Remote sensing analysis of belmira's paramo vegeatation with landsat imagery [Teledetección de la vegetación del páramo de belmira con imágenes landsat]

The purpose of this study is to distinguish the forest of Belmira's Páramo from other land cover classes. Three LANDSAT images are available (1996, 2002 and 2003). Remote sensing analysis of the vegetation coverage includes image correction and classification and validation process. The COS(t)...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2012
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/1333
Acceso en línea:
http://hdl.handle.net/11407/1333
Palabra clave:
Belmira's paramo
Classification
LANDSAT
Remote sensing analysis
Vegetation
Rights
restrictedAccess
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_d89fd0425d2d278ef2767ae3d80aa192
oai_identifier_str oai:repository.udem.edu.co:11407/1333
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
spelling 2015-10-09T13:16:47Z2015-10-09T13:16:47Z2012127353http://hdl.handle.net/11407/1333The purpose of this study is to distinguish the forest of Belmira's Páramo from other land cover classes. Three LANDSAT images are available (1996, 2002 and 2003). Remote sensing analysis of the vegetation coverage includes image correction and classification and validation process. The COS(t) model and the quadratic interpolation function were used for image correction. The iterative self-organizing cluster analysis is considered for image non supervised classification and the maximum likelihood classifier is taken into account for image supervised classification. 70 GPS land observations and the error matrix analysis, were used for validation process. The Result is a map for each image, with two land cover categories: forest & non-forest. Classification error is 2% and map-land observations correspondence is 80%. However, the presence of clouds and shadows affect the remote sensing accuracy.enghttp://www.scopus.com/inward/record.url?eid=2-s2.0-84866711664&partnerID=40&md5=385664d2bdea968fe18af89c0427b540DYNA (Colombia), 2012, volume 79, issue 171, pp 222-231ScopusRemote sensing analysis of belmira's paramo vegeatation with landsat imagery [Teledetección de la vegetación del páramo de belmira con imágenes landsat]Articleinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/access_right/c_16ecFacultad de Ciencias Económicas y Administrativas, Universidad de Medellín, ColombiaDe Mesa J.A.P.L.Belmira's paramoClassificationLANDSATRemote sensing analysisVegetationTHUMBNAIL21. Teledetección de la vegetación del páramo de belmira con imágenes landsat.pdf.jpg21. Teledetección de la vegetación del páramo de belmira con imágenes landsat.pdf.jpgIM Thumbnailimage/jpeg13248http://repository.udem.edu.co/bitstream/11407/1333/2/21.%20Teledetecci%c3%b3n%20de%20la%20vegetaci%c3%b3n%20del%20p%c3%a1ramo%20de%20belmira%20con%20im%c3%a1genes%20landsat.pdf.jpg677add0a249be3eeee03af1d03bb4608MD52ORIGINAL21. Teledetección de la vegetación del páramo de belmira con imágenes landsat.pdf21. Teledetección de la vegetación del páramo de belmira con imágenes landsat.pdfapplication/pdf1651123http://repository.udem.edu.co/bitstream/11407/1333/1/21.%20Teledetecci%c3%b3n%20de%20la%20vegetaci%c3%b3n%20del%20p%c3%a1ramo%20de%20belmira%20con%20im%c3%a1genes%20landsat.pdf79c1ea51c1d1beb057768c48ad3c6713MD5111407/1333oai:repository.udem.edu.co:11407/13332020-05-27 16:35:48.071Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co
dc.title.spa.fl_str_mv Remote sensing analysis of belmira's paramo vegeatation with landsat imagery [Teledetección de la vegetación del páramo de belmira con imágenes landsat]
title Remote sensing analysis of belmira's paramo vegeatation with landsat imagery [Teledetección de la vegetación del páramo de belmira con imágenes landsat]
spellingShingle Remote sensing analysis of belmira's paramo vegeatation with landsat imagery [Teledetección de la vegetación del páramo de belmira con imágenes landsat]
Belmira's paramo
Classification
LANDSAT
Remote sensing analysis
Vegetation
title_short Remote sensing analysis of belmira's paramo vegeatation with landsat imagery [Teledetección de la vegetación del páramo de belmira con imágenes landsat]
title_full Remote sensing analysis of belmira's paramo vegeatation with landsat imagery [Teledetección de la vegetación del páramo de belmira con imágenes landsat]
title_fullStr Remote sensing analysis of belmira's paramo vegeatation with landsat imagery [Teledetección de la vegetación del páramo de belmira con imágenes landsat]
title_full_unstemmed Remote sensing analysis of belmira's paramo vegeatation with landsat imagery [Teledetección de la vegetación del páramo de belmira con imágenes landsat]
title_sort Remote sensing analysis of belmira's paramo vegeatation with landsat imagery [Teledetección de la vegetación del páramo de belmira con imágenes landsat]
dc.contributor.affiliation.spa.fl_str_mv Facultad de Ciencias Económicas y Administrativas, Universidad de Medellín, Colombia
dc.subject.keyword.eng.fl_str_mv Belmira's paramo
Classification
LANDSAT
Remote sensing analysis
Vegetation
topic Belmira's paramo
Classification
LANDSAT
Remote sensing analysis
Vegetation
description The purpose of this study is to distinguish the forest of Belmira's Páramo from other land cover classes. Three LANDSAT images are available (1996, 2002 and 2003). Remote sensing analysis of the vegetation coverage includes image correction and classification and validation process. The COS(t) model and the quadratic interpolation function were used for image correction. The iterative self-organizing cluster analysis is considered for image non supervised classification and the maximum likelihood classifier is taken into account for image supervised classification. 70 GPS land observations and the error matrix analysis, were used for validation process. The Result is a map for each image, with two land cover categories: forest & non-forest. Classification error is 2% and map-land observations correspondence is 80%. However, the presence of clouds and shadows affect the remote sensing accuracy.
publishDate 2012
dc.date.created.none.fl_str_mv 2012
dc.date.accessioned.none.fl_str_mv 2015-10-09T13:16:47Z
dc.date.available.none.fl_str_mv 2015-10-09T13:16:47Z
dc.type.eng.fl_str_mv Article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 127353
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/1333
identifier_str_mv 127353
url http://hdl.handle.net/11407/1333
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv http://www.scopus.com/inward/record.url?eid=2-s2.0-84866711664&partnerID=40&md5=385664d2bdea968fe18af89c0427b540
dc.relation.ispartofen.eng.fl_str_mv DYNA (Colombia), 2012, volume 79, issue 171, pp 222-231
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
bitstream.url.fl_str_mv http://repository.udem.edu.co/bitstream/11407/1333/2/21.%20Teledetecci%c3%b3n%20de%20la%20vegetaci%c3%b3n%20del%20p%c3%a1ramo%20de%20belmira%20con%20im%c3%a1genes%20landsat.pdf.jpg
http://repository.udem.edu.co/bitstream/11407/1333/1/21.%20Teledetecci%c3%b3n%20de%20la%20vegetaci%c3%b3n%20del%20p%c3%a1ramo%20de%20belmira%20con%20im%c3%a1genes%20landsat.pdf
bitstream.checksum.fl_str_mv 677add0a249be3eeee03af1d03bb4608
79c1ea51c1d1beb057768c48ad3c6713
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159153971593216