First-principles calculation of volatile organic compound adsorption on carbon nanotubes: Furan as case of study

Sensing of volatile organic compounds (VOCs) is a growing research topic because of the concern about their hazard for the environment and health. Furan is a VOC produced during food processing, and it has been classified as a risk molecule for human health and a possible biomarker of prostate cance...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5885
Acceso en línea:
http://hdl.handle.net/11407/5885
Palabra clave:
Carbon nanotubes
DFT
Furan
van der Waals
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_e7b175aed3fb2738b39092e1720cc3b9
oai_identifier_str oai:repository.udem.edu.co:11407/5885
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv First-principles calculation of volatile organic compound adsorption on carbon nanotubes: Furan as case of study
title First-principles calculation of volatile organic compound adsorption on carbon nanotubes: Furan as case of study
spellingShingle First-principles calculation of volatile organic compound adsorption on carbon nanotubes: Furan as case of study
Carbon nanotubes
DFT
Furan
van der Waals
title_short First-principles calculation of volatile organic compound adsorption on carbon nanotubes: Furan as case of study
title_full First-principles calculation of volatile organic compound adsorption on carbon nanotubes: Furan as case of study
title_fullStr First-principles calculation of volatile organic compound adsorption on carbon nanotubes: Furan as case of study
title_full_unstemmed First-principles calculation of volatile organic compound adsorption on carbon nanotubes: Furan as case of study
title_sort First-principles calculation of volatile organic compound adsorption on carbon nanotubes: Furan as case of study
dc.subject.spa.fl_str_mv Carbon nanotubes
DFT
Furan
van der Waals
topic Carbon nanotubes
DFT
Furan
van der Waals
description Sensing of volatile organic compounds (VOCs) is a growing research topic because of the concern about their hazard for the environment and health. Furan is a VOC produced during food processing, and it has been classified as a risk molecule for human health and a possible biomarker of prostate cancer. The use of carbon nanotubes for VOCs sensing systems design could be a good alternative. In this work, a theoretical evaluation of the interactions between furan and zigzag single-wall carbon nanotubes takes into account different positions and orientations of the furan molecule, within a density-functional theory first-principles approach. The van der Waals interactions are considered using different exchange-correlation functionals (BH,C09, DRSLL and KBM). The results indicate that vdW-functionals do not significantly affect geometry; however, the binding energy and the distance between furan and nanotube are strongly dependent on the selected exchange-correlation functional. On the other hand, the effects of single and double vacancies on carbon nanotube are considered. It was found that the redistribution of charge around the single-vacancy affects the bandgap, magnetic moment, and binding energy of the complex, while furan interaction with a double-vacancy does not considerably change the electronic structure of the system. Our results suggest that to induce changes in the electronic properties of carbon nanotubes by furan, it is necessary to change the nanotube surface, for example, by means of structural defects. © 2021, Korean Carbon Society.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:57:32Z
dc.date.available.none.fl_str_mv 2021-02-05T14:57:32Z
dc.date.none.fl_str_mv 2021
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 19764251
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5885
dc.identifier.doi.none.fl_str_mv 10.1007/s42823-020-00221-2
identifier_str_mv 19764251
10.1007/s42823-020-00221-2
url http://hdl.handle.net/11407/5885
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099470838&doi=10.1007%2fs42823-020-00221-2&partnerID=40&md5=7a71ee96ddee0ac2eb4124d65f36a3b2
dc.relation.references.none.fl_str_mv Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China (2013) Sci Total Environ, 456, p. 127
Probert, C.S., Ahmed, F., Khalid, T., Johnson, E., Smith, S., Ratcliffe, N., Volatile organic compounds as diagnostic biomarkers in gastrointestinal and liver diseases (2009) J Gastrointest Liver Dis, 18 (3), p. 337
Saalberg, Y., Wolff, M., VOC breath biomarkers in lung cancer (2016) Clin Chim Acta, 459, p. 5
Castro, M., Kumar, B., Feller, J.F., Haddi, Z., Amari, A., Bouchikhi, B., Novel e-nose for the discrimination of volatile organic biomarkers with an array of carbon nanotubes (CNT) conductive polymer nanocomposites (CPC) sensors (2011) Sens Actuators, B, 159 (1), p. 213
Hafaiedh, I., El Euch, W., Clement, P., Llobet, E., Abdelghani, A., Multi-walled carbon nanotubes for volatile organic compound detection (2013) Sens Actuators, B, 182, p. 344
Mochalski, P., Sponring, A., King, J., Unterkofler, K., Troppmair, J., Amann, A., Release and uptake of volatile organic compounds by human hepatocellular carcinoma cells (HepG2) in vitro (2013) Cancer Cell Int, 13 (1), p. 72
Jia, Z., Patra, A., Kutty, V.K., Venkatesan, T., Critical review of volatile organic compound analysis in breath and in vitro cell culture for detection of lung cancer (2019) Metabolites, 9 (3), p. 52
Perez Locas, C., Yaylayan, V.A., Origin and Mechanistic Pathways of Formation of the Parent Furan–A Food Toxicant (2004) J Agric Food Chem, 52 (22), p. 6830
Kettlitz, B., Scholz, G., Theurillat, V., Cselovszky, J., Buck, N., Hagan, S., Mavromichali, E., Stadler, R., Furan and methylfurans in foods: An update on occurrence, mitigation, and risk assessment (2019) Compr Rev Food Sci Food Saf, 18 (3), p. 738
Khalid, T., Aggio, R., White, P., Costello, B.D.L., Persad, R., Al-Kateb, H., Jones, P., Ratcliffe, N., Urinary volatile organic compounds for the detection of prostate cancer (2015) Plos One, 10, p. 11
Lima, A.R., Pinto, J., Azevedo, A.I., Identification of a biomarker panel for improvement of prostate cancer diagnosis by volatile metabolic profiling of urine (2019) Br J Cancer, 121, p. 857
Hafaiedh, I., Helali, S., Cherif, K., Abdelghani, A., Tournier, G., (2008) Mater Sci Eng C.
Zhao, J., Park, H., Han, J., Lu, J.P., (2004) J Phys Chem B, 108 (14), p. 4227. , COI: 1:CAS:528:DC%2BD2cXhvFCru7s%3D
Tang, S., Chen, W., Zhang, H., Song, Z., Li, Y., Wang, Y., (2020) Front Chem, 8, p. 174. , COI: 1:CAS:528:DC%2BB3cXhvFGisbfE
Jana, D., Sun, C.L., Chen, L., Chen, K., (2013) Prog Mater Sci, 58, p. 565. , COI: 1:CAS:528:DC%2BC3sXltVegtLc%3D
Gowri Sankar, P.A., Udhayakumar, K., (2013) Electronic properties of boron and silicon doped (10, 0) zigzag single-walled carbon nanotube upon gas molecular adsorption: a DFT comparative study, , https://doi.org/10.1155/2013/293936
Li, W., Lu, X.M., Li, G.Q., Ma, J.J., Zeng, P.Y., Chen, J.F., Pan, Z.L., He, Q.Y., (2016) Appl Surf Sci, 364, p. 560. , COI: 1:CAS:528:DC%2BC2MXitVyltb7K
Luna, C., Bechthold, P., Brizuela, G., Juan, A., Pistonesi, C., (2018) Appl Surf Sci, 459, p. 201. , COI: 1:CAS:528:DC%2BC1cXhsVKitLnI
Wan, Q., Xu, Y., Zhang, X., Adsorption properties of typical lung cancer breath gases on Ni-SWCNTs through density functional theory (2017) J Sens, , https://doi.org/10.1155/2017/7974545
Aasi, A., Aghaei, S.M., Panchapakesan, B., (2020) Nanotechnology, 31 (41), p. 415707. , COI: 1:CAS:528:DC%2BB3cXitVSntrfP
Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The SIESTA method for ab initio order-N materials simulation (2002) J Phys Condens Matter, 14 (11), p. 2745
Román-Pérez, G., Soler, J.M., (2009) Phys Rev Lett, 103 (9), p. 096102
Berland, K., Hyldgaard, P., (2014) Phys Rev B Condens Matter Mater Phys, 89 (3), p. 1
Cooper, V.R., (2010) Phys Rev B Condensed Matter Mater Phys, 81 (16), p. 1
Girifalco, L., Lad, R., (1956) J Chem Phys, 25 (4), p. 693. , COI: 1:CAS:528:DyaG2sXhtFagsg%3D%3D
Mata, F., Martin, M.C., Sørensen, G.O., (1978) J Mol Struct, 48 (2), p. 157. , COI: 1:CAS:528:DyaE1cXltVOrt7s%3D
Igami, M., Nakanishi, T., Ando, T., (1999) J Phys Soc Jpn, 68 (3), p. 716. , COI: 1:CAS:528:DyaK1MXisVersb0%3D
Ma, Y., Lehtinen, P., Foster, A.S., Nieminen, R.M., (2004) New J Phys, 6 (1), p. 68
Orellana, W., Fuentealba, P., (2006) Surf Sci, 600 (18), p. 4305. , COI: 1:CAS:528:DC%2BD28XhtVagsLjM
Mu, J., Ma, Y., Liu, H., Zhang, T., Zhuo, S., (2019) J Chem Phys, 150 (2), p. 024701
Liu, L.V., Tian, W.Q., Wang, Y.A., (2009) Int J Quantum Chem, 109 (14), p. 3441. , COI: 1:CAS:528:DC%2BD1MXhtVGqs7rI
Zanolli, Z., Charlier, J.C., (2010) Phys Rev B, 81 (16), p. 165406
Ali, M., Amrane, N., Tit, N., (2020) Results Phys, 16, p. 102907
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Springer
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv Carbon Letters
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159127491903488
spelling 20212021-02-05T14:57:32Z2021-02-05T14:57:32Z19764251http://hdl.handle.net/11407/588510.1007/s42823-020-00221-2Sensing of volatile organic compounds (VOCs) is a growing research topic because of the concern about their hazard for the environment and health. Furan is a VOC produced during food processing, and it has been classified as a risk molecule for human health and a possible biomarker of prostate cancer. The use of carbon nanotubes for VOCs sensing systems design could be a good alternative. In this work, a theoretical evaluation of the interactions between furan and zigzag single-wall carbon nanotubes takes into account different positions and orientations of the furan molecule, within a density-functional theory first-principles approach. The van der Waals interactions are considered using different exchange-correlation functionals (BH,C09, DRSLL and KBM). The results indicate that vdW-functionals do not significantly affect geometry; however, the binding energy and the distance between furan and nanotube are strongly dependent on the selected exchange-correlation functional. On the other hand, the effects of single and double vacancies on carbon nanotube are considered. It was found that the redistribution of charge around the single-vacancy affects the bandgap, magnetic moment, and binding energy of the complex, while furan interaction with a double-vacancy does not considerably change the electronic structure of the system. Our results suggest that to induce changes in the electronic properties of carbon nanotubes by furan, it is necessary to change the nanotube surface, for example, by means of structural defects. © 2021, Korean Carbon Society.engSpringerFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85099470838&doi=10.1007%2fs42823-020-00221-2&partnerID=40&md5=7a71ee96ddee0ac2eb4124d65f36a3b2Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China (2013) Sci Total Environ, 456, p. 127Probert, C.S., Ahmed, F., Khalid, T., Johnson, E., Smith, S., Ratcliffe, N., Volatile organic compounds as diagnostic biomarkers in gastrointestinal and liver diseases (2009) J Gastrointest Liver Dis, 18 (3), p. 337Saalberg, Y., Wolff, M., VOC breath biomarkers in lung cancer (2016) Clin Chim Acta, 459, p. 5Castro, M., Kumar, B., Feller, J.F., Haddi, Z., Amari, A., Bouchikhi, B., Novel e-nose for the discrimination of volatile organic biomarkers with an array of carbon nanotubes (CNT) conductive polymer nanocomposites (CPC) sensors (2011) Sens Actuators, B, 159 (1), p. 213Hafaiedh, I., El Euch, W., Clement, P., Llobet, E., Abdelghani, A., Multi-walled carbon nanotubes for volatile organic compound detection (2013) Sens Actuators, B, 182, p. 344Mochalski, P., Sponring, A., King, J., Unterkofler, K., Troppmair, J., Amann, A., Release and uptake of volatile organic compounds by human hepatocellular carcinoma cells (HepG2) in vitro (2013) Cancer Cell Int, 13 (1), p. 72Jia, Z., Patra, A., Kutty, V.K., Venkatesan, T., Critical review of volatile organic compound analysis in breath and in vitro cell culture for detection of lung cancer (2019) Metabolites, 9 (3), p. 52Perez Locas, C., Yaylayan, V.A., Origin and Mechanistic Pathways of Formation of the Parent Furan–A Food Toxicant (2004) J Agric Food Chem, 52 (22), p. 6830Kettlitz, B., Scholz, G., Theurillat, V., Cselovszky, J., Buck, N., Hagan, S., Mavromichali, E., Stadler, R., Furan and methylfurans in foods: An update on occurrence, mitigation, and risk assessment (2019) Compr Rev Food Sci Food Saf, 18 (3), p. 738Khalid, T., Aggio, R., White, P., Costello, B.D.L., Persad, R., Al-Kateb, H., Jones, P., Ratcliffe, N., Urinary volatile organic compounds for the detection of prostate cancer (2015) Plos One, 10, p. 11Lima, A.R., Pinto, J., Azevedo, A.I., Identification of a biomarker panel for improvement of prostate cancer diagnosis by volatile metabolic profiling of urine (2019) Br J Cancer, 121, p. 857Hafaiedh, I., Helali, S., Cherif, K., Abdelghani, A., Tournier, G., (2008) Mater Sci Eng C.Zhao, J., Park, H., Han, J., Lu, J.P., (2004) J Phys Chem B, 108 (14), p. 4227. , COI: 1:CAS:528:DC%2BD2cXhvFCru7s%3DTang, S., Chen, W., Zhang, H., Song, Z., Li, Y., Wang, Y., (2020) Front Chem, 8, p. 174. , COI: 1:CAS:528:DC%2BB3cXhvFGisbfEJana, D., Sun, C.L., Chen, L., Chen, K., (2013) Prog Mater Sci, 58, p. 565. , COI: 1:CAS:528:DC%2BC3sXltVegtLc%3DGowri Sankar, P.A., Udhayakumar, K., (2013) Electronic properties of boron and silicon doped (10, 0) zigzag single-walled carbon nanotube upon gas molecular adsorption: a DFT comparative study, , https://doi.org/10.1155/2013/293936Li, W., Lu, X.M., Li, G.Q., Ma, J.J., Zeng, P.Y., Chen, J.F., Pan, Z.L., He, Q.Y., (2016) Appl Surf Sci, 364, p. 560. , COI: 1:CAS:528:DC%2BC2MXitVyltb7KLuna, C., Bechthold, P., Brizuela, G., Juan, A., Pistonesi, C., (2018) Appl Surf Sci, 459, p. 201. , COI: 1:CAS:528:DC%2BC1cXhsVKitLnIWan, Q., Xu, Y., Zhang, X., Adsorption properties of typical lung cancer breath gases on Ni-SWCNTs through density functional theory (2017) J Sens, , https://doi.org/10.1155/2017/7974545Aasi, A., Aghaei, S.M., Panchapakesan, B., (2020) Nanotechnology, 31 (41), p. 415707. , COI: 1:CAS:528:DC%2BB3cXitVSntrfPSoler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The SIESTA method for ab initio order-N materials simulation (2002) J Phys Condens Matter, 14 (11), p. 2745Román-Pérez, G., Soler, J.M., (2009) Phys Rev Lett, 103 (9), p. 096102Berland, K., Hyldgaard, P., (2014) Phys Rev B Condens Matter Mater Phys, 89 (3), p. 1Cooper, V.R., (2010) Phys Rev B Condensed Matter Mater Phys, 81 (16), p. 1Girifalco, L., Lad, R., (1956) J Chem Phys, 25 (4), p. 693. , COI: 1:CAS:528:DyaG2sXhtFagsg%3D%3DMata, F., Martin, M.C., Sørensen, G.O., (1978) J Mol Struct, 48 (2), p. 157. , COI: 1:CAS:528:DyaE1cXltVOrt7s%3DIgami, M., Nakanishi, T., Ando, T., (1999) J Phys Soc Jpn, 68 (3), p. 716. , COI: 1:CAS:528:DyaK1MXisVersb0%3DMa, Y., Lehtinen, P., Foster, A.S., Nieminen, R.M., (2004) New J Phys, 6 (1), p. 68Orellana, W., Fuentealba, P., (2006) Surf Sci, 600 (18), p. 4305. , COI: 1:CAS:528:DC%2BD28XhtVagsLjMMu, J., Ma, Y., Liu, H., Zhang, T., Zhuo, S., (2019) J Chem Phys, 150 (2), p. 024701Liu, L.V., Tian, W.Q., Wang, Y.A., (2009) Int J Quantum Chem, 109 (14), p. 3441. , COI: 1:CAS:528:DC%2BD1MXhtVGqs7rIZanolli, Z., Charlier, J.C., (2010) Phys Rev B, 81 (16), p. 165406Ali, M., Amrane, N., Tit, N., (2020) Results Phys, 16, p. 102907Carbon LettersCarbon nanotubesDFTFuranvan der WaalsFirst-principles calculation of volatile organic compound adsorption on carbon nanotubes: Furan as case of studyArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Torres, A.M., Grupo de Investigación en Biomateriales (BIOMAT), Universidad de Antioquia, Medellín, ColombiaCorrea, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecTorres A.M.Correa J.D.11407/5885oai:repository.udem.edu.co:11407/58852021-02-05 09:57:32.406Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co