functionalized with an organic molecule, porphyrin, are investigated using density functional theory with two different van der Waals functionals. The electronic structure of this complex is obtained and with this information, the real and imaginary parts of the dielectric function are calculated, from which, the interband optical response can be determined. Depending on the size of the quantum dot and the relative orientation between the dot and the organic molecule, it is found that the porphyrin physisorption leads to important modifications of the energy spectrum of the functionalized blue phosphorene quantum dots. These changes reflect in the optical response of the complex which shows features that come from both the blue phosphorene structure and the organic molecule. It is also found that the rotations of the molecule with respect to the phosphorene quantum dot do not practically alter the value of the binding energy. © 2019 Elsevier B.V.engElsevier B.V.Facultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www2.scopus.com/inward/record.uri?eid=2-s2.0-85072517436&doi=10.1016%2fj.commatsci.2019.109278&partnerID=40&md5=561d3c05a7b72502274e99fc86ba1484171Geim, A.K., Grigorieva, I.V., Van der Waals heterostructures (2013) Nature, 499 (7459), pp. 419-425. , http://www.nature.com/doifinder/10.1038/nature12385, URL:Xu, M., Liang, T., Shi, M., Chen, H., Graphene-like two-dimensional materials (2013) Chem. Rev., 113 (5), pp. 3766-3798. , http://pubs.acs.org/doi/abs/10.1021/cr300263a, URL:Gupta, A., Sakthivel, T., Seal, S., Recent development in 2D materials beyond graphene (2015) Prog. Mater Sci., 73, pp. 44-126Butler, S.Z., Hollen, S.M., Cao, L., Cui, Y., Gupta, J.A., Gutiérrez, H.R., Heinz, T.F., Goldberger, J.E., Progress, challenges, and opportunities in two-dimensional materials beyond graphene (2013) ACS Nano, 7 (4), pp. 2898-2926. , http://pubs.acs.org/doi/abs/10.1021/nn400280c, URL:Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D., Phosphorene: an unexplored 2D semiconductor with a high hole mobility (2014) ACS Nano, 8 (4), pp. 4033-4041. , http://pubs.acs.org/doi/abs/10.1021/nn501226z, URL:Boehm, H.P., Clauss, A., Fischer, G.O., Hofmann, U., Dünnste kohlenstoff-folien (thin carbon leaves) (1961) Zeitschrift für Naturforschung B, 17, pp. 150-152Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Electric field effect in atomically thin carbon films (2004) Science, 306 (5696), pp. 666-669Kou, L., Chen, C., Smith, S.C., Phosphorene: fabrication, properties, and applications (2015) J. Phys. Chem. Lett., 6 (14), pp. 2794-2805. , http://pubs.acs.org/doi/abs/10.1021/acs.jpclett.5b01094, URL:Carvalho, A., Wang, M., Zhu, X., Rodin, A.S., Su, H., Castro Neto, A.H., Phosphorene: from theory to applications (2016) Nat. Rev. Mater., 1, p. 16061. , review ArticleZhang, J.L., Zhao, S., Han, C., Wang, Z., Zhong, S., Sun, S., Guo, R., Yuan, K.D., Epitaxial growth of single layer blue phosphorus: a new phase of two-dimensional phosphorus (2016) Nano Lett., 16 (8), pp. 4903-4908Xu, Y., Wang, X., Zhang, W.L., Lv, F., Guo, S., Recent progress in two-dimensional inorganic quantum dots (2018) Chem. Soc. Rev., 47 (2), pp. 586-625Vishnoi, P., Mazumder, M., Barua, M., Pati, S.K., Rao, C.N., Phosphorene quantum dots (2018) Chem. Phys. Lett., 699, pp. 223-228Abdelsalam, H., Saroka, V.A., Lukyanchuk, I., Portnoi, M.E., Multilayer phosphorene quantum dots in an electric field: energy levels and optical absorption (2018) J. Appl. Phys., 124 (12)Abdelsalam, H., Saroka, V.A., Younis, W.O., Phosphorene quantum dot electronic properties and gas sensing (2019) Phys. E: Low-Dimension. Syst. Nanostruct., 107 (November 2018), pp. 105-109Tian, X., Duan, J., Wei, J., Feng, N., Wang, X., Gong, Z., Du, Y., Yakobson, B.I., Modulating blue phosphorene by synergetic codoping: indirect to direct gap transition and strong bandgap bowing (2019) Adv. Funct. Mater., 89 (3), p. 1808721Jiang, Z.T., Liang, F.X., Lv, Z.T., Ren, Y.H., Han, Q.Z., Symmetry effect on the mechanism of the optical absorption of phosphorene quantum dots (2019) Phys. E: Low-Dimension. Syst. Nanostruct., 107 (November 2018), pp. 137-141Zhou, S., Liu, N., Zhao, J., Phosphorus quantum dots as visible-light photocatalyst for water splitting (2017) Comput. Mater. Sci., 130, pp. 56-63Safari, F., Moradinasab, M., Fathipour, M., Kosina, H., Adsorption of the NH3, NO, NO2, CO2, and CO gas molecules on blue phosphorene: a first-principles study (2019) Appl. Surf. Sci., 464 (September 2018), pp. 153-161Checcoli, P., Conte, G., Salvatori, S., Paolesse, R., Bolognesi, A., Berliocchi, M., Brunetti, F., Lugli, P., Tetra-phenyl porphyrin based thin film transistors (2003) Synth. Met., 138 (1-2), pp. 261-266Babonas, G., Snitka, V., Rodait?, R., imkien?, I., R?za, A., Treideris, M., Spectroscopic ellipsometry of porphyrin adsorbed in porous silicon (2005) Acta Phys. Polonica A, 107, pp. 319-323Jarvis, S.P., Taylor, S., Baran, J.D., Thompson, D., Saywell, A., Mangham, B., Champness, N.R., Moriarty, P., Physisorption controls the conformation and density of states of an adsorbed porphyrin (2015) J. Phys. Chem. C, 119 (50), pp. 27982-27994Niskanen, M., Kuisma, M., Cramariuc, O., Golovanov, V., Hukka, T.I., Tkachenko, N., Rantala, T.P., Porphyrin adsorbed on the (101¯0) surface of the wurtzite structure of ZNO conformation induced effects on the electron transfer characteristics (2013) PCCP, 15, pp. 17408-17418Paredes-Gil, K., Mendizabal, F., Páez-Hernández, D., Arratia-Pérez, R., Electronic structure and optical properties calculation of Zn-porphyrin with N-annulated perylene adsorbed on TiO2 model for dye-sensitized solar cell applications: a DFT/TD-DFT study (2017) Comput. Mater. Sci., 126, pp. 514-527Schneider, J., Berger, T., Diwald, O., Reactive porphyrin adsorption on TiO2 anatase particles: Solvent assistance and the effect of water addition (2018) ACS Appl. Mater. Interfaces, 10 (19), pp. 16836-16842Mandal, B., Sarkar, S., Sarkar, P., Theoretical studies on understanding the feasibility of porphyrin-sensitized graphene quantum dot solar cell (2015) J. Phys. Chem. C, 119 (6), pp. 3400-3407Rajbanshi, B., Sarkar, P., Optimizing the photovoltaic properties of CdTe quantum dot-porphyrin nanocomposites: a theoretical study (2016) J. Phys. Chem. C, 120 (32), pp. 17878-17886Kar, M., Sarkar, R., Pal, S., Sarkar, P., Pathways for improving the photovoltaic efficiency of porphyrin and phosphorene antidot lattice nanocomposites: an insight from a theoretical study (2019) J. Phys. Chem. C, 123 (9), pp. 5303-5311Gao, F., Yang, C.L., Wang, M.S., Ma, X.G., Computational studies on the absorption enhancement of nanocomposites of tetraphenylporphyrin and graphene quantum dot as sensitizers in solar cell (2018) J. Mater. Sci., 53 (7), pp. 5140-5150Rajbanshi, B., Kar, M., Sarkar, P., Sarkar, P., Phosphorene quantum dot-fullerene nanocomposites for solar energy conversion: an unexplored inorganic-organic nanohybrid with novel photovoltaic properties (2017) Chem. Phys. Lett., 685, pp. 16-22Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The siesta method for ab initio order-n materials simulation (2002) J. Phys.: Condens. Matter, 14 (11), p. 2745Klime , J., Bowler, D.R., Michaelides, A., Chemical accuracy for the van der waals density functional (2009) J. Phys.: Condens. Matter, 22 (2)Berland, K., Hyldgaard, P., Exchange functional that tests the robustness of the plasmon description of the van der waals density functional (2014) Phys. Rev. B, 89 (3)Hoat, D., Silva, J., Blas, A., Rámirez, J., Effect of pressure on structural, electronic and optical properties of SrF2: a first principles study (2018) Rev. Mex. Fis., 64 (1), pp. 94-100Computational Materials ScienceDFTOpticalPhosphoreneQuantum-dotsBinding energyDensity functional theoryElectronic structureMoleculesNanocrystalsOptical propertiesPorphyrinsVan der Waals forcesDielectric functionsElectronic and optical propertiesFree base porphyrinsOpticalOptoelectronic propertiesPhosphoreneReal and imaginaryRelative orientationSemiconductor quantum dotsOptoelectronic properties of phosphorene quantum dots functionalized with free base porphyrinsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Samia, A., Group of Optoelectronic of Semiconductors and Nanomaterials, ENSET, Mohammed V University in Rabat, Rabat, Morocco; Feddi, E., Group of Optoelectronic of Semiconductors and Nanomaterials, ENSET, Mohammed V University in Rabat, Rabat, Morocco; Duque, C.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Mora-Ramos, M.E., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos CP 62209, Mexico; Akimov, V., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Correa, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecSamia A.Feddi E.Duque C.A.Mora-Ramos M.E.Akimov V.Correa J.D.11407/5741oai:repository.udem.edu.co:11407/57412020-05-27 18:18:00.144Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co