Automatic visual inspection: An approach with multi-instance learning

One of the industrial applications of computer vision is automatic visual inspection. In the last decade, standard supervised learning methods have been used to detect defects in different kind of products. These methods are trained with a set of images where every image has to be manually segmented...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/3141
Acceso en línea:
http://hdl.handle.net/11407/3141
Palabra clave:
Automatic visual inspection
Defect detection
Multi-instance learning
Pattern recognition
Weak labels
Computer vision
Inspection
Pattern recognition
Automatic visual inspection
Automatic visual inspection systems
Defect detection
Multi-instance learning
Receiver operating characteristic curves
Supervised classifiers
Supervised learning methods
Weak labels
Defects
Rights
restrictedAccess
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_e3989326c7a57358e178daa91f691a4f
oai_identifier_str oai:repository.udem.edu.co:11407/3141
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
spelling 2017-05-12T16:05:54Z2017-05-12T16:05:54Z20161663615http://hdl.handle.net/11407/314110.1016/j.compind.2016.09.002One of the industrial applications of computer vision is automatic visual inspection. In the last decade, standard supervised learning methods have been used to detect defects in different kind of products. These methods are trained with a set of images where every image has to be manually segmented and labeled by experts in the application domain. These manual segmentations require a large amount of high quality delineations (on pixels), which can be time consuming and often a difficult task. Multi-instance learning (MIL), in contrast to standard supervised classifiers, avoids this task and can, therefore, be trained with weakly labeled images. In this paper, we propose an approach for the automatic visual inspection that uses MIL for defect detection. The approach has been tested with data from three artificial benchmark datasets and three real-world industrial scenarios: inspection of artificial teeth, weld defect detection and fishbone detection. Results show that the proposed approach can be used with weakly labeled images for defect detection on automatic visual inspection systems. This approach is able to increase the area under the receiver-operating characteristic curve (AUC) up to 6.3% compared with the naïve MIL approach of propagating the bag labels. © 2016 Elsevier B.V.engElsevier B.V.http://www.sciencedirect.com/science/article/pii/S0166361516301750Computers in IndustryScopusAutomatic visual inspectionDefect detectionMulti-instance learningPattern recognitionWeak labelsComputer visionInspectionPattern recognitionAutomatic visual inspectionAutomatic visual inspection systemsDefect detectionMulti-instance learningReceiver operating characteristic curvesSupervised classifiersSupervised learning methodsWeak labelsDefectsAutomatic visual inspection: An approach with multi-instance learningArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/access_right/c_16ecMera, C., Universidad Nacional de Colombia, Sede Medellín, Departamento de Ciencias de la Computación y de la Decisión, Cra. 80 # 65-223, Medellín, Colombia, Universidad de Medellín, Facultad de Ingeniería, Carrera 87 # 30-65, Medellín, ColombiaOrozco-Alzate, M., Universidad Nacional de Colombia, Sede Manizales, Departamento de Informática y Computación, km 7 vía al Magdalena, Manizales, ColombiaBranch, J., Universidad Nacional de Colombia, Sede Medellín, Departamento de Ciencias de la Computación y de la Decisión, Cra. 80 # 65-223, Medellín, ColombiaMery, D., Pontificia Universidad Católica de Chile, Departamento de Ciencias de la Computación, Av. Vicuña Mackenna 4860, Santiago de Chile, ChileMera C.Orozco-Alzate M.Branch J.Mery D.11407/3141oai:repository.udem.edu.co:11407/31412020-05-27 17:48:10.351Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co
dc.title.spa.fl_str_mv Automatic visual inspection: An approach with multi-instance learning
title Automatic visual inspection: An approach with multi-instance learning
spellingShingle Automatic visual inspection: An approach with multi-instance learning
Automatic visual inspection
Defect detection
Multi-instance learning
Pattern recognition
Weak labels
Computer vision
Inspection
Pattern recognition
Automatic visual inspection
Automatic visual inspection systems
Defect detection
Multi-instance learning
Receiver operating characteristic curves
Supervised classifiers
Supervised learning methods
Weak labels
Defects
title_short Automatic visual inspection: An approach with multi-instance learning
title_full Automatic visual inspection: An approach with multi-instance learning
title_fullStr Automatic visual inspection: An approach with multi-instance learning
title_full_unstemmed Automatic visual inspection: An approach with multi-instance learning
title_sort Automatic visual inspection: An approach with multi-instance learning
dc.contributor.affiliation.spa.fl_str_mv Mera, C., Universidad Nacional de Colombia, Sede Medellín, Departamento de Ciencias de la Computación y de la Decisión, Cra. 80 # 65-223, Medellín, Colombia, Universidad de Medellín, Facultad de Ingeniería, Carrera 87 # 30-65, Medellín, Colombia
Orozco-Alzate, M., Universidad Nacional de Colombia, Sede Manizales, Departamento de Informática y Computación, km 7 vía al Magdalena, Manizales, Colombia
Branch, J., Universidad Nacional de Colombia, Sede Medellín, Departamento de Ciencias de la Computación y de la Decisión, Cra. 80 # 65-223, Medellín, Colombia
Mery, D., Pontificia Universidad Católica de Chile, Departamento de Ciencias de la Computación, Av. Vicuña Mackenna 4860, Santiago de Chile, Chile
dc.subject.spa.fl_str_mv Automatic visual inspection
Defect detection
Multi-instance learning
Pattern recognition
Weak labels
topic Automatic visual inspection
Defect detection
Multi-instance learning
Pattern recognition
Weak labels
Computer vision
Inspection
Pattern recognition
Automatic visual inspection
Automatic visual inspection systems
Defect detection
Multi-instance learning
Receiver operating characteristic curves
Supervised classifiers
Supervised learning methods
Weak labels
Defects
dc.subject.keyword.eng.fl_str_mv Computer vision
Inspection
Pattern recognition
Automatic visual inspection
Automatic visual inspection systems
Defect detection
Multi-instance learning
Receiver operating characteristic curves
Supervised classifiers
Supervised learning methods
Weak labels
Defects
description One of the industrial applications of computer vision is automatic visual inspection. In the last decade, standard supervised learning methods have been used to detect defects in different kind of products. These methods are trained with a set of images where every image has to be manually segmented and labeled by experts in the application domain. These manual segmentations require a large amount of high quality delineations (on pixels), which can be time consuming and often a difficult task. Multi-instance learning (MIL), in contrast to standard supervised classifiers, avoids this task and can, therefore, be trained with weakly labeled images. In this paper, we propose an approach for the automatic visual inspection that uses MIL for defect detection. The approach has been tested with data from three artificial benchmark datasets and three real-world industrial scenarios: inspection of artificial teeth, weld defect detection and fishbone detection. Results show that the proposed approach can be used with weakly labeled images for defect detection on automatic visual inspection systems. This approach is able to increase the area under the receiver-operating characteristic curve (AUC) up to 6.3% compared with the naïve MIL approach of propagating the bag labels. © 2016 Elsevier B.V.
publishDate 2016
dc.date.created.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2017-05-12T16:05:54Z
dc.date.available.none.fl_str_mv 2017-05-12T16:05:54Z
dc.type.eng.fl_str_mv Article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 1663615
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/3141
dc.identifier.doi.none.fl_str_mv 10.1016/j.compind.2016.09.002
identifier_str_mv 1663615
10.1016/j.compind.2016.09.002
url http://hdl.handle.net/11407/3141
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv http://www.sciencedirect.com/science/article/pii/S0166361516301750
dc.relation.ispartofes.spa.fl_str_mv Computers in Industry
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Elsevier B.V.
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159182746615808