About validation-comparison of burned area products

This paper proposes a validation-comparison method for burned area (BA) products. The technique considers: (1) bootstrapping of scenes for validation-comparison and (2) permutation tests for validation. The research focuses on the tropical regions of Northern Hemisphere South America and Northern He...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5913
Acceso en línea:
http://hdl.handle.net/11407/5913
Palabra clave:
Bootstrap
Fire-CCI
MCD45
MCD64
Permutation test
Random matrix theory
Riemannian distance
Robust statistics
Validation and comparison of BA products
Random variables
Burned biomass
Comparison methods
Northern Hemispheres
Permutation tests
Procrustes distance
Random matrix theory
Research focus
Tropical regions
Fires
Rights
License
http://purl.org/coar/access_right/c_16ec
Description
Summary:This paper proposes a validation-comparison method for burned area (BA) products. The technique considers: (1) bootstrapping of scenes for validation-comparison and (2) permutation tests for validation. The research focuses on the tropical regions of Northern Hemisphere South America and Northern Hemisphere Africa and studies the accuracy of the BA products: MCD45, MCD64C5.1, MCD64C6, Fire CCI C4.1, and Fire CCI C5.0. The first and second parts consider methods based on random matrix theory for zone differentiation and multiple ancillary variables such as BA, the number of burned fragments, ecosystem type, land cover, and burned biomass. The first method studies the zone effect using bootstrapping of Riemannian, full Procrustes, and partial Procrustes distances. The second method explores the validation by using distance permutation tests under uncertainty. The results refer to Fire CCI 5.0 with the best BA description, followed by MCD64C6, MCD64C5.1, MCD45, and Fire CCI 4.1. It was also found that biomass, total BA, and the number of fragments affect the BA product accuracy. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.