Fibrillatory conduction in a simulated two-dimensional model of human atrial tissue: effect of the interaction of two ectopic foci
Atrial fibrillation (AF) is the most common tachyarrhythmia. It has been demonstrated that extra-stimuli could act as triggers for AF. In many patients it is possible that multiple ectopic foci co-exist, and their interactions may generate complex conduction patterns. Our goal is to investigate the...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/6076
- Acceso en línea:
- http://hdl.handle.net/11407/6076
- Palabra clave:
- ectopic activity
fibrillatory conduction
Two-dimensional atrial model
Anisotropy
Electrophysiology
Tissue
Atrial fibrillation
Atrial models
Conduction patterns
Conduction velocity
Electrical remodeling
Fibrillatory conduction
Pattern Generation
Two dimensional model
Tissue engineering
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_da01ad50ecfd3acc96089a0e4070325d |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/6076 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Fibrillatory conduction in a simulated two-dimensional model of human atrial tissue: effect of the interaction of two ectopic foci |
title |
Fibrillatory conduction in a simulated two-dimensional model of human atrial tissue: effect of the interaction of two ectopic foci |
spellingShingle |
Fibrillatory conduction in a simulated two-dimensional model of human atrial tissue: effect of the interaction of two ectopic foci ectopic activity fibrillatory conduction Two-dimensional atrial model Anisotropy Electrophysiology Tissue Atrial fibrillation Atrial models Conduction patterns Conduction velocity Electrical remodeling Fibrillatory conduction Pattern Generation Two dimensional model Tissue engineering |
title_short |
Fibrillatory conduction in a simulated two-dimensional model of human atrial tissue: effect of the interaction of two ectopic foci |
title_full |
Fibrillatory conduction in a simulated two-dimensional model of human atrial tissue: effect of the interaction of two ectopic foci |
title_fullStr |
Fibrillatory conduction in a simulated two-dimensional model of human atrial tissue: effect of the interaction of two ectopic foci |
title_full_unstemmed |
Fibrillatory conduction in a simulated two-dimensional model of human atrial tissue: effect of the interaction of two ectopic foci |
title_sort |
Fibrillatory conduction in a simulated two-dimensional model of human atrial tissue: effect of the interaction of two ectopic foci |
dc.subject.spa.fl_str_mv |
ectopic activity fibrillatory conduction Two-dimensional atrial model |
topic |
ectopic activity fibrillatory conduction Two-dimensional atrial model Anisotropy Electrophysiology Tissue Atrial fibrillation Atrial models Conduction patterns Conduction velocity Electrical remodeling Fibrillatory conduction Pattern Generation Two dimensional model Tissue engineering |
dc.subject.keyword.eng.fl_str_mv |
Anisotropy Electrophysiology Tissue Atrial fibrillation Atrial models Conduction patterns Conduction velocity Electrical remodeling Fibrillatory conduction Pattern Generation Two dimensional model Tissue engineering |
description |
Atrial fibrillation (AF) is the most common tachyarrhythmia. It has been demonstrated that extra-stimuli could act as triggers for AF. In many patients it is possible that multiple ectopic foci co-exist, and their interactions may generate complex conduction patterns. Our goal is to investigate the influence of the focus frequency, conduction velocity, and anisotropy on fibrillatory pattern generation during the interaction of multiple ectopic activities under electrical remodeling conditions. Our results support the broadly accepted theory that ectopic activity acting in remodeled tissue is an initiator of reentrant mechanisms. These reentrant circuits can generate fibrillatory activity when interacting with other rapid ectopic foci and under the following conditions: high ectopic focus frequency, slow conduction velocity, and anisotropic tissue. Analyses of electrogram polymorphism allow determination of which zones of tissue permit one to know in which zone of tissue unstable activity exists. Our results give useful insights into the electrophysiological parameters that determine the initiation and maintenance of fibrillatory conduction by two ectopic foci interaction in a simulated two-dimensional sheet of human atrial cells, under chronic AF conditions. © The Author(s) 2018. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:59:10Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:59:10Z |
dc.date.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
375497 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/6076 |
dc.identifier.doi.none.fl_str_mv |
10.1177/0037549718782401 |
identifier_str_mv |
375497 10.1177/0037549718782401 |
url |
http://hdl.handle.net/11407/6076 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049863457&doi=10.1177%2f0037549718782401&partnerID=40&md5=9f33b0ab12b0fd3f7d6c0929d31d6a05 |
dc.relation.citationvolume.none.fl_str_mv |
95 |
dc.relation.citationissue.none.fl_str_mv |
7 |
dc.relation.citationstartpage.none.fl_str_mv |
577 |
dc.relation.citationendpage.none.fl_str_mv |
591 |
dc.relation.references.none.fl_str_mv |
Fuster, V., Rydén, L.E., Cannom, D.S., ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation (2006) Circulation, 114, pp. 700-752 Stewart, S., Hart, C.L., Hole, D.J., A population-based study of the long-term risks associated with atrial fibrillation: 20-year follow-up of the Renfrew/Paisley study (2002) Am J Med, 113, pp. 359-364 Wolf, P.A., Abbott, R.D., Kannel, W.B., Atrial fibrillation as an independent risk factor for stroke: the Framingham Study (1991) Stroke, 22, pp. 983-988 Krahn, A.D., Manfreda, J., Tate, R.B., The natural history of atrial fibrillation: incidence, risk factors, and prognosis in the manitoba follow-up study (1995) Am J Med, 98, pp. 476-484 Zoni-Berisso, M., Lercari, F., Carazza, T., Epidemiology of atrial fibrillation: European perspective (2014) Clin Epidemiol, 6, pp. 213-220 Corradi, D., Atrial fibrillation from the pathologist’s perspective (2014) Cardiovasc Pathol, pp. 71-84. , 23(2 Kishore, A., Vail, A., Majid, A., Detection of atrial fibrillation after ischemic stroke or transient ischemic attack:aA systematic review and meta-analysis (2014) Stroke, pp. 520-526. , 45 Knecht, S., Oelschläger, C., Duning, T., Atrial fibrillation in stroke-free patients is associated with memory impairment and hippocampal atrophy (2008) Eur Heart J, 29, pp. 2125-2132 Thrall, G., Lane, D., Carroll, D., Quality of life in patients with atrial fibrillation: a systematic review (2006) Am J Med, 119. , 448.e1–19 Steinberg, B.A., Kim, S., Fonarow, G.C., Drivers of hospitalization for patients with atrial fibrillation: results from the Outcomes Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF) (2014) Am Heart J, 167, pp. 735-742 Kirchhof, P., Benussi, S., Kotecha, D., 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS (2016) Europace, pp. 1609-1678. , 18(11 Haissaguerre, M., Jais, P., Shah, D.C., Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins (1998) N Engl J Med, 339, pp. 659-666 Chen, S.A., Hsieh, M.H., Tai, C.T., Initiation of atrial fibrillation by ectopic beats originating from the pulmonary veins: electrophysiological characteristics, pharmacological responses, and effects of radiofrequency ablation (1999) Circulation, 100, pp. 1879-1886 Chen, Y.J., Chen, S.A., Chang, M.S., Arrhythmogenic activity of cardiac muscle in pulmonary veins of the dog: Implication for the genesis of atrial fibrillation (2000) Cardiovasc Res, 48, pp. 265-273 Nattel, S., Burstein, B., Dobrev, D., Atrial remodeling and atrial fibrillation: mechanisms and implications (2008) Circulat Arrhyth Electrophysiol, pp. 62-73. , 1 de Vos, C.B., Pisters, R., Nieuwlaat, R., Progression from paroxysmal to persistent atrial fibrillation. Clinical correlates and prognosis (2010) J Am Coll Cardiol, 55, pp. 725-731 De Groot, N.M.S., Schalij, M.J., Fragmented, long-duration, low-amplitude electrograms characterize the origin of focal atrial tachycardia (2006) J Cardiovasc Electrophysiol, 17, pp. 1086-1092 Pison, L., Tilz, R., Jalife, J., Pulmonary vein triggers, focal sources, rotors and atrial cardiomyopathy: Implications for the choice of the most effective ablation therapy (2016) J Intern Med, 279, pp. 449-456 Sanders, P., Berenfeld, O., Hocini, M., Spectral analysis identifies sites of high-frequency activity maintaining atrial fibrillation in humans (2005) Circulation, 112, pp. 789-797 Hansen, B.J., Zhao, J., Csepe, T.A., Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts (2015) Eur Heart J, 36, pp. 2390-2401 Narayan, S.M., Krummen, D.E., Shivkumar, K., Treatment of atrial fibrillation by the ablation of localized sources (2012) J Am Coll Cardiol, 60, pp. 628-636 Mandapati, R., Skanes, A., Chen, J., Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart (2000) Circulation, 101, pp. 194-199 Mansour, M., Mandapati, R., Berenfeld, O., Left-to-right gradient of atrial frequencies during acute atrial fibrillation in the isolated sheep heart (2001) Circulation, 103, pp. 2631-2636 Jalife, J., Rotors and spiral waves in atrial fibrillation (2003) J Cardiovasc Electrophysiol, 14, pp. 776-780 Reumann, M., Bohnert, J., Osswald, B., Multiple wavelets, rotors, and snakes in atrial fibrillation-a computer simulation study (2007) J Electrocardiol, 40, pp. 328-334 Ugarte, J., Orozco-Duque, A., Tobón, C., Dynamic approximate entropy electroanatomic maps detect rotors in a simulated atrial fibrillation model (2014) PLoS One, 9, p. e114577 Arora, R., Verheule, S., Scott, L., Arrhythmogenic substrate of the pulmonary veins assessed by high-resolution optical mapping (2003) Circulation, 107, pp. 1816-1821 Kumagai, K., Gondo, N., Matsumoto, N., New technique for simultaneous catheter mapping of pulmonary veins for catheter ablation in focal atrial fibrillation (2000) Cardiology, 94, pp. 233-238 Nanthakumar, K., Lau, Y.R., Plumb, V.J., Electrophysiological findings in adolescents with atrial fibrillation who have structurally normal hearts (2004) Circulation, 110, pp. 117-123 Lin, W.S., Tai, C.T., Hsieh, M.H., Catheter ablation of paroxysmal atrial fibrillation initiated by non-pulmonary vein ectopy (2003) Circulation, 107, pp. 3176-3183 Lee, S.H., Chen, S.A., Tai, C.T., Predictors of non-pulmonary vein ectopic beats initiating paroxysmal atrial fibrillation - implication for catheter ablation (2007) Acta Cardiologica Sinica, pp. 13-19. , 46(6 Bosch, R.F., Zeng, X., Grammer, J.B., Ionic mechanisms of electrical remodeling in human atrial fibrillation (1999) Cardiovasc Res, 44, pp. 121-131 Workman, A.J., Kane, K.A., Rankin, A.C., The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation (2001) Cardiovasc Res, 52, pp. 226-235 Wijffels, M.C., Kirchhof, C.J., Dorland, R., Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats (1995) Circulation, 92, pp. 1954-1968 Schotten, U., Verheule, S., Kirchhof, P., Pathophysiological mechanisms of atrial fibrillation: a translational appraisal (2011) Physiol Rev, 91, pp. 265-325 Veenhuyzen, G.D., Simpson, C.S., Abdollah, H., Atrial fibrillation (2004) Can Med Assoc J, 171, pp. 755-760 Weiss, J.N., Qu, Z., Shivkumar, K., Ablating atrial fibrillation: a translational science perspective for clinicians (2016) Heart Rhythm, 13, pp. 1868-1877 Jais, P., Haissaguerre, M., Shah, D.C., A focal source of atrial fibrillation treated by discrete radiofrequency ablation (1997) Circulation, pp. 572-576. , 95 Belhassen, B., Glick, A., Viskin, S., Reentry in a pulmonary vein as a possible mechanism of focal atrial fibrillation (2004) J Cardiovasc Electrophysiol, 15, pp. 824-828 Wilders, R., Wagner, M.B., Golod, D.A., Effects of anisotropy on the development of cardiac arrhythmias associated with focal activity (2000) Pflugers Arch Eur J Physiol, 441, pp. 301-312 Zhao, J., Butters, T.D., Zhang, H., An image-based model of atrial muscular architecture effects of structural anisotropy on electrical activation (2012) Circulat Arrhythmia Electrophysiol, 5, pp. 361-370 Aslanidi, O.V., Boyett, M.R., Dobrzynski, H., Mechanisms of transition from normal to reentrant electrical activity in a model of rabbit atrial tissue: interaction of tissue heterogeneity and anisotropy (2009) Biophys J, 96, pp. 798-817 Nygren, A., Fiset, C., Firek, L., Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization (1998) Circ Res, 82, pp. 63-81 Ho, S.Y., Sanchez-Quintana, D., Cabrera, J.A., Anatomy of the left atrium: implications for radiofrequency ablation of atrial fibrillation (1999) J Cardiovasc Electrophysiol, 10, pp. 1525-1533 Tobón, C., Orozco-Duque, A., Ugarte, J., Complexity of atrial fibrillation electrograms through nonlinear signal analysis: in silico approach (2017) Interpreting cardiac electrograms - from skin to endocardium, pp. 137-168. , Michael K.A., (ed), London, InTech, In:, (ed Takahashi, Y., Sanders, P., Jais, P., Organization of frequency spectra of atrial fibrillation: relevance to radiofrequency catheter ablation (2006) J Cardiovasc Electrophysiol, 17, pp. 382-388 Tobón, C., Rodríguez, J.F., Ferrero, J.M., Jr., Dominant frequency and organization index maps in a realistic three-dimensional computational model of atrial fibrillation (2012) Europace, 14. , v25-v32 Everett, T.H., Wilson, E.E., Verheule, S., Structural atrial remodeling alters the substrate and spatiotemporal organization of atrial fibrillation: a comparison in canine models of structural and electrical atrial remodeling (2006) Am J Physiol Heart Circ Physiol, 291. , H2911–23 Jais, P., Hocini, M., Macle, L., Distinctive electrophysiological properties of pulmonary veins in patients with atrial fibrillation (2002) Circulation, 106, pp. 2479-2485 Ikeda, T., Yashima, M., Uchida, T., Attachment of meandering reentrant wave fronts to anatomic obstacles in the atrium. Role of the obstacle size (1997) Circ Res, 81, pp. 753-764 Wieser, L., Nowak, C.N., Tilg, B., Mother rotor anchoring in branching tissue with heterogeneous membrane properties (2008) Biomed Tech, 53, pp. 25-35 Uno, K., Kumagai, K., Khrestian, C.M., New insights regarding the atrial flutter reentrant circuit: studies in the canine sterile pericarditis model (1999) Circulation, 100, pp. 1354-1360 Ryu, K., Shroff, S.C., Sahadevan, J., Mapping of atrial activation during sustained atrial fibrillation in dogs with rapid ventricular pacing induced heart failure: evidence for a role of driver regions (2005) J Cardiovasc Electrophysiol, 16, pp. 1348-1358 Vigmond, E.J., Tsoi, V., Kuo, S., The effect of vagally induced dispersion of action potential duration on atrial arrhythmogenesis (2004) Heart Rhythm, 1, pp. 334-344 Borek, B., Shajahan, T.K., Gabriels, J., Pacemaker interactions induce reentrant wave dynamics in engineered cardiac culture (2012) Chaos, 22. , 033132 Zhang, H., Liu, J.H., Garratt, C.J., Competitive interactions between ectopic foci and reentry in virtual human atrium (2005) Computers in cardiology, 32, pp. 73-76 Gong, Y., Xie, F., Stein, K.M., Mechanism underlying initiation of paroxysmal atrial flutter/atrial fibrillation by ectopic foci: a simulation study (2007) Circulation, 115, pp. 2094-2102 Konings, K.T., Smeets, J.L., Penn, O.C., Configuration of unipolar atrial electrograms during electrically induced atrial fibrillation in humans (1997) Circulation, 95, pp. 1231-1241 Ryu, K., Sahadevan, J., Khrestian, C.M., Use of fast fourier transform analysis of atrial electrograms for rapid characterization of atrial activation-implications for delineating possible mechanisms of atrial tachyarrhythmias (2006) J Cardiovasc Electrophysiol, 17, pp. 198-206 Skanes, A.C., Mandapati, R., Berenfeld, O., Spatiotemporal periodicity during atrial fibrillation in the isolated sheep heart (1998) Circulation, 98, pp. 1236-1248 Haissaguerre, M., Sanders, P., Hocini, M., Pulmonary veins in the substrate for atrial fibrillation: the “venous wave” hypothesis (2004) J Am Coll Cardiol, 43, pp. 2290-2292 Lin, L.J., Billette, J., Khalife, K., Characteristics, circuit, mechanism, and ablation of reentry in the rabbit atrioventricular node (1999) J Cardiovasc Electrophysiol, 10, pp. 954-964 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
SAGE Publications Ltd |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
SAGE Publications Ltd |
dc.source.none.fl_str_mv |
Simulation |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159131901165568 |
spelling |
20192021-02-05T14:59:10Z2021-02-05T14:59:10Z375497http://hdl.handle.net/11407/607610.1177/0037549718782401Atrial fibrillation (AF) is the most common tachyarrhythmia. It has been demonstrated that extra-stimuli could act as triggers for AF. In many patients it is possible that multiple ectopic foci co-exist, and their interactions may generate complex conduction patterns. Our goal is to investigate the influence of the focus frequency, conduction velocity, and anisotropy on fibrillatory pattern generation during the interaction of multiple ectopic activities under electrical remodeling conditions. Our results support the broadly accepted theory that ectopic activity acting in remodeled tissue is an initiator of reentrant mechanisms. These reentrant circuits can generate fibrillatory activity when interacting with other rapid ectopic foci and under the following conditions: high ectopic focus frequency, slow conduction velocity, and anisotropic tissue. Analyses of electrogram polymorphism allow determination of which zones of tissue permit one to know in which zone of tissue unstable activity exists. Our results give useful insights into the electrophysiological parameters that determine the initiation and maintenance of fibrillatory conduction by two ectopic foci interaction in a simulated two-dimensional sheet of human atrial cells, under chronic AF conditions. © The Author(s) 2018.engSAGE Publications LtdFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85049863457&doi=10.1177%2f0037549718782401&partnerID=40&md5=9f33b0ab12b0fd3f7d6c0929d31d6a05957577591Fuster, V., Rydén, L.E., Cannom, D.S., ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation (2006) Circulation, 114, pp. 700-752Stewart, S., Hart, C.L., Hole, D.J., A population-based study of the long-term risks associated with atrial fibrillation: 20-year follow-up of the Renfrew/Paisley study (2002) Am J Med, 113, pp. 359-364Wolf, P.A., Abbott, R.D., Kannel, W.B., Atrial fibrillation as an independent risk factor for stroke: the Framingham Study (1991) Stroke, 22, pp. 983-988Krahn, A.D., Manfreda, J., Tate, R.B., The natural history of atrial fibrillation: incidence, risk factors, and prognosis in the manitoba follow-up study (1995) Am J Med, 98, pp. 476-484Zoni-Berisso, M., Lercari, F., Carazza, T., Epidemiology of atrial fibrillation: European perspective (2014) Clin Epidemiol, 6, pp. 213-220Corradi, D., Atrial fibrillation from the pathologist’s perspective (2014) Cardiovasc Pathol, pp. 71-84. , 23(2Kishore, A., Vail, A., Majid, A., Detection of atrial fibrillation after ischemic stroke or transient ischemic attack:aA systematic review and meta-analysis (2014) Stroke, pp. 520-526. , 45Knecht, S., Oelschläger, C., Duning, T., Atrial fibrillation in stroke-free patients is associated with memory impairment and hippocampal atrophy (2008) Eur Heart J, 29, pp. 2125-2132Thrall, G., Lane, D., Carroll, D., Quality of life in patients with atrial fibrillation: a systematic review (2006) Am J Med, 119. , 448.e1–19Steinberg, B.A., Kim, S., Fonarow, G.C., Drivers of hospitalization for patients with atrial fibrillation: results from the Outcomes Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF) (2014) Am Heart J, 167, pp. 735-742Kirchhof, P., Benussi, S., Kotecha, D., 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS (2016) Europace, pp. 1609-1678. , 18(11Haissaguerre, M., Jais, P., Shah, D.C., Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins (1998) N Engl J Med, 339, pp. 659-666Chen, S.A., Hsieh, M.H., Tai, C.T., Initiation of atrial fibrillation by ectopic beats originating from the pulmonary veins: electrophysiological characteristics, pharmacological responses, and effects of radiofrequency ablation (1999) Circulation, 100, pp. 1879-1886Chen, Y.J., Chen, S.A., Chang, M.S., Arrhythmogenic activity of cardiac muscle in pulmonary veins of the dog: Implication for the genesis of atrial fibrillation (2000) Cardiovasc Res, 48, pp. 265-273Nattel, S., Burstein, B., Dobrev, D., Atrial remodeling and atrial fibrillation: mechanisms and implications (2008) Circulat Arrhyth Electrophysiol, pp. 62-73. , 1de Vos, C.B., Pisters, R., Nieuwlaat, R., Progression from paroxysmal to persistent atrial fibrillation. Clinical correlates and prognosis (2010) J Am Coll Cardiol, 55, pp. 725-731De Groot, N.M.S., Schalij, M.J., Fragmented, long-duration, low-amplitude electrograms characterize the origin of focal atrial tachycardia (2006) J Cardiovasc Electrophysiol, 17, pp. 1086-1092Pison, L., Tilz, R., Jalife, J., Pulmonary vein triggers, focal sources, rotors and atrial cardiomyopathy: Implications for the choice of the most effective ablation therapy (2016) J Intern Med, 279, pp. 449-456Sanders, P., Berenfeld, O., Hocini, M., Spectral analysis identifies sites of high-frequency activity maintaining atrial fibrillation in humans (2005) Circulation, 112, pp. 789-797Hansen, B.J., Zhao, J., Csepe, T.A., Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts (2015) Eur Heart J, 36, pp. 2390-2401Narayan, S.M., Krummen, D.E., Shivkumar, K., Treatment of atrial fibrillation by the ablation of localized sources (2012) J Am Coll Cardiol, 60, pp. 628-636Mandapati, R., Skanes, A., Chen, J., Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart (2000) Circulation, 101, pp. 194-199Mansour, M., Mandapati, R., Berenfeld, O., Left-to-right gradient of atrial frequencies during acute atrial fibrillation in the isolated sheep heart (2001) Circulation, 103, pp. 2631-2636Jalife, J., Rotors and spiral waves in atrial fibrillation (2003) J Cardiovasc Electrophysiol, 14, pp. 776-780Reumann, M., Bohnert, J., Osswald, B., Multiple wavelets, rotors, and snakes in atrial fibrillation-a computer simulation study (2007) J Electrocardiol, 40, pp. 328-334Ugarte, J., Orozco-Duque, A., Tobón, C., Dynamic approximate entropy electroanatomic maps detect rotors in a simulated atrial fibrillation model (2014) PLoS One, 9, p. e114577Arora, R., Verheule, S., Scott, L., Arrhythmogenic substrate of the pulmonary veins assessed by high-resolution optical mapping (2003) Circulation, 107, pp. 1816-1821Kumagai, K., Gondo, N., Matsumoto, N., New technique for simultaneous catheter mapping of pulmonary veins for catheter ablation in focal atrial fibrillation (2000) Cardiology, 94, pp. 233-238Nanthakumar, K., Lau, Y.R., Plumb, V.J., Electrophysiological findings in adolescents with atrial fibrillation who have structurally normal hearts (2004) Circulation, 110, pp. 117-123Lin, W.S., Tai, C.T., Hsieh, M.H., Catheter ablation of paroxysmal atrial fibrillation initiated by non-pulmonary vein ectopy (2003) Circulation, 107, pp. 3176-3183Lee, S.H., Chen, S.A., Tai, C.T., Predictors of non-pulmonary vein ectopic beats initiating paroxysmal atrial fibrillation - implication for catheter ablation (2007) Acta Cardiologica Sinica, pp. 13-19. , 46(6Bosch, R.F., Zeng, X., Grammer, J.B., Ionic mechanisms of electrical remodeling in human atrial fibrillation (1999) Cardiovasc Res, 44, pp. 121-131Workman, A.J., Kane, K.A., Rankin, A.C., The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation (2001) Cardiovasc Res, 52, pp. 226-235Wijffels, M.C., Kirchhof, C.J., Dorland, R., Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats (1995) Circulation, 92, pp. 1954-1968Schotten, U., Verheule, S., Kirchhof, P., Pathophysiological mechanisms of atrial fibrillation: a translational appraisal (2011) Physiol Rev, 91, pp. 265-325Veenhuyzen, G.D., Simpson, C.S., Abdollah, H., Atrial fibrillation (2004) Can Med Assoc J, 171, pp. 755-760Weiss, J.N., Qu, Z., Shivkumar, K., Ablating atrial fibrillation: a translational science perspective for clinicians (2016) Heart Rhythm, 13, pp. 1868-1877Jais, P., Haissaguerre, M., Shah, D.C., A focal source of atrial fibrillation treated by discrete radiofrequency ablation (1997) Circulation, pp. 572-576. , 95Belhassen, B., Glick, A., Viskin, S., Reentry in a pulmonary vein as a possible mechanism of focal atrial fibrillation (2004) J Cardiovasc Electrophysiol, 15, pp. 824-828Wilders, R., Wagner, M.B., Golod, D.A., Effects of anisotropy on the development of cardiac arrhythmias associated with focal activity (2000) Pflugers Arch Eur J Physiol, 441, pp. 301-312Zhao, J., Butters, T.D., Zhang, H., An image-based model of atrial muscular architecture effects of structural anisotropy on electrical activation (2012) Circulat Arrhythmia Electrophysiol, 5, pp. 361-370Aslanidi, O.V., Boyett, M.R., Dobrzynski, H., Mechanisms of transition from normal to reentrant electrical activity in a model of rabbit atrial tissue: interaction of tissue heterogeneity and anisotropy (2009) Biophys J, 96, pp. 798-817Nygren, A., Fiset, C., Firek, L., Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization (1998) Circ Res, 82, pp. 63-81Ho, S.Y., Sanchez-Quintana, D., Cabrera, J.A., Anatomy of the left atrium: implications for radiofrequency ablation of atrial fibrillation (1999) J Cardiovasc Electrophysiol, 10, pp. 1525-1533Tobón, C., Orozco-Duque, A., Ugarte, J., Complexity of atrial fibrillation electrograms through nonlinear signal analysis: in silico approach (2017) Interpreting cardiac electrograms - from skin to endocardium, pp. 137-168. , Michael K.A., (ed), London, InTech, In:, (edTakahashi, Y., Sanders, P., Jais, P., Organization of frequency spectra of atrial fibrillation: relevance to radiofrequency catheter ablation (2006) J Cardiovasc Electrophysiol, 17, pp. 382-388Tobón, C., Rodríguez, J.F., Ferrero, J.M., Jr., Dominant frequency and organization index maps in a realistic three-dimensional computational model of atrial fibrillation (2012) Europace, 14. , v25-v32Everett, T.H., Wilson, E.E., Verheule, S., Structural atrial remodeling alters the substrate and spatiotemporal organization of atrial fibrillation: a comparison in canine models of structural and electrical atrial remodeling (2006) Am J Physiol Heart Circ Physiol, 291. , H2911–23Jais, P., Hocini, M., Macle, L., Distinctive electrophysiological properties of pulmonary veins in patients with atrial fibrillation (2002) Circulation, 106, pp. 2479-2485Ikeda, T., Yashima, M., Uchida, T., Attachment of meandering reentrant wave fronts to anatomic obstacles in the atrium. Role of the obstacle size (1997) Circ Res, 81, pp. 753-764Wieser, L., Nowak, C.N., Tilg, B., Mother rotor anchoring in branching tissue with heterogeneous membrane properties (2008) Biomed Tech, 53, pp. 25-35Uno, K., Kumagai, K., Khrestian, C.M., New insights regarding the atrial flutter reentrant circuit: studies in the canine sterile pericarditis model (1999) Circulation, 100, pp. 1354-1360Ryu, K., Shroff, S.C., Sahadevan, J., Mapping of atrial activation during sustained atrial fibrillation in dogs with rapid ventricular pacing induced heart failure: evidence for a role of driver regions (2005) J Cardiovasc Electrophysiol, 16, pp. 1348-1358Vigmond, E.J., Tsoi, V., Kuo, S., The effect of vagally induced dispersion of action potential duration on atrial arrhythmogenesis (2004) Heart Rhythm, 1, pp. 334-344Borek, B., Shajahan, T.K., Gabriels, J., Pacemaker interactions induce reentrant wave dynamics in engineered cardiac culture (2012) Chaos, 22. , 033132Zhang, H., Liu, J.H., Garratt, C.J., Competitive interactions between ectopic foci and reentry in virtual human atrium (2005) Computers in cardiology, 32, pp. 73-76Gong, Y., Xie, F., Stein, K.M., Mechanism underlying initiation of paroxysmal atrial flutter/atrial fibrillation by ectopic foci: a simulation study (2007) Circulation, 115, pp. 2094-2102Konings, K.T., Smeets, J.L., Penn, O.C., Configuration of unipolar atrial electrograms during electrically induced atrial fibrillation in humans (1997) Circulation, 95, pp. 1231-1241Ryu, K., Sahadevan, J., Khrestian, C.M., Use of fast fourier transform analysis of atrial electrograms for rapid characterization of atrial activation-implications for delineating possible mechanisms of atrial tachyarrhythmias (2006) J Cardiovasc Electrophysiol, 17, pp. 198-206Skanes, A.C., Mandapati, R., Berenfeld, O., Spatiotemporal periodicity during atrial fibrillation in the isolated sheep heart (1998) Circulation, 98, pp. 1236-1248Haissaguerre, M., Sanders, P., Hocini, M., Pulmonary veins in the substrate for atrial fibrillation: the “venous wave” hypothesis (2004) J Am Coll Cardiol, 43, pp. 2290-2292Lin, L.J., Billette, J., Khalife, K., Characteristics, circuit, mechanism, and ablation of reentry in the rabbit atrioventricular node (1999) J Cardiovasc Electrophysiol, 10, pp. 954-964Simulationectopic activityfibrillatory conductionTwo-dimensional atrial modelAnisotropyElectrophysiologyTissueAtrial fibrillationAtrial modelsConduction patternsConduction velocityElectrical remodelingFibrillatory conductionPattern GenerationTwo dimensional modelTissue engineeringFibrillatory conduction in a simulated two-dimensional model of human atrial tissue: effect of the interaction of two ectopic fociArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Tobón, C., MATBIOM, Universidad de Medellín, ColombiaSaiz, J., CI2B, Universitat Politècnica de Valencia, Spainhttp://purl.org/coar/access_right/c_16ecTobón C.Saiz J.11407/6076oai:repository.udem.edu.co:11407/60762021-02-05 09:59:10.854Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |