Cerebral Cortex Atlas of Emotional States Through EEG Processing
This paper addresses the cerebral cortex maps construction from EEG signals getting an information simplification method for an emotional state phenomenon description. Bi-dimensional density distribution of main signal features are identified and a comparison to a previous approach is presented. Fea...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5747
- Acceso en línea:
- http://hdl.handle.net/11407/5747
- Palabra clave:
- Atlas
Cerebral cortex
EEG
Emotion
Feature selection
Biomedical engineering
Biophysics
Decision trees
Discrete wavelet transforms
Electroencephalography
Signal processing
Atlas
Cerebral cortex
Density distributions
Emotion
Feature selection methods
Random forest classifier
Simplification method
Stationary wavelet transforms
Feature extraction
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_dbe83445cc343733a49745daaae3b5ef |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5747 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Cerebral Cortex Atlas of Emotional States Through EEG Processing |
title |
Cerebral Cortex Atlas of Emotional States Through EEG Processing |
spellingShingle |
Cerebral Cortex Atlas of Emotional States Through EEG Processing Atlas Cerebral cortex EEG Emotion Feature selection Biomedical engineering Biophysics Decision trees Discrete wavelet transforms Electroencephalography Signal processing Atlas Cerebral cortex Density distributions Emotion Feature selection methods Random forest classifier Simplification method Stationary wavelet transforms Feature extraction |
title_short |
Cerebral Cortex Atlas of Emotional States Through EEG Processing |
title_full |
Cerebral Cortex Atlas of Emotional States Through EEG Processing |
title_fullStr |
Cerebral Cortex Atlas of Emotional States Through EEG Processing |
title_full_unstemmed |
Cerebral Cortex Atlas of Emotional States Through EEG Processing |
title_sort |
Cerebral Cortex Atlas of Emotional States Through EEG Processing |
dc.subject.none.fl_str_mv |
Atlas Cerebral cortex EEG Emotion Feature selection Biomedical engineering Biophysics Decision trees Discrete wavelet transforms Electroencephalography Signal processing Atlas Cerebral cortex Density distributions Emotion Feature selection methods Random forest classifier Simplification method Stationary wavelet transforms Feature extraction |
topic |
Atlas Cerebral cortex EEG Emotion Feature selection Biomedical engineering Biophysics Decision trees Discrete wavelet transforms Electroencephalography Signal processing Atlas Cerebral cortex Density distributions Emotion Feature selection methods Random forest classifier Simplification method Stationary wavelet transforms Feature extraction |
description |
This paper addresses the cerebral cortex maps construction from EEG signals getting an information simplification method for an emotional state phenomenon description. Bi-dimensional density distribution of main signal features are identified and a comparison to a previous approach is presented. Feature extraction scheme is performed via windowed EEG signals Stationary Wavelet Transform with the Daubechies Family (1-10); nine temporal and spectral descriptors are computed from the decomposed signal. Recursive feature selection method based on training a Random forest classifier using a one-vs-all scheme with the full features space, then a ranking procedure via gini importance, eliminating the bottom features and restarting the entire process over the new subset. Stopping criteria is the maximum accuracy. The main contribution is the analysis of the resulting subset features as a proxy for cerebral cortex maps looking for the cognitive processes understanding from surface signals. Identifying the common location of different emotional states in the central and frontal lobes, allowing to be strong parietal and temporal lobes differentiators for different emotions. © 2020, Springer Nature Switzerland AG. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-04-29T14:53:52Z |
dc.date.available.none.fl_str_mv |
2020-04-29T14:53:52Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Conference Paper |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.isbn.none.fl_str_mv |
9783030306472 |
dc.identifier.issn.none.fl_str_mv |
16800737 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5747 |
dc.identifier.doi.none.fl_str_mv |
10.1007/978-3-030-30648-9_19 |
identifier_str_mv |
9783030306472 16800737 10.1007/978-3-030-30648-9_19 |
url |
http://hdl.handle.net/11407/5747 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075694660&doi=10.1007%2f978-3-030-30648-9_19&partnerID=40&md5=6541319a548e588e0d7f8ff1c717af63 |
dc.relation.citationvolume.none.fl_str_mv |
75 |
dc.relation.citationstartpage.none.fl_str_mv |
138 |
dc.relation.citationendpage.none.fl_str_mv |
144 |
dc.relation.references.none.fl_str_mv |
Chaparro, V., Gomez, A., Salgado, A., Quintero, O.L., Lopez, N., Villa, L.F., Emotion recognition from EEG and facial expressions: A multimodal approach (2018) IEEE Engineering in Medicine and Biology Society (EMBS) Chen, M., Han, J., Guo, L., Wang, J., Patras, I., Identifying valence and arousal levels via connectivity between EEG channels (2015) 2015 International Conference on Affective Computing and Intelligent Interaction, pp. 63-69. , ACII 2015, pp Gómez, A., Quintero, L., López, N., Castro, J., An approach to emotion recognition in single-channel EEG signals: A mother child interaction (2016) J. Phys.: Conf. Ser., 705 (1) Gómez, A., Quintero, L., López, N., Castro, J., Villa, L., Mejía, G., An approach to emotion recognition in single-channel EEG signals using stationary wavelet transform (2017) In: IFMBE Proceedings, Claib, 2016, pp. 654-657. , pp Guyon, I., Weston, J., Barnhill, S., Vapnik, V., Gene selection for cancer classification using support vector machines (2002) Mach. Learn., 46 (1-3), pp. 389-422 Kragel, P.A., Labar, K.S., Decoding the nature of emotion in the brain (2016) Trends Cogn. Sci., 20, pp. 1-12 Menze, B.H., Kelm, B.M., Masuch, R., Himmelreich, U., Bachert, P., Petrich, W., Hamprecht, F.A., A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data (2009) BMC Bioinform, 10 (1), p. 213 Restrepo, D., Gomez, A., Short research advanced project: Development of strategies for automatic facial feature extraction and emotion recognition (2017) 2017 IEEE 3Rd Colombian Conference on Automatic Control (CCAC), pp. 1-6. , pp., IEEE, October Scherer, R., Moitzi, G., Daly, I., Muller-Putz, G.R., On the use of games for non-invasive EEG-based functional brain mapping (2013) IEEE Trans. Comput. Intell. AI Games, 5 (2), pp. 155-163 Tracy, J.L., Randles, D., Four models of basic emotions: A review of Ekman and Cordaro, Izard, Levenson, and Panksepp and Watt (2011) Emot. Rev., 3 (4), pp. 397-405 Uribe, A., Gomez, A., Bastidas, M., Quintero, O.L., Campo, D., A novel emotion recognition technique from voiced-speech (2017) 2017 IEEE 3Rd Colombian Conference on Automatic Control (CCAC), pp. 1-4. , pp., IEEE, October Zheng, W., Multichannel EEG-based emotion recognition via group sparse canonical correlation analysis (2017) IEEE Trans. Cogn. Dev. Syst., 9 (3), pp. 281-290 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Springer |
dc.publisher.program.none.fl_str_mv |
Ingeniería de Sistemas |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingenierías |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
IFMBE Proceedings |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159150270119936 |
spelling |
20202020-04-29T14:53:52Z2020-04-29T14:53:52Z978303030647216800737http://hdl.handle.net/11407/574710.1007/978-3-030-30648-9_19This paper addresses the cerebral cortex maps construction from EEG signals getting an information simplification method for an emotional state phenomenon description. Bi-dimensional density distribution of main signal features are identified and a comparison to a previous approach is presented. Feature extraction scheme is performed via windowed EEG signals Stationary Wavelet Transform with the Daubechies Family (1-10); nine temporal and spectral descriptors are computed from the decomposed signal. Recursive feature selection method based on training a Random forest classifier using a one-vs-all scheme with the full features space, then a ranking procedure via gini importance, eliminating the bottom features and restarting the entire process over the new subset. Stopping criteria is the maximum accuracy. The main contribution is the analysis of the resulting subset features as a proxy for cerebral cortex maps looking for the cognitive processes understanding from surface signals. Identifying the common location of different emotional states in the central and frontal lobes, allowing to be strong parietal and temporal lobes differentiators for different emotions. © 2020, Springer Nature Switzerland AG.engSpringerIngeniería de SistemasFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075694660&doi=10.1007%2f978-3-030-30648-9_19&partnerID=40&md5=6541319a548e588e0d7f8ff1c717af6375138144Chaparro, V., Gomez, A., Salgado, A., Quintero, O.L., Lopez, N., Villa, L.F., Emotion recognition from EEG and facial expressions: A multimodal approach (2018) IEEE Engineering in Medicine and Biology Society (EMBS)Chen, M., Han, J., Guo, L., Wang, J., Patras, I., Identifying valence and arousal levels via connectivity between EEG channels (2015) 2015 International Conference on Affective Computing and Intelligent Interaction, pp. 63-69. , ACII 2015, ppGómez, A., Quintero, L., López, N., Castro, J., An approach to emotion recognition in single-channel EEG signals: A mother child interaction (2016) J. Phys.: Conf. Ser., 705 (1)Gómez, A., Quintero, L., López, N., Castro, J., Villa, L., Mejía, G., An approach to emotion recognition in single-channel EEG signals using stationary wavelet transform (2017) In: IFMBE Proceedings, Claib, 2016, pp. 654-657. , ppGuyon, I., Weston, J., Barnhill, S., Vapnik, V., Gene selection for cancer classification using support vector machines (2002) Mach. Learn., 46 (1-3), pp. 389-422Kragel, P.A., Labar, K.S., Decoding the nature of emotion in the brain (2016) Trends Cogn. Sci., 20, pp. 1-12Menze, B.H., Kelm, B.M., Masuch, R., Himmelreich, U., Bachert, P., Petrich, W., Hamprecht, F.A., A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data (2009) BMC Bioinform, 10 (1), p. 213Restrepo, D., Gomez, A., Short research advanced project: Development of strategies for automatic facial feature extraction and emotion recognition (2017) 2017 IEEE 3Rd Colombian Conference on Automatic Control (CCAC), pp. 1-6. , pp., IEEE, OctoberScherer, R., Moitzi, G., Daly, I., Muller-Putz, G.R., On the use of games for non-invasive EEG-based functional brain mapping (2013) IEEE Trans. Comput. Intell. AI Games, 5 (2), pp. 155-163Tracy, J.L., Randles, D., Four models of basic emotions: A review of Ekman and Cordaro, Izard, Levenson, and Panksepp and Watt (2011) Emot. Rev., 3 (4), pp. 397-405Uribe, A., Gomez, A., Bastidas, M., Quintero, O.L., Campo, D., A novel emotion recognition technique from voiced-speech (2017) 2017 IEEE 3Rd Colombian Conference on Automatic Control (CCAC), pp. 1-4. , pp., IEEE, OctoberZheng, W., Multichannel EEG-based emotion recognition via group sparse canonical correlation analysis (2017) IEEE Trans. Cogn. Dev. Syst., 9 (3), pp. 281-290IFMBE ProceedingsAtlasCerebral cortexEEGEmotionFeature selectionBiomedical engineeringBiophysicsDecision treesDiscrete wavelet transformsElectroencephalographySignal processingAtlasCerebral cortexDensity distributionsEmotionFeature selection methodsRandom forest classifierSimplification methodStationary wavelet transformsFeature extractionCerebral Cortex Atlas of Emotional States Through EEG ProcessingConference Paperinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Gómez, A., Mathematical Modelling, Universidad EAFIT, Medellín, Colombia; Quintero, O.L., Mathematical Modelling, Universidad EAFIT, Medellín, Colombia; Lopez-Celani, N., Gabinete de Tecnologia Medica - CONICET, Universidad Nacional de San Juan, San Juan, Argentina; Villa, L.F., Arkadius, Universidad de Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecGómez A.Quintero O.L.Lopez-Celani N.Villa L.F.11407/5747oai:repository.udem.edu.co:11407/57472020-05-27 16:32:41.623Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |