Simulating current-energy converters: SNL-EFDC model development, verification, and parameter estimation
Increasing interest in power production from ocean, tidal, and river currents has led to significant efforts to maximize energy conversion through optimal design and siting and to minimize effects on the environment. Turbine-based, current-energy-converter (CEC) technologies remove energy from curre...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5744
- Acceso en línea:
- http://hdl.handle.net/11407/5744
- Palabra clave:
- Current-energy conversion
Marine renewable energy
Numerical modeling
SNL-EFDC
Energy conversion
Numerical models
Ocean currents
Tidal power
Turbulence models
Wakes
Water quality
Current energy
Environmental fluid dynamics code
Marine renewable energy
Sandia National Laboratories
SNL-EFDC
Three-dimensional model
Turbulence measurements
Turbulence parameters
Parameter estimation
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_e344f16d5dbb342b41cfe409ce57e7e9 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5744 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Simulating current-energy converters: SNL-EFDC model development, verification, and parameter estimation |
title |
Simulating current-energy converters: SNL-EFDC model development, verification, and parameter estimation |
spellingShingle |
Simulating current-energy converters: SNL-EFDC model development, verification, and parameter estimation Current-energy conversion Marine renewable energy Numerical modeling SNL-EFDC Energy conversion Numerical models Ocean currents Tidal power Turbulence models Wakes Water quality Current energy Environmental fluid dynamics code Marine renewable energy Sandia National Laboratories SNL-EFDC Three-dimensional model Turbulence measurements Turbulence parameters Parameter estimation |
title_short |
Simulating current-energy converters: SNL-EFDC model development, verification, and parameter estimation |
title_full |
Simulating current-energy converters: SNL-EFDC model development, verification, and parameter estimation |
title_fullStr |
Simulating current-energy converters: SNL-EFDC model development, verification, and parameter estimation |
title_full_unstemmed |
Simulating current-energy converters: SNL-EFDC model development, verification, and parameter estimation |
title_sort |
Simulating current-energy converters: SNL-EFDC model development, verification, and parameter estimation |
dc.subject.none.fl_str_mv |
Current-energy conversion Marine renewable energy Numerical modeling SNL-EFDC Energy conversion Numerical models Ocean currents Tidal power Turbulence models Wakes Water quality Current energy Environmental fluid dynamics code Marine renewable energy Sandia National Laboratories SNL-EFDC Three-dimensional model Turbulence measurements Turbulence parameters Parameter estimation |
topic |
Current-energy conversion Marine renewable energy Numerical modeling SNL-EFDC Energy conversion Numerical models Ocean currents Tidal power Turbulence models Wakes Water quality Current energy Environmental fluid dynamics code Marine renewable energy Sandia National Laboratories SNL-EFDC Three-dimensional model Turbulence measurements Turbulence parameters Parameter estimation |
description |
Increasing interest in power production from ocean, tidal, and river currents has led to significant efforts to maximize energy conversion through optimal design and siting and to minimize effects on the environment. Turbine-based, current-energy-converter (CEC) technologies remove energy from current-driven systems and in the process generate distinct wakes, which can interact with other CEC devices and can alter flow regimes, sediment dynamics, and water quality. This work introduces Sandia National Laboratories-Environmental Fluid Dynamics Code CEC module and verifies it against a two-dimensional analytical solution for power generation and hydrodynamic response of flow through a CEC tidal fence. With a two-dimensional model that accurately reflects an analytical solution, the effort was extended to three-dimensional models of three different laboratory-flume experiments that measured the impacts of CEC devices on flow. Both flow and turbulence model parameters were then calibrated against wake characteristics and turbulence measurements. This is the first time that turbulence parameter values have been specified for CEC devices. Measurements and simulations compare favorably and demonstrate the utility and accuracy of this numerical approach for simulating the impacts of CEC devices on the flow field. The model can be extended to future siting and analyses of CEC arrays in complex domains. © 2017 Elsevier Ltd |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-04-29T14:53:51Z |
dc.date.available.none.fl_str_mv |
2020-04-29T14:53:51Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
9601481 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5744 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.renene.2017.07.020 |
identifier_str_mv |
9601481 10.1016/j.renene.2017.07.020 |
url |
http://hdl.handle.net/11407/5744 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85024840209&doi=10.1016%2fj.renene.2017.07.020&partnerID=40&md5=76e6cb049b817e41eff80a2064fc21a2 |
dc.relation.citationvolume.none.fl_str_mv |
147 |
dc.relation.citationstartpage.none.fl_str_mv |
2531 |
dc.relation.citationendpage.none.fl_str_mv |
2541 |
dc.relation.references.none.fl_str_mv |
Bryden, I.G., Couch, S.J., Owen, A., Melville, G., Tidal current resource assessment (2007) J. Power Energy, 221, pp. 125-135 Inger, R., Attrill, M.J., Bearhop, S., Broderick, A.C., Grecian, W.J., Hodgson, D.J., Mills, C., Godley, B.J., Marine renewable energy: Potential benefits to biodiversity? An urgent call for research (2009) J. Appl. Ecol., 46, pp. 1145-1153 Polagye, B., Kawase, M., Malte, P., In-stream tidal energy potential of Puget Sound, Washington (2009) Proc. Inst. Mech. Eng. Part A J. Power Energy, 223, pp. 571-587 Garrett, C., Cummins, P., The power potential of tidal currents in channels (2005) Proc. R. Soc. A Math. Phys. Eng. Sci., 461, pp. 2563-2572 Hasegawa, D., Sheng, J., Greenberg, D.A., Thompson, K.R., Far-field effects of tidal energy extraction in the Minas Passage on tidal circulation in the Bay of Fundy and Gulf of Maine using a nested-grid coastal circulation model (2011) Ocean Dyn., 61, pp. 1845-1868 Polagye, B., Malte, P., Kawase, M., Durran, D., Effect of large-scale kinetic power extraction on time-dependent estuaries (2008) Proc. Inst. Mech. Eng. Part A J. Power Energy, 222, pp. 471-484 Deltares, Delft3D: Hydro-morphodynamics (2014), Delft3D Delft, The Netherlands 712 pp Baston, S., Waldman, S., Side, J., Modelling Energy Extraction in Tidal Flows, Revision 3.1 (2014), Edinburgh, UK 39 pp Mungar, S., Hydrodynamics of Horizontal-axis Tidal Current Turbines (2014), Technical University of Delft Delft, The Netherlands 157 pp Chen, Y., Lin, B., Lin, J., Modelling tidal current energy extraction in large area using a three-dimensional estuary model (2014) Comput. Geosci., 72, pp. 76-83 Neill, S.P., Litt, E.J., Couch, S.J., Davies, A.G., The impact of tidal stream turbines on large-scale sediment dynamics (2009) Renew. Energy, 34, pp. 2803-2812 Amoudry, L., Bell, P.S., Black, K.S., Gatliff, R.W., Helsby, R., Souza, A.J., Thorne, P.D., Wolf, J., A Scoping Study on: Research into Changes in Sediment Dynamics Linked to Marine Renewable Energy Installations (2009), Edinburgh, UK 101 pp Neill, S.P., Jordan, J.R., Couch, S.J., Impact of tidal energy converter (TEC) arrays on the dynamics of headland sand banks (2012) Renew. Energy, 37, pp. 387-397 Robins, P.E., Influence of tidal energy extraction on fine sediment dynamics (2013) 2nd Oxford Tidal Energy Workshop, Oxford, UK, pp. 27-28. , Oxford, UK R.H.J. Willden T. Nishino Ahmadian, R., Falconer, R., Bockelmann-Evans, B., Far-field modelling of the hydro-environmental impact of tidal stream turbines (2012) Renew. Energy, 38, pp. 107-116 DOE, Report to Congress on the Potential Environmental Effects of Marine and Hydrokinetic Energy Technologies (2009), GO-102009-2955, Washington, DC 143 pp Bailey, H., Senior, B., Simmons, D., Rusin, J., Picken, G., Thompson, P.M., Assessing underwater noise levels during pile-driving at an offshore windfarm and its potential effects on marine mammals (2010) Mar. Pollut. Bull., 60, pp. 888-897 CMACS, A Baseline Assessment of Electromagnetic Field Generated by Offshore Windfarm Cables (2003), COWRIE Report EMF - 01-2002 66, Liverpool, UK 71 pp Tricas, T., Gill, A., Effects of EMFs from Undersea Power Cables on Elasmobranchs and Other Marine Species (2011), BOEMRE 2011-09, Camarillo, CA 426 pp Polagye, B., Joslin, J., Stewart, A., Copping, A., Integrated instrumentation for marine energy monitoring (2014) 2nd International Conference on Environmental Interactions of Marine Renewable Energy Technologies, EIMR, Stornoway, Scotland, pp. 1-3 Hamrick, J.M., The Environmental Fluid Dynamics Code: User Manual, EFDC User Manual: Version 1.01 (2007), Fairfax, VA 231 pp Hamrick, J.M., The Environmental Fluid Dynamics Code: Theory and Computation, EFDC Theory and Computation: Version 1.01 (2007), Fairfax, VA 60 pp James, S.C., Sandia National Laboratories Environmental Fluid Dynamics Code: Marine Hydrokinetic Module User's Manual (2014), SAND2014-1804, Albuquerque, NM 33 pp Katul, G.G., Mahrt, L., Poggi, D., Sanz, C., One- and two-equation models for canopy turbulence (2004) Bound. Layer Meteorol., 113, pp. 81-109 Réthoré, P.-E., Sørensen, N.N., Zahle, F., Study of the atmospheric wake turbulence of a CFD actuator disc model (2009) European Wind Energy Convention, pp. 1-9. , Marseille, France Cerco, C.F., Cole, T., User's Guide to the CE-qual-icm Three-dimensional Eutrophication Model (1995), Release Version 1.0, Technical Report EL-95-15 316 pp Park, K., Kuo, A.Y., Shen, J., Hamrick, J.M., A Three-dimensional Hydrodynamic-eutrophication Model (HEM-3D): Description of Water Quality and Sediment Process Submodels, Special Report in Applied Marine Science and Ocean Engineering No. 327 (1995), Gloucester Point, VA 204 pp James, S.C., Jones, C.A., Grace, M.D., Roberts, J.D., Advances in sediment transport modelling (2010) J. Hydraul. Res., 48, pp. 754-763 Jones, C.A., A Sediment Transport Model (2001), University of California Santa Barbara Santa Barbara, CA 119 pp O'Donncha, F., James, S.C., O'Brien, N., Ragnoli, E., Parallelisation of a hydro-environmental model for simulating marine current devices (2015) MTS/IEEE OCEANS 15 Conference, Washington, DC, pp. 1-7 O'Donncha, F., Ragnoli, E., Suits, F., Parallelisation study of a three-dimensional environmental flow model (2014) Comput. Geosci., 64, pp. 96-103 Mellor, G.L., Yamada, T., Development of a turbulence closure model for geophysical fluid problems (1982) Rev. Geophys., 20, pp. 851-875 Galperin, B., Kantha, L.H., Hassid, S., Rosati, A., A quasi-equilibrium turbulent energy model for geophysical flows (1988) J. Atmos. Sci., 45, pp. 55-62 Blumberg, A.F., Mellor, G.L., A description of a three-dimensional coastal ocean circulation model (1987) Three Dimensional Coastal Ocean Models Conference, pp. 1-16. , N.S. Heaps American Geophysical Union Washington, DC Peng, S., Fu, G.Y.Z., Zhao, X.H., Moore, B.C., Integration of environmental fluid dynamics code (EFDC) model with Geographical Information System (GIS) platform and its applications (2011) J. Environ. Inf., 17, pp. 75-82 Tuckey, B.J., Gibbs, M.T., Knight, B.R., Gillespie, P.A., Tidal circulation in Tasman and Golden Bays: Implications for river plume behaviour (2006) New Zeal. J. Mar. Freshwat. Res., 40, pp. 305-324 Ji, Z.-G., Hydrodynamics, Quality, W., Modeling Rivers, Lakes, and Estuaries (2008), John Wiley and Sons Hoboken, NJ Ji, Z.G., Morton, M.R., Hamrick, J.M., Wetting and drying simulation of estuarine processes (2001) Estuar. Coast. Shelf Sci., 53, pp. 683-700 James, S.C., Shrestha, P.L., Roberts, J.D., Modeling noncohesive sediment transport using multiple sediment size classes (2006) J. Coast. Res., 22, pp. 1125-1132 James, S.C., Janardhanam, V., Hanson, D.T., Simulating pH effects in an algal-growth hydrodynamics model (2013) J. Phycol., 49, pp. 608-615 James, S.C., Barco, J., Johnson, E., Roberts, J.D., Lefantzi, S., Verifying marine-hydro-kinetic energy generation simulations using SNL-EFDC (2011) MTS/IEEE OCEANS 11 Conference, Kona, HI, pp. 1-9 James, S.C., Seetho, E., Jones, C., Roberts, J., Simulating environmental changes due to marine hydrokinetic energy installations (2010) MTS/IEEE OCEANS 10 Conference, Seattle, WA, pp. 1-10 Yang, X., Khosronejad, A., Chawdhary, S., Calderer, A., Angelidis, D., Shen, L., Sotiropoulos, F., Simulation-based approach for site-specific optimization of marine and hydrokinetic energy conversion systems (2015) 36th IAHR World Congress, Spain Water and IWHR, The Hague, The Netherlands, pp. 1-4 Kang, S., Borazjani, I., Colby, J.A., Sotiropoulos, F., Numerical simulation of 3D flow past a real-life marine hydrokinetic turbine (2012) Adv. Water Resour., 39, pp. 33-43 Sotiropoulos, F., Kang, S., Yang, X., Large-eddy simulation of turbulent flow past hydrokinetic turbine arrays in natural waterways (2012) American Geophysical Union Fall Meeting, San Francisco, CA Barltrop, N., Varyani, K.S., Grant, A., Clelland, D., Pham, X.P., INvestigation into wave current interactions in marine current turbines (2007) Proc. Inst. Mech. Eng. Part A J. Power Energy, 221, pp. 233-242 Galloway, P., Myers, L., Bahaj, A., Studies of a scale tidal turbine in close proximity to waves (2010) 3rd International Conference on Ocean Energy, Bilbao, Spain, pp. 1-6 Poggi, D., Porporato, A., Ridolfi, L., Albertson, J.D., Katul, G.G., The effect of vegetation density on canopy sublayer turbulence (2004) Bound. Layer Meteorol., 111, pp. 565-587 Réthoré, P.-E., Wind Turbine Wake in Atmospheric Turbulence (2009), Aalborg University Aalbork, Denmark 187 pp Batten, W.M.J., Harrison, M.E., Bahaj, A.S., Accuracy of the actuator disc-RANS approach for predicting the performance and wake of tidal turbines (2013) Phil. Trans. R. Soc. A Math. Phys. Eng. Sci., 371, pp. 1-14 Warner, J.C., Sherwood, C.R., Arango, H.G., Signell, R.P., Performance of four turbulence closure models implemented using a generic length scale method (2005) Ocean Model., 8, pp. 81-113 Smagorinsky, J., General circulation experiments with primitive equations 1: The basic experiment (1963) Mon. Weather Rev., 91, pp. 99-164 Roc, T., Conley, D.C., Greaves, D., Methodology for tidal turbine representation in ocean circulation model (2013) Renew. Energy, 51, pp. 448-464 Yang, Z., Wang, T., Copping, A.E., Modeling tidal stream energy extraction and its effects on transport processes in a tidal channel and bay system using a three-dimensional coastal ocean model (2013) Renew. Energy, 50, pp. 605-613 Chen, C., Cowles, G., Beardsley, R.C., An Unstructured Grid, Finite-volume Coastal Ocean Model: FVCOM User Manual (2004), Technical Report-04-0601 183 pp Myers, L.E., Bahaj, A.S., Experimental analysis of the flow field around horizontal axis tidal turbines by use of scale mesh disk rotor simulators (2010) Ocean Eng., 37, pp. 218-227 Whelan, J.I., Graham, J.M.R., Peiró, J., A free-surface and blockage correction for tidal turbines (2009) J. Fluid Mech., 624, pp. 281-291 Myers, L.E., Bahaj, A.S., Near wake properties of horizontal axis marine current turbines (2009) 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, pp. 558-565 Neary, V.S., Gunawan, B., Hill, C., Chamorro, L.P., Wake Flow Recovery Downstream of a 1:10 Scale Axial Flow Hydrokinetic Turbine Measured with Pulse-coherent Acoustic Doppler Profiler (PC-ADP) (2012), ORNL/TML-2012 12 pp Roache, P.J., Perspective: a method for uniform reporting of grid refinement studies (1994) J. Fluids Eng., 116, pp. 405-413 Myers, L.E., Bahaj, A.S., Rawlinson-Smith, R.I., Thomson, M., The effect of boundary proximity upon the wake structures of horizontal axis marine current turbines (2008) 27th International Conference on Offshore Mechanics and Artic Engineering, ASME, Estoril, Portugal, pp. 709-719 Harrison, M.E., Batten, W.M.J., Myers, L.E., Bahaj, A.S., A comparison between CFD simulations and experiments for predicting the far wake of horizontal axis tidal turbines (2009) 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, pp. 566-575 Myers, L., Bahaj, A.S., Near wake properties of horizontal axis marine current turbines (2009) 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, pp. 558-565 Batten, W.M.J., Harrison, M.E., Bahaj, A.S., Accuracy of the actuator disc-RANS approach for predicting the performance and wake of tidal turbines (2013) Phil. Trans. R. Soc. A, 371, p. 20120293 Neary, V.S., Gunawan, B., Hill, C., Chamorro, L.P., Near and far field flow disturbances induced by model hydrokinetic turbine: ADV and ADP comparison (2013) Renew. Energy, 60, pp. 1-6 Bahaj, A.-B.S., Myers, L.E., Thomson, M.D., Jorge, N., Characterising the wake of a horizontal axis marine turbine (2007) 7th European Wave and Tidal Energy Conference, Porto, Portugal, pp. 1-9 Doherty, J.E., Model-independent Parameter Estimation User Manual Part II: PEST Utility Support Software (2016), PEST Addendum, Brisbane, Australia 226, pp Doherty, J.E., Model-independent Parameter Estimation User Manual Part I: PEST, SENSAN and Global Optimisers (2016), PEST Manual, Brisbane, Australia 390, pp James, S.C., Doherty, J.E., Eddebbarh, A.-A., Practical postcalibration uncertainty analysis: Yucca Mountain, Nevada (2009) Ground Water, 47, pp. 851-869 Stallard, T., Collings, R., Feng, T., Whelan, J., Interactions between tidal turbine wakes: experimental study of a group of three-bladed rotors (2013) Phil. Trans. R. Soc. A, 371, p. 20120159 Nelson, K., James, S.C., Roberts, J.D., Jones, C.A., A framework for determining improved placement of current energy converters subject to environmental constraints (2017) Int. J. Sustain. Energy, pp. 1-15. , http://www.tandfonline.com/doi/abs/10.1080/14786451.2017.1334654?journalCode=gsol20 O'Donncha, F., Ragnoli, E., Venugopal, S., James, S.C., Katrinis, K., On the efficiency of executing hydro-environmental models on Cloud (2016) Procedia Eng., 154, pp. 199-206 Gunawan, B., Neary, V.S., Grovue, S., Mortensen, J., Heiner, B., Field measurement test plan to determine effects of hydrokinetic turbine deployment on canal test site in Yakima, WA, USA (2014) 2nd Marine Energy Technology Symposium, METS2014, Seattle, WA, pp. 1-8 Gunawan, B., Roberts, J., Neary, V.S., Hydrodynamic effects of hydrokinetic turbine deployment in an irrigation canal (2015) 3rd Marine Energy Technology Symposium, METS2015, Washington, DC Doherty, J.E., Welter, D.E., A short exploration of structural noise (2010) Water Resour. Res., 46. , W05525 Blackmore, T., Batten, W.M.J., Bahaj, A.S., Influence of turbulence on the wake of a marine current turbine simulator (2014) Proc. R. Soc. A Math. Phys. Eng. Sci., 470. , 20140331 Craig, P.M., User's Manual for EFDC_Explorer: A Pre/Post Processor for the Environmental Fluid Dynamics Code (2016), EFDC_Explorer 2016 391 pp |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Elsevier Ltd |
dc.publisher.program.none.fl_str_mv |
Ingeniería Civil |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingenierías |
publisher.none.fl_str_mv |
Elsevier Ltd |
dc.source.none.fl_str_mv |
Renewable Energy |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159195781464064 |
spelling |
20202020-04-29T14:53:51Z2020-04-29T14:53:51Z9601481http://hdl.handle.net/11407/574410.1016/j.renene.2017.07.020Increasing interest in power production from ocean, tidal, and river currents has led to significant efforts to maximize energy conversion through optimal design and siting and to minimize effects on the environment. Turbine-based, current-energy-converter (CEC) technologies remove energy from current-driven systems and in the process generate distinct wakes, which can interact with other CEC devices and can alter flow regimes, sediment dynamics, and water quality. This work introduces Sandia National Laboratories-Environmental Fluid Dynamics Code CEC module and verifies it against a two-dimensional analytical solution for power generation and hydrodynamic response of flow through a CEC tidal fence. With a two-dimensional model that accurately reflects an analytical solution, the effort was extended to three-dimensional models of three different laboratory-flume experiments that measured the impacts of CEC devices on flow. Both flow and turbulence model parameters were then calibrated against wake characteristics and turbulence measurements. This is the first time that turbulence parameter values have been specified for CEC devices. Measurements and simulations compare favorably and demonstrate the utility and accuracy of this numerical approach for simulating the impacts of CEC devices on the flow field. The model can be extended to future siting and analyses of CEC arrays in complex domains. © 2017 Elsevier LtdengElsevier LtdIngeniería CivilFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85024840209&doi=10.1016%2fj.renene.2017.07.020&partnerID=40&md5=76e6cb049b817e41eff80a2064fc21a214725312541Bryden, I.G., Couch, S.J., Owen, A., Melville, G., Tidal current resource assessment (2007) J. Power Energy, 221, pp. 125-135Inger, R., Attrill, M.J., Bearhop, S., Broderick, A.C., Grecian, W.J., Hodgson, D.J., Mills, C., Godley, B.J., Marine renewable energy: Potential benefits to biodiversity? An urgent call for research (2009) J. Appl. Ecol., 46, pp. 1145-1153Polagye, B., Kawase, M., Malte, P., In-stream tidal energy potential of Puget Sound, Washington (2009) Proc. Inst. Mech. Eng. Part A J. Power Energy, 223, pp. 571-587Garrett, C., Cummins, P., The power potential of tidal currents in channels (2005) Proc. R. Soc. A Math. Phys. Eng. Sci., 461, pp. 2563-2572Hasegawa, D., Sheng, J., Greenberg, D.A., Thompson, K.R., Far-field effects of tidal energy extraction in the Minas Passage on tidal circulation in the Bay of Fundy and Gulf of Maine using a nested-grid coastal circulation model (2011) Ocean Dyn., 61, pp. 1845-1868Polagye, B., Malte, P., Kawase, M., Durran, D., Effect of large-scale kinetic power extraction on time-dependent estuaries (2008) Proc. Inst. Mech. Eng. Part A J. Power Energy, 222, pp. 471-484Deltares, Delft3D: Hydro-morphodynamics (2014), Delft3D Delft, The Netherlands 712 ppBaston, S., Waldman, S., Side, J., Modelling Energy Extraction in Tidal Flows, Revision 3.1 (2014), Edinburgh, UK 39 ppMungar, S., Hydrodynamics of Horizontal-axis Tidal Current Turbines (2014), Technical University of Delft Delft, The Netherlands 157 ppChen, Y., Lin, B., Lin, J., Modelling tidal current energy extraction in large area using a three-dimensional estuary model (2014) Comput. Geosci., 72, pp. 76-83Neill, S.P., Litt, E.J., Couch, S.J., Davies, A.G., The impact of tidal stream turbines on large-scale sediment dynamics (2009) Renew. Energy, 34, pp. 2803-2812Amoudry, L., Bell, P.S., Black, K.S., Gatliff, R.W., Helsby, R., Souza, A.J., Thorne, P.D., Wolf, J., A Scoping Study on: Research into Changes in Sediment Dynamics Linked to Marine Renewable Energy Installations (2009), Edinburgh, UK 101 ppNeill, S.P., Jordan, J.R., Couch, S.J., Impact of tidal energy converter (TEC) arrays on the dynamics of headland sand banks (2012) Renew. Energy, 37, pp. 387-397Robins, P.E., Influence of tidal energy extraction on fine sediment dynamics (2013) 2nd Oxford Tidal Energy Workshop, Oxford, UK, pp. 27-28. , Oxford, UK R.H.J. Willden T. NishinoAhmadian, R., Falconer, R., Bockelmann-Evans, B., Far-field modelling of the hydro-environmental impact of tidal stream turbines (2012) Renew. Energy, 38, pp. 107-116DOE, Report to Congress on the Potential Environmental Effects of Marine and Hydrokinetic Energy Technologies (2009), GO-102009-2955, Washington, DC 143 ppBailey, H., Senior, B., Simmons, D., Rusin, J., Picken, G., Thompson, P.M., Assessing underwater noise levels during pile-driving at an offshore windfarm and its potential effects on marine mammals (2010) Mar. Pollut. Bull., 60, pp. 888-897CMACS, A Baseline Assessment of Electromagnetic Field Generated by Offshore Windfarm Cables (2003), COWRIE Report EMF - 01-2002 66, Liverpool, UK 71 ppTricas, T., Gill, A., Effects of EMFs from Undersea Power Cables on Elasmobranchs and Other Marine Species (2011), BOEMRE 2011-09, Camarillo, CA 426 ppPolagye, B., Joslin, J., Stewart, A., Copping, A., Integrated instrumentation for marine energy monitoring (2014) 2nd International Conference on Environmental Interactions of Marine Renewable Energy Technologies, EIMR, Stornoway, Scotland, pp. 1-3Hamrick, J.M., The Environmental Fluid Dynamics Code: User Manual, EFDC User Manual: Version 1.01 (2007), Fairfax, VA 231 ppHamrick, J.M., The Environmental Fluid Dynamics Code: Theory and Computation, EFDC Theory and Computation: Version 1.01 (2007), Fairfax, VA 60 ppJames, S.C., Sandia National Laboratories Environmental Fluid Dynamics Code: Marine Hydrokinetic Module User's Manual (2014), SAND2014-1804, Albuquerque, NM 33 ppKatul, G.G., Mahrt, L., Poggi, D., Sanz, C., One- and two-equation models for canopy turbulence (2004) Bound. Layer Meteorol., 113, pp. 81-109Réthoré, P.-E., Sørensen, N.N., Zahle, F., Study of the atmospheric wake turbulence of a CFD actuator disc model (2009) European Wind Energy Convention, pp. 1-9. , Marseille, FranceCerco, C.F., Cole, T., User's Guide to the CE-qual-icm Three-dimensional Eutrophication Model (1995), Release Version 1.0, Technical Report EL-95-15 316 ppPark, K., Kuo, A.Y., Shen, J., Hamrick, J.M., A Three-dimensional Hydrodynamic-eutrophication Model (HEM-3D): Description of Water Quality and Sediment Process Submodels, Special Report in Applied Marine Science and Ocean Engineering No. 327 (1995), Gloucester Point, VA 204 ppJames, S.C., Jones, C.A., Grace, M.D., Roberts, J.D., Advances in sediment transport modelling (2010) J. Hydraul. Res., 48, pp. 754-763Jones, C.A., A Sediment Transport Model (2001), University of California Santa Barbara Santa Barbara, CA 119 ppO'Donncha, F., James, S.C., O'Brien, N., Ragnoli, E., Parallelisation of a hydro-environmental model for simulating marine current devices (2015) MTS/IEEE OCEANS 15 Conference, Washington, DC, pp. 1-7O'Donncha, F., Ragnoli, E., Suits, F., Parallelisation study of a three-dimensional environmental flow model (2014) Comput. Geosci., 64, pp. 96-103Mellor, G.L., Yamada, T., Development of a turbulence closure model for geophysical fluid problems (1982) Rev. Geophys., 20, pp. 851-875Galperin, B., Kantha, L.H., Hassid, S., Rosati, A., A quasi-equilibrium turbulent energy model for geophysical flows (1988) J. Atmos. Sci., 45, pp. 55-62Blumberg, A.F., Mellor, G.L., A description of a three-dimensional coastal ocean circulation model (1987) Three Dimensional Coastal Ocean Models Conference, pp. 1-16. , N.S. Heaps American Geophysical Union Washington, DCPeng, S., Fu, G.Y.Z., Zhao, X.H., Moore, B.C., Integration of environmental fluid dynamics code (EFDC) model with Geographical Information System (GIS) platform and its applications (2011) J. Environ. Inf., 17, pp. 75-82Tuckey, B.J., Gibbs, M.T., Knight, B.R., Gillespie, P.A., Tidal circulation in Tasman and Golden Bays: Implications for river plume behaviour (2006) New Zeal. J. Mar. Freshwat. Res., 40, pp. 305-324Ji, Z.-G., Hydrodynamics, Quality, W., Modeling Rivers, Lakes, and Estuaries (2008), John Wiley and Sons Hoboken, NJJi, Z.G., Morton, M.R., Hamrick, J.M., Wetting and drying simulation of estuarine processes (2001) Estuar. Coast. Shelf Sci., 53, pp. 683-700James, S.C., Shrestha, P.L., Roberts, J.D., Modeling noncohesive sediment transport using multiple sediment size classes (2006) J. Coast. Res., 22, pp. 1125-1132James, S.C., Janardhanam, V., Hanson, D.T., Simulating pH effects in an algal-growth hydrodynamics model (2013) J. Phycol., 49, pp. 608-615James, S.C., Barco, J., Johnson, E., Roberts, J.D., Lefantzi, S., Verifying marine-hydro-kinetic energy generation simulations using SNL-EFDC (2011) MTS/IEEE OCEANS 11 Conference, Kona, HI, pp. 1-9James, S.C., Seetho, E., Jones, C., Roberts, J., Simulating environmental changes due to marine hydrokinetic energy installations (2010) MTS/IEEE OCEANS 10 Conference, Seattle, WA, pp. 1-10Yang, X., Khosronejad, A., Chawdhary, S., Calderer, A., Angelidis, D., Shen, L., Sotiropoulos, F., Simulation-based approach for site-specific optimization of marine and hydrokinetic energy conversion systems (2015) 36th IAHR World Congress, Spain Water and IWHR, The Hague, The Netherlands, pp. 1-4Kang, S., Borazjani, I., Colby, J.A., Sotiropoulos, F., Numerical simulation of 3D flow past a real-life marine hydrokinetic turbine (2012) Adv. Water Resour., 39, pp. 33-43Sotiropoulos, F., Kang, S., Yang, X., Large-eddy simulation of turbulent flow past hydrokinetic turbine arrays in natural waterways (2012) American Geophysical Union Fall Meeting, San Francisco, CABarltrop, N., Varyani, K.S., Grant, A., Clelland, D., Pham, X.P., INvestigation into wave current interactions in marine current turbines (2007) Proc. Inst. Mech. Eng. Part A J. Power Energy, 221, pp. 233-242Galloway, P., Myers, L., Bahaj, A., Studies of a scale tidal turbine in close proximity to waves (2010) 3rd International Conference on Ocean Energy, Bilbao, Spain, pp. 1-6Poggi, D., Porporato, A., Ridolfi, L., Albertson, J.D., Katul, G.G., The effect of vegetation density on canopy sublayer turbulence (2004) Bound. Layer Meteorol., 111, pp. 565-587Réthoré, P.-E., Wind Turbine Wake in Atmospheric Turbulence (2009), Aalborg University Aalbork, Denmark 187 ppBatten, W.M.J., Harrison, M.E., Bahaj, A.S., Accuracy of the actuator disc-RANS approach for predicting the performance and wake of tidal turbines (2013) Phil. Trans. R. Soc. A Math. Phys. Eng. Sci., 371, pp. 1-14Warner, J.C., Sherwood, C.R., Arango, H.G., Signell, R.P., Performance of four turbulence closure models implemented using a generic length scale method (2005) Ocean Model., 8, pp. 81-113Smagorinsky, J., General circulation experiments with primitive equations 1: The basic experiment (1963) Mon. Weather Rev., 91, pp. 99-164Roc, T., Conley, D.C., Greaves, D., Methodology for tidal turbine representation in ocean circulation model (2013) Renew. Energy, 51, pp. 448-464Yang, Z., Wang, T., Copping, A.E., Modeling tidal stream energy extraction and its effects on transport processes in a tidal channel and bay system using a three-dimensional coastal ocean model (2013) Renew. Energy, 50, pp. 605-613Chen, C., Cowles, G., Beardsley, R.C., An Unstructured Grid, Finite-volume Coastal Ocean Model: FVCOM User Manual (2004), Technical Report-04-0601 183 ppMyers, L.E., Bahaj, A.S., Experimental analysis of the flow field around horizontal axis tidal turbines by use of scale mesh disk rotor simulators (2010) Ocean Eng., 37, pp. 218-227Whelan, J.I., Graham, J.M.R., Peiró, J., A free-surface and blockage correction for tidal turbines (2009) J. Fluid Mech., 624, pp. 281-291Myers, L.E., Bahaj, A.S., Near wake properties of horizontal axis marine current turbines (2009) 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, pp. 558-565Neary, V.S., Gunawan, B., Hill, C., Chamorro, L.P., Wake Flow Recovery Downstream of a 1:10 Scale Axial Flow Hydrokinetic Turbine Measured with Pulse-coherent Acoustic Doppler Profiler (PC-ADP) (2012), ORNL/TML-2012 12 ppRoache, P.J., Perspective: a method for uniform reporting of grid refinement studies (1994) J. Fluids Eng., 116, pp. 405-413Myers, L.E., Bahaj, A.S., Rawlinson-Smith, R.I., Thomson, M., The effect of boundary proximity upon the wake structures of horizontal axis marine current turbines (2008) 27th International Conference on Offshore Mechanics and Artic Engineering, ASME, Estoril, Portugal, pp. 709-719Harrison, M.E., Batten, W.M.J., Myers, L.E., Bahaj, A.S., A comparison between CFD simulations and experiments for predicting the far wake of horizontal axis tidal turbines (2009) 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, pp. 566-575Myers, L., Bahaj, A.S., Near wake properties of horizontal axis marine current turbines (2009) 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, pp. 558-565Batten, W.M.J., Harrison, M.E., Bahaj, A.S., Accuracy of the actuator disc-RANS approach for predicting the performance and wake of tidal turbines (2013) Phil. Trans. R. Soc. A, 371, p. 20120293Neary, V.S., Gunawan, B., Hill, C., Chamorro, L.P., Near and far field flow disturbances induced by model hydrokinetic turbine: ADV and ADP comparison (2013) Renew. Energy, 60, pp. 1-6Bahaj, A.-B.S., Myers, L.E., Thomson, M.D., Jorge, N., Characterising the wake of a horizontal axis marine turbine (2007) 7th European Wave and Tidal Energy Conference, Porto, Portugal, pp. 1-9Doherty, J.E., Model-independent Parameter Estimation User Manual Part II: PEST Utility Support Software (2016), PEST Addendum, Brisbane, Australia 226, ppDoherty, J.E., Model-independent Parameter Estimation User Manual Part I: PEST, SENSAN and Global Optimisers (2016), PEST Manual, Brisbane, Australia 390, ppJames, S.C., Doherty, J.E., Eddebbarh, A.-A., Practical postcalibration uncertainty analysis: Yucca Mountain, Nevada (2009) Ground Water, 47, pp. 851-869Stallard, T., Collings, R., Feng, T., Whelan, J., Interactions between tidal turbine wakes: experimental study of a group of three-bladed rotors (2013) Phil. Trans. R. Soc. A, 371, p. 20120159Nelson, K., James, S.C., Roberts, J.D., Jones, C.A., A framework for determining improved placement of current energy converters subject to environmental constraints (2017) Int. J. Sustain. Energy, pp. 1-15. , http://www.tandfonline.com/doi/abs/10.1080/14786451.2017.1334654?journalCode=gsol20O'Donncha, F., Ragnoli, E., Venugopal, S., James, S.C., Katrinis, K., On the efficiency of executing hydro-environmental models on Cloud (2016) Procedia Eng., 154, pp. 199-206Gunawan, B., Neary, V.S., Grovue, S., Mortensen, J., Heiner, B., Field measurement test plan to determine effects of hydrokinetic turbine deployment on canal test site in Yakima, WA, USA (2014) 2nd Marine Energy Technology Symposium, METS2014, Seattle, WA, pp. 1-8Gunawan, B., Roberts, J., Neary, V.S., Hydrodynamic effects of hydrokinetic turbine deployment in an irrigation canal (2015) 3rd Marine Energy Technology Symposium, METS2015, Washington, DCDoherty, J.E., Welter, D.E., A short exploration of structural noise (2010) Water Resour. Res., 46. , W05525Blackmore, T., Batten, W.M.J., Bahaj, A.S., Influence of turbulence on the wake of a marine current turbine simulator (2014) Proc. R. Soc. A Math. Phys. Eng. Sci., 470. , 20140331Craig, P.M., User's Manual for EFDC_Explorer: A Pre/Post Processor for the Environmental Fluid Dynamics Code (2016), EFDC_Explorer 2016 391 ppRenewable EnergyCurrent-energy conversionMarine renewable energyNumerical modelingSNL-EFDCEnergy conversionNumerical modelsOcean currentsTidal powerTurbulence modelsWakesWater qualityCurrent energyEnvironmental fluid dynamics codeMarine renewable energySandia National LaboratoriesSNL-EFDCThree-dimensional modelTurbulence measurementsTurbulence parametersParameter estimationSimulating current-energy converters: SNL-EFDC model development, verification, and parameter estimationArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1James, S.C., Baylor University, Departments of Geosciences & Mechanical Engineering, One Bear Place #97354, Waco, TX, United States; Johnson, E.L., Montana State University, Department of Mechanical & Industrial Engineering, 220 Roberts Hall, PO Box 173800, Bozeman, MT, United States; Barco, J., Facultad de Ingeniería, Universidad de Medellín, Carrera 87 N° 30-65, Medellín, Colombia; Roberts, J.D., Sandia National Laboratories, Water Power Technologies Department, 1515 Eubank SE, Albuquerque, NM MS 1124, United Stateshttp://purl.org/coar/access_right/c_16ecJames S.C.Johnson E.L.Barco J.Roberts J.D.11407/5744oai:repository.udem.edu.co:11407/57442020-05-27 18:14:23.559Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |