Phosphate removal from water using a hybrid material in a fixed-bed column
In this study, the removal and recovery of phosphorus (P) were evaluated on fixed-bed column systems using a hybrid adsorbent, i.e. HFeO. The effect of flow rates (1.0–2.5 mL/min) and bed heights (2–6 cm) was examined, and the experimental data were adjusted to the Thomas, Adams–Bohart and Yoon–Nels...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/6156
- Acceso en línea:
- http://hdl.handle.net/11407/6156
- Palabra clave:
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_e6f651e642ccb61612967d18c7babfcc |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/6156 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Phosphate removal from water using a hybrid material in a fixed-bed column |
title |
Phosphate removal from water using a hybrid material in a fixed-bed column |
spellingShingle |
Phosphate removal from water using a hybrid material in a fixed-bed column |
title_short |
Phosphate removal from water using a hybrid material in a fixed-bed column |
title_full |
Phosphate removal from water using a hybrid material in a fixed-bed column |
title_fullStr |
Phosphate removal from water using a hybrid material in a fixed-bed column |
title_full_unstemmed |
Phosphate removal from water using a hybrid material in a fixed-bed column |
title_sort |
Phosphate removal from water using a hybrid material in a fixed-bed column |
description |
In this study, the removal and recovery of phosphorus (P) were evaluated on fixed-bed column systems using a hybrid adsorbent, i.e. HFeO. The effect of flow rates (1.0–2.5 mL/min) and bed heights (2–6 cm) was examined, and the experimental data were adjusted to the Thomas, Adams–Bohart and Yoon–Nelson models. The results indicate that for the flow rate of 1.0 mL/min and bed height of 2 cm, a maximum adsorption capacity of P (qTh) of 53.57 mg/g is obtained. 6% NaCl acts as the best eluting agent with a 97% efficiency of P desorption. Finally, it was found that HFeO is able to support up to three cycles of adsorption–desorption, decreasing its capacity of P adsorption by 26% with respect to the initial capacity. © 2018 Elsevier Ltd |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T15:00:12Z |
dc.date.available.none.fl_str_mv |
2021-02-05T15:00:12Z |
dc.date.none.fl_str_mv |
2018 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
22147144 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/6156 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.jwpe.2018.10.008 |
identifier_str_mv |
22147144 10.1016/j.jwpe.2018.10.008 |
url |
http://hdl.handle.net/11407/6156 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055104690&doi=10.1016%2fj.jwpe.2018.10.008&partnerID=40&md5=cbd301fe71cfc91aaf29abe7be36abc3 |
dc.relation.citationvolume.none.fl_str_mv |
26 |
dc.relation.citationstartpage.none.fl_str_mv |
131 |
dc.relation.citationendpage.none.fl_str_mv |
137 |
dc.relation.references.none.fl_str_mv |
Zhang, B., Chen, N., Feng, C., Zhang, Z., Adsorption for phosphate by crosslinked / non-crosslinked-chitosan-Fe (III) complex sorbents: characteristic and mechanism (2018) Chem. Eng. J., 353, pp. 361-372 Tran, N., Drogui, P., Blais, J.F., Mercier, G., Phosphorus removal from spiked municipal wastewater using either electrochemical coagulation or chemical coagulation as tertiary treatment (2012) Sep. Purif. Technol., 95, pp. 16-25 Rodriguez-Garcia, G., Molinos-Senante, M., Hospido, A., Hernández-Sancho, F., Moreira, M.T., Feijoo, G., Environmental and economic profile of six typologies of wastewater treatment plants (2011) Water Res., 45, pp. 5997-6010 Porrello, S., Lenzi, M., Persia, E., Tomassetti, P., Finoia, M.G., Reduction of aquaculture wastewater eutrophication by phytotreatment ponds system I. Dissolved and particulate nitrogen and phosphorus (2003) Aquaculture, 219, pp. 515-529 Morse, G.K., Brett, S.W., Guy, J.A., Lester, J.N., Review: phosphorus removal and recovery technologies (1998) Sci. Total Environ., 212, pp. 69-81 Yang, Q., Wang, X., Luo, W., Sun, J., Xu, Q., Chen, F., Zhao, J., Effectiveness and mechanisms of phosphate adsorption on iron-modi fi ed biochars derived from waste activated sludge (2018) Bioresour. Technol., 247, pp. 537-544 Zhu, Z., Huang, C.P., Zhu, Y., Wei, W., Qin, H., A hierarchical porous adsorbent of nano- α -Fe 2 O 3 / Fe 3 O 4 on bamboo biochar (HPA-Fe / C-B) for the removal of phosphate from water (2018) J. Water Process Eng., 25, pp. 96-104 Loganathan, P., Vigneswaran, S., Kandasamy, J., Bolan, N.S., Removal and recovery of phosphate from water using sorption (2014) Crit. Rev. Environ. Sci. Technol., 44, pp. 847-907 Egemose, S., Sønderup, M.J., Beinthin, M.V., Reitzel, K., Hoffmann, C.C., Flindt, M.R., Crushed concrete as a phosphate binding material: a potential new management tool (2012) J. Environ. Qual., 41, pp. 647-653 Liu, X., Zhang, L., Removal of phosphate anions using the modified chitosan beads: adsorption kinetic, isotherm and mechanism studies (2015) Powder Technol., 277, pp. 112-119 Vidal, B., Hedström, A., Herrmann, I., Phosphorus reduction in fi lters for on-site wastewater treatment (2018) J. Water Process Eng., 22, pp. 210-217 Tofik, A.S., Taddesse, A.M., Tesfahun, K.T., Girma, G.G., Fe-Al binary oxide nanosorbent: synthesis, characterization and phosphate sorption property (2016) J. Environ. Chem. Eng., 4, pp. 2458-2468 Gypser, S., Hirsch, F., Schleicher, A.M., Freese, D., Impact of crystalline and amorphous iron- and aluminum hydroxides on mechanisms of phosphate adsorption and desorption (2017) J. Environ. Sci., 70, pp. 175-189 Pepper, R.A., Couperthwaite, S.J., Millar, G.J., Re-use of waste red mud: production of a functional iron oxide adsorbent for removal of phosphorous (2018) J. Water Process Eng., 25, pp. 138-148 Mezenner, N.Y., Bensmaili, A., Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste (2009) Chem. Eng. J., 147, pp. 87-96 Suresh Kumar, P., Prot, T., Korving, L., Keesman, K.J., Dugulan, I., van Loosdrecht, M.C.M., Witkamp, G.J., Effect of pore size distribution on iron oxide coated granular activated carbons for phosphate adsorption – importance of mesopores (2017) Chem. Eng. J., 326, pp. 231-239 Lalley, J., Han, C., Li, X., Dionysiou, D.D., Nadagouda, M.N., Phosphate adsorption using modified iron oxide-based sorbents in lake water: kinetics, equilibrium, and column tests (2016) Chem. Eng. J., 284, pp. 1386-1396 Jiang, D., Amano, Y., Machida, M., Removal and recovery of phosphate from water by a magnetic Fe3O4@ASC adsorbent (2017) J. Environ. Chem. Eng., 5, pp. 4229-4238 Kang, K., Lee, C.G., Choi, J.W., Hong, S.G., Park, S.J., Application of thermally treated crushed concrete granules for the removal of phosphate: a cheap adsorbent with high adsorption capacity (2017) Water Air Soil Pollut., 228 Nur, T., Johir, M.A.H., Loganathan, P., Nguyen, T., Vigneswaran, S., Kandasamy, J., Phosphate removal from water using an iron oxide impregnated strong base anion exchange resin (2014) J. Ind. Eng. Chem., 20, pp. 1301-1307 Kumar, I.A., Viswanathan, N., Development of multivalent metal ions imprinted chitosan biocomposites for phosphate sorption (2017) Int. J. Biol. Macromol., 104, pp. 1539-1547 Fu, H., Yang, Y., Zhu, R., Liu, J., Usman, M., Chen, Q., He, H., Superior adsorption of phosphate by ferrihydrite-coated and lanthanum- decorated magnetite (2018) J. Colloid Interface Sci. Super., 530, pp. 704-713 Lü, C., Environmental geochemistry signi fi cance of organic phosphorus: an insight from its adsorption on iron oxides (2017) Appl. Geochem., 84, pp. 52-60 Luengo, C., Brigante, M., Avena, M., Adsorption kinetics of phosphate and arsenate on goethite. A comparative study (2007) J. Colloid Interface Sci., 311, pp. 354-360 Blaney, L.M., Cinar, S., SenGupta, A.K., Hybrid anion exchanger for trace phosphate removal from water and wastewater (2007) Water Res., 41, pp. 1603-1613 Mahardika, D., Park, H., Choo, K., Ferrihydrite-impregnated granular activated carbon (FH @ GAC) for ef fi cient phosphorus removal from wastewater secondary ef fl uent (2018) Chemosphere., 207, pp. 527-533 Acelas, N.Y., Martin, B.D., López, D., Jefferson, B., Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media (2015) Chemosphere., 119, pp. 1353-1360 Li, R., Wang, J.J., Zhou, B., Zhang, Z., Liu, S., Lei, S., Xiao, R., Simultaneous capture removal of phosphate, ammonium and organic substances by MgO impregnated biochar and its potential use in swine wastewater treatment (2017) J. Clean. Prod., 147, pp. 96-107 Zhou, Q., Wang, X., Liu, J., Zhang, L., Phosphorus removal from wastewater using nano-particulates of hydrated ferric oxide doped activated carbon fiber prepared by Sol-Gel method (2012) Chem. Eng. J., 200-202, pp. 619-626 Nguyen, T.A.H., Ngo, H.H., Guo, W.S., Pham, T.Q., Li, F.M., Nguyen, T.V., Bui, X.T., Adsorption of phosphate from aqueous solutions and sewage using zirconium loaded okara (ZLO): fixed-bed column study (2015) Sci. Total Environ., 523, pp. 40-49 Paudyal, H., Pangeni, B., Inoue, K., Kawakita, H., Ohto, K., Alam, S., Adsorptive removal of fluoride from aqueous medium using a fixed bed column packed with Zr(IV) loaded dried orange juice residue (2013) Bioresour. Technol., 146, pp. 713-720 Bulgariu, D., Bulgariu, L., Sorption of Pb(II) onto a mixture of algae waste biomass and anion exchanger resin in a packed-bed column (2013) Bioresour. Technol., 129, pp. 374-380 Sun, X.F., Imai, T., Sekine, M., Higuchi, T., Yamamoto, K., Kanno, A., Nakazono, S., Adsorption of phosphate using calcined Mg3-Fe layered double hydroxides in a fixed-bed column study (2014) J. Ind. Eng. Chem., 20, pp. 3623-3630 Thomas, H.C., Chromatography: a problem in kinetics (1948) Ann. N. Y. Acad. Sci., 49, pp. 161-182 Husein, D.Z., Al-Radadi, T., Danish, E.Y., Adsorption of phosphate using alginate-/zirconium-grafted newspaper pellets: fixed-bed column study and application, arab (2017) J. Sci. Eng., 42, pp. 1399-1412 Bohart, G.S., Adams, E.Q., Some aspects of the behavior of charcoal with respect to chlorine (1920) J. Am. Chem. Soc., 42, pp. 523-544 Long, Y., Lei, D., Ni, J., Ren, Z., Chen, C., Xu, H., Packed bed column studies on lead(II) removal from industrial wastewater by modified Agaricus bisporus (2014) Bioresour. Technol., 152, pp. 457-463 Yoon, Y.H., Nelson, J.H., Application of gas adsorption kinetics I. A theoretical model for respirator cartridge service life (1984) Am. Ind. Hyg. Assoc. J., 45, pp. 509-516 Calero, M., Hernáinz, F., Blázquez, G., Tenorio, G., Martín-Lara, M.A., Study of Cr (III) biosorption in a fixed-bed column (2009) J. Hazard. Mater., 171, pp. 886-893 Singh, A., Kumar, D., Gaur, J.P., Continuous metal removal from solution and industrial effluents using Spirogyra biomass-packed column reactor (2012) Water Res., 46, pp. 779-788 Jung, K.W., Jeong, T.U., Choi, J.W., Ahn, K.H., Lee, S.H., Adsorption of phosphate from aqueous solution using electrochemically modified biochar calcium-alginate beads: batch and fixed-bed column performance (2017) Bioresour. Technol., 244, pp. 23-32 Jung, K.-W., Jeong, T.-U., Choi, B.H., Kang, H.-J., Ahn, K.-H., Phosphate adsorption from aqueous solution by Laminaria japonica -derived biochar-calcium alginate beads in a fixed-bed column: experiments and prediction of breakthrough curves (2017) Environ. Prog. Sustain. Energy, 36, pp. 1365-1373 Hekmatzadeh, A.A., Karimi-Jashani, A., Talebbeydokhti, N., Kløve, B., Modeling of nitrate removal for ion exchange resin in batch and fixed bed experiments (2012) Desalination, 284, pp. 22-31 Soto, M.L., Moure, A., Domínguez, H., Parajó, J.C., Batch and fixed bed column studies on phenolic adsorption from wine vinasses by polymeric resins (2017) J. Food Eng., 209, pp. 52-60 Zhao, D., Sengupta, A.K., Ultimate removal of phosphate from wastewater using a new class of polymeric ion exchangers (1998) Water Res., 32, pp. 1613-1625 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Elsevier Ltd |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
Elsevier Ltd |
dc.source.none.fl_str_mv |
Journal of Water Process Engineering |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159199240716288 |
spelling |
20182021-02-05T15:00:12Z2021-02-05T15:00:12Z22147144http://hdl.handle.net/11407/615610.1016/j.jwpe.2018.10.008In this study, the removal and recovery of phosphorus (P) were evaluated on fixed-bed column systems using a hybrid adsorbent, i.e. HFeO. The effect of flow rates (1.0–2.5 mL/min) and bed heights (2–6 cm) was examined, and the experimental data were adjusted to the Thomas, Adams–Bohart and Yoon–Nelson models. The results indicate that for the flow rate of 1.0 mL/min and bed height of 2 cm, a maximum adsorption capacity of P (qTh) of 53.57 mg/g is obtained. 6% NaCl acts as the best eluting agent with a 97% efficiency of P desorption. Finally, it was found that HFeO is able to support up to three cycles of adsorption–desorption, decreasing its capacity of P adsorption by 26% with respect to the initial capacity. © 2018 Elsevier LtdengElsevier LtdFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85055104690&doi=10.1016%2fj.jwpe.2018.10.008&partnerID=40&md5=cbd301fe71cfc91aaf29abe7be36abc326131137Zhang, B., Chen, N., Feng, C., Zhang, Z., Adsorption for phosphate by crosslinked / non-crosslinked-chitosan-Fe (III) complex sorbents: characteristic and mechanism (2018) Chem. Eng. J., 353, pp. 361-372Tran, N., Drogui, P., Blais, J.F., Mercier, G., Phosphorus removal from spiked municipal wastewater using either electrochemical coagulation or chemical coagulation as tertiary treatment (2012) Sep. Purif. Technol., 95, pp. 16-25Rodriguez-Garcia, G., Molinos-Senante, M., Hospido, A., Hernández-Sancho, F., Moreira, M.T., Feijoo, G., Environmental and economic profile of six typologies of wastewater treatment plants (2011) Water Res., 45, pp. 5997-6010Porrello, S., Lenzi, M., Persia, E., Tomassetti, P., Finoia, M.G., Reduction of aquaculture wastewater eutrophication by phytotreatment ponds system I. Dissolved and particulate nitrogen and phosphorus (2003) Aquaculture, 219, pp. 515-529Morse, G.K., Brett, S.W., Guy, J.A., Lester, J.N., Review: phosphorus removal and recovery technologies (1998) Sci. Total Environ., 212, pp. 69-81Yang, Q., Wang, X., Luo, W., Sun, J., Xu, Q., Chen, F., Zhao, J., Effectiveness and mechanisms of phosphate adsorption on iron-modi fi ed biochars derived from waste activated sludge (2018) Bioresour. Technol., 247, pp. 537-544Zhu, Z., Huang, C.P., Zhu, Y., Wei, W., Qin, H., A hierarchical porous adsorbent of nano- α -Fe 2 O 3 / Fe 3 O 4 on bamboo biochar (HPA-Fe / C-B) for the removal of phosphate from water (2018) J. Water Process Eng., 25, pp. 96-104Loganathan, P., Vigneswaran, S., Kandasamy, J., Bolan, N.S., Removal and recovery of phosphate from water using sorption (2014) Crit. Rev. Environ. Sci. Technol., 44, pp. 847-907Egemose, S., Sønderup, M.J., Beinthin, M.V., Reitzel, K., Hoffmann, C.C., Flindt, M.R., Crushed concrete as a phosphate binding material: a potential new management tool (2012) J. Environ. Qual., 41, pp. 647-653Liu, X., Zhang, L., Removal of phosphate anions using the modified chitosan beads: adsorption kinetic, isotherm and mechanism studies (2015) Powder Technol., 277, pp. 112-119Vidal, B., Hedström, A., Herrmann, I., Phosphorus reduction in fi lters for on-site wastewater treatment (2018) J. Water Process Eng., 22, pp. 210-217Tofik, A.S., Taddesse, A.M., Tesfahun, K.T., Girma, G.G., Fe-Al binary oxide nanosorbent: synthesis, characterization and phosphate sorption property (2016) J. Environ. Chem. Eng., 4, pp. 2458-2468Gypser, S., Hirsch, F., Schleicher, A.M., Freese, D., Impact of crystalline and amorphous iron- and aluminum hydroxides on mechanisms of phosphate adsorption and desorption (2017) J. Environ. Sci., 70, pp. 175-189Pepper, R.A., Couperthwaite, S.J., Millar, G.J., Re-use of waste red mud: production of a functional iron oxide adsorbent for removal of phosphorous (2018) J. Water Process Eng., 25, pp. 138-148Mezenner, N.Y., Bensmaili, A., Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste (2009) Chem. Eng. J., 147, pp. 87-96Suresh Kumar, P., Prot, T., Korving, L., Keesman, K.J., Dugulan, I., van Loosdrecht, M.C.M., Witkamp, G.J., Effect of pore size distribution on iron oxide coated granular activated carbons for phosphate adsorption – importance of mesopores (2017) Chem. Eng. J., 326, pp. 231-239Lalley, J., Han, C., Li, X., Dionysiou, D.D., Nadagouda, M.N., Phosphate adsorption using modified iron oxide-based sorbents in lake water: kinetics, equilibrium, and column tests (2016) Chem. Eng. J., 284, pp. 1386-1396Jiang, D., Amano, Y., Machida, M., Removal and recovery of phosphate from water by a magnetic Fe3O4@ASC adsorbent (2017) J. Environ. Chem. Eng., 5, pp. 4229-4238Kang, K., Lee, C.G., Choi, J.W., Hong, S.G., Park, S.J., Application of thermally treated crushed concrete granules for the removal of phosphate: a cheap adsorbent with high adsorption capacity (2017) Water Air Soil Pollut., 228Nur, T., Johir, M.A.H., Loganathan, P., Nguyen, T., Vigneswaran, S., Kandasamy, J., Phosphate removal from water using an iron oxide impregnated strong base anion exchange resin (2014) J. Ind. Eng. Chem., 20, pp. 1301-1307Kumar, I.A., Viswanathan, N., Development of multivalent metal ions imprinted chitosan biocomposites for phosphate sorption (2017) Int. J. Biol. Macromol., 104, pp. 1539-1547Fu, H., Yang, Y., Zhu, R., Liu, J., Usman, M., Chen, Q., He, H., Superior adsorption of phosphate by ferrihydrite-coated and lanthanum- decorated magnetite (2018) J. Colloid Interface Sci. Super., 530, pp. 704-713Lü, C., Environmental geochemistry signi fi cance of organic phosphorus: an insight from its adsorption on iron oxides (2017) Appl. Geochem., 84, pp. 52-60Luengo, C., Brigante, M., Avena, M., Adsorption kinetics of phosphate and arsenate on goethite. A comparative study (2007) J. Colloid Interface Sci., 311, pp. 354-360Blaney, L.M., Cinar, S., SenGupta, A.K., Hybrid anion exchanger for trace phosphate removal from water and wastewater (2007) Water Res., 41, pp. 1603-1613Mahardika, D., Park, H., Choo, K., Ferrihydrite-impregnated granular activated carbon (FH @ GAC) for ef fi cient phosphorus removal from wastewater secondary ef fl uent (2018) Chemosphere., 207, pp. 527-533Acelas, N.Y., Martin, B.D., López, D., Jefferson, B., Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media (2015) Chemosphere., 119, pp. 1353-1360Li, R., Wang, J.J., Zhou, B., Zhang, Z., Liu, S., Lei, S., Xiao, R., Simultaneous capture removal of phosphate, ammonium and organic substances by MgO impregnated biochar and its potential use in swine wastewater treatment (2017) J. Clean. Prod., 147, pp. 96-107Zhou, Q., Wang, X., Liu, J., Zhang, L., Phosphorus removal from wastewater using nano-particulates of hydrated ferric oxide doped activated carbon fiber prepared by Sol-Gel method (2012) Chem. Eng. J., 200-202, pp. 619-626Nguyen, T.A.H., Ngo, H.H., Guo, W.S., Pham, T.Q., Li, F.M., Nguyen, T.V., Bui, X.T., Adsorption of phosphate from aqueous solutions and sewage using zirconium loaded okara (ZLO): fixed-bed column study (2015) Sci. Total Environ., 523, pp. 40-49Paudyal, H., Pangeni, B., Inoue, K., Kawakita, H., Ohto, K., Alam, S., Adsorptive removal of fluoride from aqueous medium using a fixed bed column packed with Zr(IV) loaded dried orange juice residue (2013) Bioresour. Technol., 146, pp. 713-720Bulgariu, D., Bulgariu, L., Sorption of Pb(II) onto a mixture of algae waste biomass and anion exchanger resin in a packed-bed column (2013) Bioresour. Technol., 129, pp. 374-380Sun, X.F., Imai, T., Sekine, M., Higuchi, T., Yamamoto, K., Kanno, A., Nakazono, S., Adsorption of phosphate using calcined Mg3-Fe layered double hydroxides in a fixed-bed column study (2014) J. Ind. Eng. Chem., 20, pp. 3623-3630Thomas, H.C., Chromatography: a problem in kinetics (1948) Ann. N. Y. Acad. Sci., 49, pp. 161-182Husein, D.Z., Al-Radadi, T., Danish, E.Y., Adsorption of phosphate using alginate-/zirconium-grafted newspaper pellets: fixed-bed column study and application, arab (2017) J. Sci. Eng., 42, pp. 1399-1412Bohart, G.S., Adams, E.Q., Some aspects of the behavior of charcoal with respect to chlorine (1920) J. Am. Chem. Soc., 42, pp. 523-544Long, Y., Lei, D., Ni, J., Ren, Z., Chen, C., Xu, H., Packed bed column studies on lead(II) removal from industrial wastewater by modified Agaricus bisporus (2014) Bioresour. Technol., 152, pp. 457-463Yoon, Y.H., Nelson, J.H., Application of gas adsorption kinetics I. A theoretical model for respirator cartridge service life (1984) Am. Ind. Hyg. Assoc. J., 45, pp. 509-516Calero, M., Hernáinz, F., Blázquez, G., Tenorio, G., Martín-Lara, M.A., Study of Cr (III) biosorption in a fixed-bed column (2009) J. Hazard. Mater., 171, pp. 886-893Singh, A., Kumar, D., Gaur, J.P., Continuous metal removal from solution and industrial effluents using Spirogyra biomass-packed column reactor (2012) Water Res., 46, pp. 779-788Jung, K.W., Jeong, T.U., Choi, J.W., Ahn, K.H., Lee, S.H., Adsorption of phosphate from aqueous solution using electrochemically modified biochar calcium-alginate beads: batch and fixed-bed column performance (2017) Bioresour. Technol., 244, pp. 23-32Jung, K.-W., Jeong, T.-U., Choi, B.H., Kang, H.-J., Ahn, K.-H., Phosphate adsorption from aqueous solution by Laminaria japonica -derived biochar-calcium alginate beads in a fixed-bed column: experiments and prediction of breakthrough curves (2017) Environ. Prog. Sustain. Energy, 36, pp. 1365-1373Hekmatzadeh, A.A., Karimi-Jashani, A., Talebbeydokhti, N., Kløve, B., Modeling of nitrate removal for ion exchange resin in batch and fixed bed experiments (2012) Desalination, 284, pp. 22-31Soto, M.L., Moure, A., Domínguez, H., Parajó, J.C., Batch and fixed bed column studies on phenolic adsorption from wine vinasses by polymeric resins (2017) J. Food Eng., 209, pp. 52-60Zhao, D., Sengupta, A.K., Ultimate removal of phosphate from wastewater using a new class of polymeric ion exchangers (1998) Water Res., 32, pp. 1613-1625Journal of Water Process EngineeringPhosphate removal from water using a hybrid material in a fixed-bed columnArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Ramirez, A., Grupo de Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, ColombiaGiraldo, S., Grupo de Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, ColombiaGarcía-Nunez, J., Colombian Oil Palm Research Centre, Cenipalma, Bogotá, ColombiaFlórez, E., Grupo de Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, ColombiaAcelas, N., Grupo de Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecRamirez A.Giraldo S.García-Nunez J.Flórez E.Acelas N.11407/6156oai:repository.udem.edu.co:11407/61562021-02-05 10:00:12.484Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |