Kalanchoe daigremontiana leaf extract: A green stabilizing agent in synthesis of Silver Nanoparticles

The synthesis of silver nanoparticles (AgNPs) has been increasingly extended due to its potential applications in fields such as optics, environmental, catalysis, electronics and as an antibacterial agent. In this way it is necessary to develop methods framed in green chemistry to achieve greater st...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5651
Acceso en línea:
http://hdl.handle.net/11407/5651
Palabra clave:
Engineering research
High resolution transmission electron microscopy
Metal nanoparticles
Silver nanoparticles
Absorbances
Green chemistry
In-field
Leaf extracts
Plasmon resonances
Silver nanoparticles (AgNps)
Stabilizing agents
Synthesis procedure
Synthesis (chemical)
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_d93b0daaf1cdf735f0ee462c5852b60f
oai_identifier_str oai:repository.udem.edu.co:11407/5651
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Kalanchoe daigremontiana leaf extract: A green stabilizing agent in synthesis of Silver Nanoparticles
title Kalanchoe daigremontiana leaf extract: A green stabilizing agent in synthesis of Silver Nanoparticles
spellingShingle Kalanchoe daigremontiana leaf extract: A green stabilizing agent in synthesis of Silver Nanoparticles
Engineering research
High resolution transmission electron microscopy
Metal nanoparticles
Silver nanoparticles
Absorbances
Green chemistry
In-field
Leaf extracts
Plasmon resonances
Silver nanoparticles (AgNps)
Stabilizing agents
Synthesis procedure
Synthesis (chemical)
title_short Kalanchoe daigremontiana leaf extract: A green stabilizing agent in synthesis of Silver Nanoparticles
title_full Kalanchoe daigremontiana leaf extract: A green stabilizing agent in synthesis of Silver Nanoparticles
title_fullStr Kalanchoe daigremontiana leaf extract: A green stabilizing agent in synthesis of Silver Nanoparticles
title_full_unstemmed Kalanchoe daigremontiana leaf extract: A green stabilizing agent in synthesis of Silver Nanoparticles
title_sort Kalanchoe daigremontiana leaf extract: A green stabilizing agent in synthesis of Silver Nanoparticles
dc.subject.none.fl_str_mv Engineering research
High resolution transmission electron microscopy
Metal nanoparticles
Silver nanoparticles
Absorbances
Green chemistry
In-field
Leaf extracts
Plasmon resonances
Silver nanoparticles (AgNps)
Stabilizing agents
Synthesis procedure
Synthesis (chemical)
topic Engineering research
High resolution transmission electron microscopy
Metal nanoparticles
Silver nanoparticles
Absorbances
Green chemistry
In-field
Leaf extracts
Plasmon resonances
Silver nanoparticles (AgNps)
Stabilizing agents
Synthesis procedure
Synthesis (chemical)
description The synthesis of silver nanoparticles (AgNPs) has been increasingly extended due to its potential applications in fields such as optics, environmental, catalysis, electronics and as an antibacterial agent. In this way it is necessary to develop methods framed in green chemistry to achieve greater stability over time of the AgNPs. The present work aims to show the synthesis of AgNPs using Kalanchoe daigremontiana leaf extract, as a reducing and stabilizing agent. UV-vis and transmission electron microscopy (TEM) were used to characterize AgNPs obtained. The absorbance of solutions was measured, evidencing of the formation of AgNPs due to the existence of plasmon resonance at that ?max ? 417 nm. The size distribution and morphology of the AgNPs by TEM shows stable, spherical and nomodispersar nanoparticles with a size between 4 and 12 nm. The measurements were carried out immediately after the synthesis procedure, then the AgNPs solutions were stored at room temperature and darkness by 27 months and it could be corroborated the stabilizing capacity of Kalanchoe daigremontiana leaf extract, since the ?max and the size of particle did not vary significatively in this period of time. © Published under licence by IOP Publishing Ltd.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:53:34Z
dc.date.available.none.fl_str_mv 2020-04-29T14:53:34Z
dc.date.none.fl_str_mv 2019
dc.type.eng.fl_str_mv Conference Paper
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 17426588
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5651
dc.identifier.doi.none.fl_str_mv 10.1088/1742-6596/1247/1/012019
identifier_str_mv 17426588
10.1088/1742-6596/1247/1/012019
url http://hdl.handle.net/11407/5651
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071703376&doi=10.1088%2f1742-6596%2f1247%2f1%2f012019&partnerID=40&md5=93a3c8a63c0fe157eb028bdc2b85a8bf
dc.relation.citationvolume.none.fl_str_mv 1247
dc.relation.citationissue.none.fl_str_mv 1
dc.relation.references.none.fl_str_mv Akter, M., Sikder, M.T., Rahman, M.M., Ullah, A.K.M.A., Hossain, K.F.B., Banik, S., Hosokawa, T., Kurasaki, M., A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives (2018) Journal of Advanced Research, 9, pp. 1-16
Gajbhiye, S., Sakharwade, S., Silver Nanoparticles in Cosmetics (2016) Journal of Cosmetics, Dermatological Sciences and Applications, 6 (1), pp. 48-53
Venkatesham, M., Ayodhya, D., Madhusudhan, A., Veera Babu, N., Veerabhadram, G., A novel green one-step synthesis of silver nanoparticles using chitosan: Catalytic activity and antimicrobial studies (2014) Applied Nanoscience, 4 (1), pp. 113-119
Haes, A.J., Zou, S., Schatz, G.C., Van Duyne, R.P., Nanoscale Optical Biosensor: Short Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles (2004) The Journal of Physical Chemistry B, 108 (22), pp. 6961-6968
Bankura, K.P., Maity, D., Mollick, M.M.R., Mondal, D., Bhowmick, B., Bain, M.K., Chakraborty, A., Chattopadhyay, D., Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium (2012) Carbohydrate Polymers, 89 (4), pp. 1159-1165
Gloria, E.C., Vélez, E., Morales, G., Hincapié, C., Osorio, J., Arnache, O., Ignacio Uribe, J., Jaramillo, F., Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity (2017) Journal of Physics: Conference Series, 850 (1)
Vélez, E., Campillo, G., Morales, G., Hincapié, C., Osorio, J., Arnache, O., Silver Nanoparticles Obtained by Aqueous or Ethanolic Aloe vera Extracts: An Assessment of the Antibacterial Activity and Mercury Removal Capability (2018) Journal of Nanomaterials, 2018, pp. 1-7. , 2018
Gardea-Torresdey, J.L., Gomez, E., Peralta-Videa, J.R., Parsons, J.G., Troiani, H., Jose-Yacaman, M., Alfalfa Sprouts: A Natural Source for the Synthesis of Silver Nanoparticles (2003) Langmuir, 19 (4), pp. 1357-1361
Ahmed, S., Ahmad, M., Swami, B.L., Ikram, S., A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise (2016) Journal of Advanced Research, 7 (1), pp. 17-28
Mulfinger, L., Solomon, S.D., Bahadory, M., Jeyarajasingam, A.V., Rutkowsky, S.A., Boritz, C., Synthesis and Study of Silver Nanoparticles (2007) Journal of Chemical Education, 84 (2), p. 322
Kumar, S.V., Bafana, A.P., Pawar, P., Rahman, A., Dahoumane, S.A., Jeffryes, C.S., High conversion synthesis of <10 nm starch-stabilized silver nanoparticles using microwave technology (2018) Scientific Reports, 8 (1), p. 5106
Vyas, J., Rana, S., Biosynthesis of Selenium Nanoparticles Using Aloe Vera Leaf Extract (2018) International Journal of Advanced Research, 6 (1), pp. 104-110
Pinto, V.V., Ferreira, M.J., Silva, R., Santos, H.A., Silva, F., Pereira, C.M., Long time effect on the stability of silver nanoparticles in aqueous medium: Effect of the synthesis and storage conditions (2010) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 364 (1-3), pp. 19-25
Link, S., El-Sayed, M.A., Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals (2000) International Reviews in Physical Chemistry, 19 (3), pp. 409-453
Sosa, I.O., Noguez, C., Barrera, R.G., Optical Properties of Metal Nanoparticles with Arbitrary Shapes (2003) The Journal of Physical Chemistry B, 107 (26), pp. 6269-6275
Pal, S., Tak, Y.K., Song, J.M., Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium <em>Escherichia coli</em&gt (2007) Applied and Environmental Microbiology, 73 (6), p. 1712
Ramalingam, K., Devasena, T., Senthil, B., Kalpana, R., Jayavel, R., (2017) Silver Nanoparticles for Melamine Detection in Milk Based on Transmitted Light Intensity, pp. 171-178. , (IET Science, Measurement amp
Technology, Institution of Engineering and Technology)
Rasband, B., (1997), http://imagej.nih.gov/ij/, W. S. ImageJ. U.S. National Institutes of Health, Md, USA
Bhattacharjee, S., DLS and zeta potential - What they are and what they are not? (2016) J Control Release, 235, pp. 337-351
Pavlin, M., Bregar, V.B., Stability of Nanoparticle Suspensions in Different Biologically Relevant Media (2012) Digest Journal of Nanomaterials and Biostructures, 7, pp. 1389-1400
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Institute of Physics Publishing
dc.publisher.program.none.fl_str_mv Ingeniería Ambiental
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas;Facultad de Ingenierías
publisher.none.fl_str_mv Institute of Physics Publishing
dc.source.none.fl_str_mv Journal of Physics: Conference Series
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159260882305024
spelling 20192020-04-29T14:53:34Z2020-04-29T14:53:34Z17426588http://hdl.handle.net/11407/565110.1088/1742-6596/1247/1/012019The synthesis of silver nanoparticles (AgNPs) has been increasingly extended due to its potential applications in fields such as optics, environmental, catalysis, electronics and as an antibacterial agent. In this way it is necessary to develop methods framed in green chemistry to achieve greater stability over time of the AgNPs. The present work aims to show the synthesis of AgNPs using Kalanchoe daigremontiana leaf extract, as a reducing and stabilizing agent. UV-vis and transmission electron microscopy (TEM) were used to characterize AgNPs obtained. The absorbance of solutions was measured, evidencing of the formation of AgNPs due to the existence of plasmon resonance at that ?max ? 417 nm. The size distribution and morphology of the AgNPs by TEM shows stable, spherical and nomodispersar nanoparticles with a size between 4 and 12 nm. The measurements were carried out immediately after the synthesis procedure, then the AgNPs solutions were stored at room temperature and darkness by 27 months and it could be corroborated the stabilizing capacity of Kalanchoe daigremontiana leaf extract, since the ?max and the size of particle did not vary significatively in this period of time. © Published under licence by IOP Publishing Ltd.engInstitute of Physics PublishingIngeniería AmbientalFacultad de Ciencias Básicas;Facultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85071703376&doi=10.1088%2f1742-6596%2f1247%2f1%2f012019&partnerID=40&md5=93a3c8a63c0fe157eb028bdc2b85a8bf12471Akter, M., Sikder, M.T., Rahman, M.M., Ullah, A.K.M.A., Hossain, K.F.B., Banik, S., Hosokawa, T., Kurasaki, M., A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives (2018) Journal of Advanced Research, 9, pp. 1-16Gajbhiye, S., Sakharwade, S., Silver Nanoparticles in Cosmetics (2016) Journal of Cosmetics, Dermatological Sciences and Applications, 6 (1), pp. 48-53Venkatesham, M., Ayodhya, D., Madhusudhan, A., Veera Babu, N., Veerabhadram, G., A novel green one-step synthesis of silver nanoparticles using chitosan: Catalytic activity and antimicrobial studies (2014) Applied Nanoscience, 4 (1), pp. 113-119Haes, A.J., Zou, S., Schatz, G.C., Van Duyne, R.P., Nanoscale Optical Biosensor: Short Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles (2004) The Journal of Physical Chemistry B, 108 (22), pp. 6961-6968Bankura, K.P., Maity, D., Mollick, M.M.R., Mondal, D., Bhowmick, B., Bain, M.K., Chakraborty, A., Chattopadhyay, D., Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium (2012) Carbohydrate Polymers, 89 (4), pp. 1159-1165Gloria, E.C., Vélez, E., Morales, G., Hincapié, C., Osorio, J., Arnache, O., Ignacio Uribe, J., Jaramillo, F., Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity (2017) Journal of Physics: Conference Series, 850 (1)Vélez, E., Campillo, G., Morales, G., Hincapié, C., Osorio, J., Arnache, O., Silver Nanoparticles Obtained by Aqueous or Ethanolic Aloe vera Extracts: An Assessment of the Antibacterial Activity and Mercury Removal Capability (2018) Journal of Nanomaterials, 2018, pp. 1-7. , 2018Gardea-Torresdey, J.L., Gomez, E., Peralta-Videa, J.R., Parsons, J.G., Troiani, H., Jose-Yacaman, M., Alfalfa Sprouts: A Natural Source for the Synthesis of Silver Nanoparticles (2003) Langmuir, 19 (4), pp. 1357-1361Ahmed, S., Ahmad, M., Swami, B.L., Ikram, S., A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise (2016) Journal of Advanced Research, 7 (1), pp. 17-28Mulfinger, L., Solomon, S.D., Bahadory, M., Jeyarajasingam, A.V., Rutkowsky, S.A., Boritz, C., Synthesis and Study of Silver Nanoparticles (2007) Journal of Chemical Education, 84 (2), p. 322Kumar, S.V., Bafana, A.P., Pawar, P., Rahman, A., Dahoumane, S.A., Jeffryes, C.S., High conversion synthesis of <10 nm starch-stabilized silver nanoparticles using microwave technology (2018) Scientific Reports, 8 (1), p. 5106Vyas, J., Rana, S., Biosynthesis of Selenium Nanoparticles Using Aloe Vera Leaf Extract (2018) International Journal of Advanced Research, 6 (1), pp. 104-110Pinto, V.V., Ferreira, M.J., Silva, R., Santos, H.A., Silva, F., Pereira, C.M., Long time effect on the stability of silver nanoparticles in aqueous medium: Effect of the synthesis and storage conditions (2010) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 364 (1-3), pp. 19-25Link, S., El-Sayed, M.A., Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals (2000) International Reviews in Physical Chemistry, 19 (3), pp. 409-453Sosa, I.O., Noguez, C., Barrera, R.G., Optical Properties of Metal Nanoparticles with Arbitrary Shapes (2003) The Journal of Physical Chemistry B, 107 (26), pp. 6269-6275Pal, S., Tak, Y.K., Song, J.M., Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium <em>Escherichia coli</em&gt (2007) Applied and Environmental Microbiology, 73 (6), p. 1712Ramalingam, K., Devasena, T., Senthil, B., Kalpana, R., Jayavel, R., (2017) Silver Nanoparticles for Melamine Detection in Milk Based on Transmitted Light Intensity, pp. 171-178. , (IET Science, Measurement ampTechnology, Institution of Engineering and Technology)Rasband, B., (1997), http://imagej.nih.gov/ij/, W. S. ImageJ. U.S. National Institutes of Health, Md, USABhattacharjee, S., DLS and zeta potential - What they are and what they are not? (2016) J Control Release, 235, pp. 337-351Pavlin, M., Bregar, V.B., Stability of Nanoparticle Suspensions in Different Biologically Relevant Media (2012) Digest Journal of Nanomaterials and Biostructures, 7, pp. 1389-1400Journal of Physics: Conference SeriesEngineering researchHigh resolution transmission electron microscopyMetal nanoparticlesSilver nanoparticlesAbsorbancesGreen chemistryIn-fieldLeaf extractsPlasmon resonancesSilver nanoparticles (AgNps)Stabilizing agentsSynthesis procedureSynthesis (chemical)Kalanchoe daigremontiana leaf extract: A green stabilizing agent in synthesis of Silver NanoparticlesConference Paperinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Morales, G., Facultad de Ingenierias, Universidad de Medellin, Medellin, Colombia; Campillo, G., Facultad de Ciencias Básicas, Universidad de Medellin, Medellin, Colombia; Vélez, E., Facultad de Ciencias Básicas, Universidad de Medellin, Medellin, Colombia; Urquijo, J., Facultad de Ingenierias, Universidad de Medellin, Medellin, Colombia; Hincapié, C., Facultad de Ciencias Básicas, Universidad de Medellin, Medellin, Colombia; Osorio, J., Instituto de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellin, No. 52-21, Colombiahttp://purl.org/coar/access_right/c_16ecMorales G.Campillo G.Vélez E.Urquijo J.Hincapié C.Osorio J.11407/5651oai:repository.udem.edu.co:11407/56512020-05-27 19:13:42.463Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co