Automatic visual inspection: An approach with multi-instance learning
One of the industrial applications of computer vision is automatic visual inspection. In the last decade, standard supervised learning methods have been used to detect defects in different kind of products. These methods are trained with a set of images where every image has to be manually segmented...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/3141
- Acceso en línea:
- http://hdl.handle.net/11407/3141
- Palabra clave:
- Automatic visual inspection
Defect detection
Multi-instance learning
Pattern recognition
Weak labels
Computer vision
Inspection
Pattern recognition
Automatic visual inspection
Automatic visual inspection systems
Defect detection
Multi-instance learning
Receiver operating characteristic curves
Supervised classifiers
Supervised learning methods
Weak labels
Defects
- Rights
- restrictedAccess
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_e3989326c7a57358e178daa91f691a4f |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/3141 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
spelling |
2017-05-12T16:05:54Z2017-05-12T16:05:54Z20161663615http://hdl.handle.net/11407/314110.1016/j.compind.2016.09.002One of the industrial applications of computer vision is automatic visual inspection. In the last decade, standard supervised learning methods have been used to detect defects in different kind of products. These methods are trained with a set of images where every image has to be manually segmented and labeled by experts in the application domain. These manual segmentations require a large amount of high quality delineations (on pixels), which can be time consuming and often a difficult task. Multi-instance learning (MIL), in contrast to standard supervised classifiers, avoids this task and can, therefore, be trained with weakly labeled images. In this paper, we propose an approach for the automatic visual inspection that uses MIL for defect detection. The approach has been tested with data from three artificial benchmark datasets and three real-world industrial scenarios: inspection of artificial teeth, weld defect detection and fishbone detection. Results show that the proposed approach can be used with weakly labeled images for defect detection on automatic visual inspection systems. This approach is able to increase the area under the receiver-operating characteristic curve (AUC) up to 6.3% compared with the naïve MIL approach of propagating the bag labels. © 2016 Elsevier B.V.engElsevier B.V.http://www.sciencedirect.com/science/article/pii/S0166361516301750Computers in IndustryScopusAutomatic visual inspectionDefect detectionMulti-instance learningPattern recognitionWeak labelsComputer visionInspectionPattern recognitionAutomatic visual inspectionAutomatic visual inspection systemsDefect detectionMulti-instance learningReceiver operating characteristic curvesSupervised classifiersSupervised learning methodsWeak labelsDefectsAutomatic visual inspection: An approach with multi-instance learningArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/access_right/c_16ecMera, C., Universidad Nacional de Colombia, Sede Medellín, Departamento de Ciencias de la Computación y de la Decisión, Cra. 80 # 65-223, Medellín, Colombia, Universidad de Medellín, Facultad de Ingeniería, Carrera 87 # 30-65, Medellín, ColombiaOrozco-Alzate, M., Universidad Nacional de Colombia, Sede Manizales, Departamento de Informática y Computación, km 7 vía al Magdalena, Manizales, ColombiaBranch, J., Universidad Nacional de Colombia, Sede Medellín, Departamento de Ciencias de la Computación y de la Decisión, Cra. 80 # 65-223, Medellín, ColombiaMery, D., Pontificia Universidad Católica de Chile, Departamento de Ciencias de la Computación, Av. Vicuña Mackenna 4860, Santiago de Chile, ChileMera C.Orozco-Alzate M.Branch J.Mery D.11407/3141oai:repository.udem.edu.co:11407/31412020-05-27 17:48:10.351Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |
dc.title.spa.fl_str_mv |
Automatic visual inspection: An approach with multi-instance learning |
title |
Automatic visual inspection: An approach with multi-instance learning |
spellingShingle |
Automatic visual inspection: An approach with multi-instance learning Automatic visual inspection Defect detection Multi-instance learning Pattern recognition Weak labels Computer vision Inspection Pattern recognition Automatic visual inspection Automatic visual inspection systems Defect detection Multi-instance learning Receiver operating characteristic curves Supervised classifiers Supervised learning methods Weak labels Defects |
title_short |
Automatic visual inspection: An approach with multi-instance learning |
title_full |
Automatic visual inspection: An approach with multi-instance learning |
title_fullStr |
Automatic visual inspection: An approach with multi-instance learning |
title_full_unstemmed |
Automatic visual inspection: An approach with multi-instance learning |
title_sort |
Automatic visual inspection: An approach with multi-instance learning |
dc.contributor.affiliation.spa.fl_str_mv |
Mera, C., Universidad Nacional de Colombia, Sede Medellín, Departamento de Ciencias de la Computación y de la Decisión, Cra. 80 # 65-223, Medellín, Colombia, Universidad de Medellín, Facultad de Ingeniería, Carrera 87 # 30-65, Medellín, Colombia Orozco-Alzate, M., Universidad Nacional de Colombia, Sede Manizales, Departamento de Informática y Computación, km 7 vía al Magdalena, Manizales, Colombia Branch, J., Universidad Nacional de Colombia, Sede Medellín, Departamento de Ciencias de la Computación y de la Decisión, Cra. 80 # 65-223, Medellín, Colombia Mery, D., Pontificia Universidad Católica de Chile, Departamento de Ciencias de la Computación, Av. Vicuña Mackenna 4860, Santiago de Chile, Chile |
dc.subject.spa.fl_str_mv |
Automatic visual inspection Defect detection Multi-instance learning Pattern recognition Weak labels |
topic |
Automatic visual inspection Defect detection Multi-instance learning Pattern recognition Weak labels Computer vision Inspection Pattern recognition Automatic visual inspection Automatic visual inspection systems Defect detection Multi-instance learning Receiver operating characteristic curves Supervised classifiers Supervised learning methods Weak labels Defects |
dc.subject.keyword.eng.fl_str_mv |
Computer vision Inspection Pattern recognition Automatic visual inspection Automatic visual inspection systems Defect detection Multi-instance learning Receiver operating characteristic curves Supervised classifiers Supervised learning methods Weak labels Defects |
description |
One of the industrial applications of computer vision is automatic visual inspection. In the last decade, standard supervised learning methods have been used to detect defects in different kind of products. These methods are trained with a set of images where every image has to be manually segmented and labeled by experts in the application domain. These manual segmentations require a large amount of high quality delineations (on pixels), which can be time consuming and often a difficult task. Multi-instance learning (MIL), in contrast to standard supervised classifiers, avoids this task and can, therefore, be trained with weakly labeled images. In this paper, we propose an approach for the automatic visual inspection that uses MIL for defect detection. The approach has been tested with data from three artificial benchmark datasets and three real-world industrial scenarios: inspection of artificial teeth, weld defect detection and fishbone detection. Results show that the proposed approach can be used with weakly labeled images for defect detection on automatic visual inspection systems. This approach is able to increase the area under the receiver-operating characteristic curve (AUC) up to 6.3% compared with the naïve MIL approach of propagating the bag labels. © 2016 Elsevier B.V. |
publishDate |
2016 |
dc.date.created.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2017-05-12T16:05:54Z |
dc.date.available.none.fl_str_mv |
2017-05-12T16:05:54Z |
dc.type.eng.fl_str_mv |
Article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
1663615 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/3141 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.compind.2016.09.002 |
identifier_str_mv |
1663615 10.1016/j.compind.2016.09.002 |
url |
http://hdl.handle.net/11407/3141 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
http://www.sciencedirect.com/science/article/pii/S0166361516301750 |
dc.relation.ispartofes.spa.fl_str_mv |
Computers in Industry |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
Elsevier B.V. |
dc.source.spa.fl_str_mv |
Scopus |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159182746615808 |