Adsorption of Cadmium Using Biochars Produced from Agro-Residues

Biochars have been shown as promising materials for cadmium remediation. However, the different precursors and the pyrolysis process operating conditions can yield very different surface functional groups, and as a result, different cadmium sorption mechanisms can be observed in biochars. Herein we...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5914
Acceso en línea:
http://hdl.handle.net/11407/5914
Palabra clave:
Cadmium
Palm oil
Positive ions
Pyrolysis
Sorption
Critical factors
Different precursors
Operating condition
Physicochemical characteristics
Pyrolysis process
Sorption behaviors
Sorption mechanism
Surface functional groups
Chemicals removal (water treatment)
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_d7b00edc448917af42e0ffc83be7f806
oai_identifier_str oai:repository.udem.edu.co:11407/5914
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Adsorption of Cadmium Using Biochars Produced from Agro-Residues
title Adsorption of Cadmium Using Biochars Produced from Agro-Residues
spellingShingle Adsorption of Cadmium Using Biochars Produced from Agro-Residues
Cadmium
Palm oil
Positive ions
Pyrolysis
Sorption
Critical factors
Different precursors
Operating condition
Physicochemical characteristics
Pyrolysis process
Sorption behaviors
Sorption mechanism
Surface functional groups
Chemicals removal (water treatment)
title_short Adsorption of Cadmium Using Biochars Produced from Agro-Residues
title_full Adsorption of Cadmium Using Biochars Produced from Agro-Residues
title_fullStr Adsorption of Cadmium Using Biochars Produced from Agro-Residues
title_full_unstemmed Adsorption of Cadmium Using Biochars Produced from Agro-Residues
title_sort Adsorption of Cadmium Using Biochars Produced from Agro-Residues
dc.subject.keyword.eng.fl_str_mv Cadmium
Palm oil
Positive ions
Pyrolysis
Sorption
Critical factors
Different precursors
Operating condition
Physicochemical characteristics
Pyrolysis process
Sorption behaviors
Sorption mechanism
Surface functional groups
Chemicals removal (water treatment)
topic Cadmium
Palm oil
Positive ions
Pyrolysis
Sorption
Critical factors
Different precursors
Operating condition
Physicochemical characteristics
Pyrolysis process
Sorption behaviors
Sorption mechanism
Surface functional groups
Chemicals removal (water treatment)
description Biochars have been shown as promising materials for cadmium remediation. However, the different precursors and the pyrolysis process operating conditions can yield very different surface functional groups, and as a result, different cadmium sorption mechanisms can be observed in biochars. Herein we present the results of cadmium sorption on biochars produced from the pyrolysis of different agro-residues, namely, coffee husk, quinoa straw, and oil palm kernel shell. The adsorption isotherms were used to determine the influence of the biochar's physicochemical characteristics to their sorption behavior. The biochars prepared from quinoa residues showed much higher cadmium uptakes than the other biochars. The concentration of base cations was found to be a critical factor for cadmium sorption. Although the quinoa biochars presented large uptakes, it was found that base cations were supported on the biochars and could be removed by leaching. Results from this study suggest that concentration of base cations on biochars could be used as predictors of the biochar capabilities for the removal of cadmium in aqueous solution. Copyright © 2020 American Chemical Society.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:57:52Z
dc.date.available.none.fl_str_mv 2021-02-05T14:57:52Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 19327447
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5914
dc.identifier.doi.none.fl_str_mv 10.1021/acs.jpcc.0c02216
identifier_str_mv 19327447
10.1021/acs.jpcc.0c02216
url http://hdl.handle.net/11407/5914
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089280277&doi=10.1021%2facs.jpcc.0c02216&partnerID=40&md5=1b13fd14cc8f7905158d219f8eea8c05
dc.relation.citationvolume.none.fl_str_mv 124
dc.relation.citationissue.none.fl_str_mv 27
dc.relation.citationstartpage.none.fl_str_mv 14592
dc.relation.citationendpage.none.fl_str_mv 14602
dc.relation.references.none.fl_str_mv Shahid, M., Dumat, C., Khalid, S., Niazi, N.K., Antunes, P.M.C., de Voogt, P., Cadmium Bioavailability, Uptake, Toxicity and Detoxification in Soil-Plant System (2017) Reviews of Environmental Contamination and Toxicology, 241, pp. 73-137. , In
Springer International Publishing: Cham, Switzerland, Vol
Ali, A., Ahmed, A., Gad, A., Chemical and microstructural analyses for heavy metals removal from water media by ceramic membrane filtration (2017) Water Sci. Technol., 75 (2), pp. 439-450
Cardoso, S.P., Azenha, I.S., Lin, Z., Portugal, I., Rodrigues, A.E., Silva, C.M., Experimental measurement and modeling of ion exchange equilibrium and kinetics of cadmium (II) solutions over microporous stannosilicate AV-6 (2016) Chem. Eng. J. (Amsterdam, Neth.), 295, pp. 139-151
Bhadrinarayana, N.S., Basha, C.A., Anantharaman, N., Electrochemical Oxidation of Cyanide and Simultaneous Cathodic Removal of Cadmium Present in the Plating Rinse Water (2007) Ind. Eng. Chem. Res., 46 (20), pp. 6417-6424
Kim, H.S., Seo, B.-H., Kuppusamy, S., Lee, Y.B., Lee, J.-H., Yang, J.-E., Owens, G., Kim, K.-R., A DOC coagulant, gypsum treatment can simultaneously reduce As, Cd and Pb uptake by medicinal plants grown in contaminated soil (2018) Ecotoxicol. Environ. Saf., 148, pp. 615-619
Bailey, S.E., Olin, T.J., Bricka, R.M., Adrian, D.D., A review of potentially low-cost sorbents for heavy metals (1999) Water Res., 33 (11), pp. 2469-2479
Boudrahem, F., Soualah, A., Aissani-Benissad, F., Pb(II) and Cd(II) Removal from Aqueous Solutions Using Activated Carbon Developed from Coffee Residue Activated with Phosphoric Acid and Zinc Chloride (2011) J. Chem. Eng. Data, 56 (5), pp. 1946-1955
Božić, D., Stanković, V., Gorgievski, M., Bogdanović, G., Kovačević, R., Adsorption of heavy metal ions by sawdust of deciduous trees (2009) J. Hazard. Mater., 171 (13), pp. 684-692
Nayak, A., Bhushan, B., Gupta, V., Sharma, P., Chemically activated carbon from lignocellulosic wastes for heavy metal wastewater remediation: Effect of activation conditions (2017) J. Colloid Interface Sci., 493, pp. 228-240
Aguayo-Villarreal, I.A., Bonilla-Petriciolet, A., Muñiz-Valencia, R., Preparation of activated carbons from pecan nutshell and their application in the antagonistic adsorption of heavy metal ions (2017) J. Mol. Liq., 230, pp. 686-695
Rashidi, N.A., Yusup, S., A review on recent technological advancement in the activated carbon production from oil palm wastes (2017) Chem. Eng. J. (Amsterdam, Neth.), 314, pp. 277-290
Fiol, N., Villaescusa, I., Martínez, M., Miralles, N., Poch, J., Serarols, J., Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste (2006) Sep. Purif. Technol., 50 (1), pp. 132-140
Akhtar, A., Krepl, V., Ivanova, T., A Combined Overview of Combustion, Pyrolysis, and Gasification of Biomass (2018) Energy Fuels, 32 (7), pp. 7294-7318
Salgado, M.A.H., Tarelho, L.A.C., Matos, A., Robaina, M., Narváez, R., Peralta, M.E., Thermoeconomic analysis of integrated production of biochar and process heat from quinoa and lupin residual biomass (2018) Energy Policy, 114, pp. 332-341
Salgado, M.A.H., Tarelho, L.A., Matos, A., Analysis of Combined Biochar and Torrefied Biomass Fuel Production as Alternative for Residual Biomass Valorization Generated in Small-Scale Palm Oil Mills (2020) Waste Biomass Valorization, 11 (1), pp. 343-356
Neves, D., Thunman, H., Matos, A., Tarelho, L., Gómez-Barea, A., Characterization and prediction of biomass pyrolysis products (2011) Prog. Energy Combust. Sci., 37 (5), pp. 611-630
Galinato, S.P., Yoder, J.K., Granatstein, D., The economic value of biochar in crop production and carbon sequestration (2011) Energy Policy, 39 (10), pp. 6344-6350
Inyang, M.I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., Pullammanappallil, P., Cao, X., A review of biochar as a low-cost adsorbent for aqueous heavy metal removal (2016) Crit. Rev. Environ. Sci. Technol., 46 (4), pp. 406-433
Chen, T., Zhou, Z., Han, R., Meng, R., Wang, H., Lu, W., Adsorption of cadmium by biochar derived from municipal sewage sludge: Impact factors and adsorption mechanism (2015) Chemosphere, 134, pp. 286-293
Harvey, O.R., Herbert, B.E., Rhue, R.D., Kuo, L.-J., Metal Interactions at the Biochar-Water Interface: Energetics and Structure-Sorption Relationships Elucidated by Flow Adsorption Microcalorimetry (2011) Environ. Sci. Technol., 45 (13), pp. 5550-5556
Klllç, M., Klrblylk, Ç., Çepelioǧullar, Ö., Pütün, A.E., Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis (2013) Appl. Surf. Sci., 283, pp. 856-862
Rees, F., Simonnot, M.O., Morel, J.L., Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase (2014) European Journal of Soil Science, 65 (1), pp. 149-161
Houben, D., Evrard, L., Sonnet, P., Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar (2013) Chemosphere, 92 (11), pp. 1450-1457
Chi, T., Zuo, J., Liu, F., Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar (2017) Front. Environ. Sci. Eng., 11 (2), p. 15
Melia, P.M., Busquets, R., Ray, S., Cundy, A.B., Agricultural wastes from wheat, barley, flax and grape for the efficient removal of Cd from contaminated water (2018) RSC Adv., 8 (70), pp. 40378-40386
Wang, R.-Z., Huang, D.-L., Liu, Y.-G., Zhang, C., Lai, C., Zeng, G.-M., Cheng, M., Luo, H., Investigating the adsorption behavior and the relative distribution of Cd2+ sorption mechanisms on biochars by different feedstock (2018) Bioresour. Technol., 261, pp. 265-271
Cui, X., Fang, S., Yao, Y., Li, T., Ni, Q., Yang, X., He, Z., Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar (2016) Sci. Total Environ., 562, pp. 517-525
Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Ok, Y.S., Biochar as a sorbent for contaminant management in soil and water: A review (2014) Chemosphere, 99, pp. 19-33
(2012) Guidelines for a Sustainable Production of Biochar, , European Biochar Foundation (EBC): Arbaz, Switzerland
Heredia Salgado, M.A., Coba S, J.A., Tarelho, L.A.C., Simultaneous production of biochar and thermal energy using palm oil residual biomass as feedstock in an auto-thermal prototype reactor (2020) J. Cleaner Prod., 266, p. 121804
Qi, F., Dong, Z., Lamb, D., Naidu, R., Bolan, N.S., Ok, Y.S., Liu, C., Semple, K.T., Effects of acidic and neutral biochars on properties and cadmium retention of soils (2017) Chemosphere, 180, pp. 564-573
Denyes, M.J., Parisien, M.A., Rutter, A., Zeeb, B.A., Physical, chemical and biological characterization of six biochars produced for the remediation of contaminated sites (2014) J. Visualized Exp., (93), p. e52183
Santamarina, J.C., Klein, K.A., Wang, Y.H., Prencke, E., Specific surface: determination and relevance (2002) Can. Geotech. J., 39 (1), pp. 233-241
Aristizábal, A., Perilla, G., Lara-Borrero, J.A., Diez, R., KrCl and XeCl excilamps and LP-Hg lamp for UV and UV/H2O2 decolourization of dyes in water (2020) Environ. Technol., 41 (2), pp. 238-250
Chen, J.P., (2012) Decontamination of Heavy Metals: Processes, Mechanisms, and Applications, , CRC Press
Builes, S., Sandler, S.I., Xiong, R., Isosteric Heats of Gas and Liquid Adsorption (2013) Langmuir, 29, pp. 10416-10422
Bonilla-Petriciolet, A., Mendoza-Castillo, D.I., Reynel-Ávila, H.E., (2017) Adsorption Processes for Water Treatment and Purification, , Springer
Gao, L.-Y., Deng, J.-H., Huang, G.-F., Li, K., Cai, K.-Z., Liu, Y., Huang, F., Relative distribution of Cd2+ adsorption mechanisms on biochars derived from rice straw and sewage sludge (2019) Bioresour. Technol., 272, pp. 114-122
Fan, Z., Zhang, Q., Li, M., Niu, D., Sang, W., Verpoort, F., Investigating the sorption behavior of cadmium from aqueous solution by potassium permanganate-modified biochar: quantify mechanism and evaluate the modification method (2018) Environ. Sci. Pollut. Res., 25 (9), pp. 8330-8339
Builes, S., López-Aranguren, P., Fraile, J., Vega, L.F., Domingo, C., Analysis of CO2 Adsorption in Amine-Functionalized Porous Silicas by Molecular Simulations (2015) Energy Fuels, 29 (6), pp. 3855-3862
Kim, P., Johnson, A.M., Essington, M.E., Radosevich, M., Kwon, W.-T., Lee, S.-H., Rials, T.G., Labbé, N., Effect of pH on surface characteristics of switchgrass-derived biochars produced by fast pyrolysis (2013) Chemosphere, 90 (10), pp. 2623-2630
Essandoh, M., Kunwar, B., Pittman, C.U., Mohan, D., Mlsna, T., Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar (2015) Chem. Eng. J. (Amsterdam, Neth.), 265, pp. 219-227
Domingues, R.R., Trugilho, P.F., Silva, C.A., Melo, I.C.N.A.d., Melo, L.C.A., Magriotis, Z.M., Sánchez-Monedero, M.A., Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits (2017) PLoS One, 12 (5), p. 0176884
Lehmann, J., Joseph, S., (2015) Biochar for Environmental Management: Science, Technology and Implementation, , Routledge
Tan, Z., Yuan, S., Hong, M., Zhang, L., Huang, Q., Mechanism of negative surface charge formation on biochar and its effect on the fixation of soil Cd (2020) J. Hazard. Mater., 384, p. 121370
Hernandez-Soriano, M.C., Kerré, B., Kopittke, P.M., Horemans, B., Smolders, E., Biochar affects carbon composition and stability in soil: a combined spectroscopy-microscopy study (2016) Sci. Rep., 6 (1), p. 25127
Gao, X., Peng, Y., Zhou, Y., Adeel, M., Chen, Q., Effects of magnesium ferrite biochar on the cadmium passivation in acidic soil and bioavailability for packoi (Brassica chinensis L.) (2019) J. Environ. Manage., 251, p. 109610
Bashir, S., Hussain, Q., Shaaban, M., Hu, H., Efficiency and surface characterization of different plant derived biochar for cadmium (Cd) mobility, bioaccessibility and bioavailability to Chinese cabbage in highly contaminated soil (2018) Chemosphere, 211, pp. 632-639
Keiluweit, M., Nico, P.S., Johnson, M.G., Kleber, M., Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar) (2010) Environ. Sci. Technol., 44 (4), pp. 1247-1253
Limousin, G., Gaudet, J.-P., Charlet, L., Szenknect, S., Barthes, V., Krimissa, M., Sorption isotherms: A review on physical bases, modeling and measurement (2007) Appl. Geochem., 22 (2), pp. 249-275
Cui, X., Hao, H., Zhang, C., He, Z., Yang, X., Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars (2016) Sci. Total Environ., 539, pp. 566-575
Xu, Y., Chen, B., Organic carbon and inorganic silicon speciation in rice-bran-derived biochars affect its capacity to adsorb cadmium in solution (2015) J. Soils Sediments, 15 (1), pp. 60-70
Smolders, E., Mertens, J., Alloway, B.J., Cadmium (2013) Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability, pp. 283-311. , In
Springer: Dordrecht, The Netherlands
Zhang, F., Wang, X., Yin, D., Peng, B., Tan, C., Liu, Y., Tan, X., Wu, S., Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes) (2015) J. Environ. Manage., 153, pp. 68-73
Iqbal, M., Saeed, A., Zafar, S.I., FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste (2009) J. Hazard. Mater., 164 (1), pp. 161-171
Sewwandi, B.G.N., Vithanage, M., Wijesekara, S.S.R.M.D.H.R., Mowjood, M.I.M., Hamamoto, S., Kawamoto, K., Adsorption of Cd(II) and Pb(II) onto Humic Acid-Treated Coconut (Cocos nucifera) Husk (2014) J. Hazard., Toxic Radioact. Waste, 18 (2), p. 04014001
Xu, X., Cao, X., Zhao, L., Wang, H., Yu, H., Gao, B., Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar (2013) Environ. Sci. Pollut. Res., 20 (1), pp. 358-368
Doumer, M.E., Rigol, A., Vidal, M., Mangrich, A.S., Removal of Cd, Cu, Pb, and Zn from aqueous solutions by biochars (2016) Environ. Sci. Pollut. Res., 23 (3), pp. 2684-2692
Cheng, Q., Huang, Q., Khan, S., Liu, Y., Liao, Z., Li, G., Ok, Y.S., Adsorption of Cd by peanut husks and peanut husk biochar from aqueous solutions (2016) Ecological Engineering, 87, pp. 240-245
Lin, Y., Munroe, P., Joseph, S., Henderson, R., Ziolkowski, A., Water extractable organic carbon in untreated and chemical treated biochars (2012) Chemosphere, 87 (2), pp. 151-157
Xu, M., Wu, J., Luo, L., Yang, G., Zhang, X., Peng, H., Yu, X., Wang, L., The factors affecting biochar application in restoring heavy metal-polluted soil and its potential applications (2018) Chem. Ecol., 34 (2), pp. 177-197
Builes, S., Vega, L.F., Effect of Immobilized Amines on the Sorption Properties of Solid Materials: Impregnation versus Grafting (2013) Langmuir, 29 (1), pp. 199-206
El-Sheikh, A.H., Al-Salamin, R.M., Alshamaly, H.S., Tahboub, D.a.M., Al-Degs, Y.S., Fasfous, I.I., Al-Hashimi, N.N., Abdelghani, J.I., Effect of varying deposition conditions of magnetite on sawdust on the physiochemical properties of the prepared composites (2019) J. Environ. Chem. Eng., 7 (6), p. 103497
Stavropoulos, G.G., Precursor materials suitability for super activated carbons production (2005) Fuel Process. Technol., 86 (11), pp. 1165-1173
Reed, B.E., Matsumoto, M.R., Modeling Cadmium Adsorption by Activated Carbon Using the Langmuir and Freundlich Isotherm Expressions (1993) Sep. Sci. Technol., 28 (1314), pp. 2179-2195
Yuan, J.-H., Xu, R.-K., Zhang, H., The forms of alkalis in the biochar produced from crop residues at different temperatures (2011) Bioresour. Technol., 102 (3), pp. 3488-3497
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv American Chemical Society
dc.publisher.program.spa.fl_str_mv Ingeniería Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv Journal of Physical Chemistry C
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159206011371520
spelling 20202021-02-05T14:57:52Z2021-02-05T14:57:52Z19327447http://hdl.handle.net/11407/591410.1021/acs.jpcc.0c02216Biochars have been shown as promising materials for cadmium remediation. However, the different precursors and the pyrolysis process operating conditions can yield very different surface functional groups, and as a result, different cadmium sorption mechanisms can be observed in biochars. Herein we present the results of cadmium sorption on biochars produced from the pyrolysis of different agro-residues, namely, coffee husk, quinoa straw, and oil palm kernel shell. The adsorption isotherms were used to determine the influence of the biochar's physicochemical characteristics to their sorption behavior. The biochars prepared from quinoa residues showed much higher cadmium uptakes than the other biochars. The concentration of base cations was found to be a critical factor for cadmium sorption. Although the quinoa biochars presented large uptakes, it was found that base cations were supported on the biochars and could be removed by leaching. Results from this study suggest that concentration of base cations on biochars could be used as predictors of the biochar capabilities for the removal of cadmium in aqueous solution. Copyright © 2020 American Chemical Society.engAmerican Chemical SocietyIngeniería AmbientalFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85089280277&doi=10.1021%2facs.jpcc.0c02216&partnerID=40&md5=1b13fd14cc8f7905158d219f8eea8c05124271459214602Shahid, M., Dumat, C., Khalid, S., Niazi, N.K., Antunes, P.M.C., de Voogt, P., Cadmium Bioavailability, Uptake, Toxicity and Detoxification in Soil-Plant System (2017) Reviews of Environmental Contamination and Toxicology, 241, pp. 73-137. , InSpringer International Publishing: Cham, Switzerland, VolAli, A., Ahmed, A., Gad, A., Chemical and microstructural analyses for heavy metals removal from water media by ceramic membrane filtration (2017) Water Sci. Technol., 75 (2), pp. 439-450Cardoso, S.P., Azenha, I.S., Lin, Z., Portugal, I., Rodrigues, A.E., Silva, C.M., Experimental measurement and modeling of ion exchange equilibrium and kinetics of cadmium (II) solutions over microporous stannosilicate AV-6 (2016) Chem. Eng. J. (Amsterdam, Neth.), 295, pp. 139-151Bhadrinarayana, N.S., Basha, C.A., Anantharaman, N., Electrochemical Oxidation of Cyanide and Simultaneous Cathodic Removal of Cadmium Present in the Plating Rinse Water (2007) Ind. Eng. Chem. Res., 46 (20), pp. 6417-6424Kim, H.S., Seo, B.-H., Kuppusamy, S., Lee, Y.B., Lee, J.-H., Yang, J.-E., Owens, G., Kim, K.-R., A DOC coagulant, gypsum treatment can simultaneously reduce As, Cd and Pb uptake by medicinal plants grown in contaminated soil (2018) Ecotoxicol. Environ. Saf., 148, pp. 615-619Bailey, S.E., Olin, T.J., Bricka, R.M., Adrian, D.D., A review of potentially low-cost sorbents for heavy metals (1999) Water Res., 33 (11), pp. 2469-2479Boudrahem, F., Soualah, A., Aissani-Benissad, F., Pb(II) and Cd(II) Removal from Aqueous Solutions Using Activated Carbon Developed from Coffee Residue Activated with Phosphoric Acid and Zinc Chloride (2011) J. Chem. Eng. Data, 56 (5), pp. 1946-1955Božić, D., Stanković, V., Gorgievski, M., Bogdanović, G., Kovačević, R., Adsorption of heavy metal ions by sawdust of deciduous trees (2009) J. Hazard. Mater., 171 (13), pp. 684-692Nayak, A., Bhushan, B., Gupta, V., Sharma, P., Chemically activated carbon from lignocellulosic wastes for heavy metal wastewater remediation: Effect of activation conditions (2017) J. Colloid Interface Sci., 493, pp. 228-240Aguayo-Villarreal, I.A., Bonilla-Petriciolet, A., Muñiz-Valencia, R., Preparation of activated carbons from pecan nutshell and their application in the antagonistic adsorption of heavy metal ions (2017) J. Mol. Liq., 230, pp. 686-695Rashidi, N.A., Yusup, S., A review on recent technological advancement in the activated carbon production from oil palm wastes (2017) Chem. Eng. J. (Amsterdam, Neth.), 314, pp. 277-290Fiol, N., Villaescusa, I., Martínez, M., Miralles, N., Poch, J., Serarols, J., Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste (2006) Sep. Purif. Technol., 50 (1), pp. 132-140Akhtar, A., Krepl, V., Ivanova, T., A Combined Overview of Combustion, Pyrolysis, and Gasification of Biomass (2018) Energy Fuels, 32 (7), pp. 7294-7318Salgado, M.A.H., Tarelho, L.A.C., Matos, A., Robaina, M., Narváez, R., Peralta, M.E., Thermoeconomic analysis of integrated production of biochar and process heat from quinoa and lupin residual biomass (2018) Energy Policy, 114, pp. 332-341Salgado, M.A.H., Tarelho, L.A., Matos, A., Analysis of Combined Biochar and Torrefied Biomass Fuel Production as Alternative for Residual Biomass Valorization Generated in Small-Scale Palm Oil Mills (2020) Waste Biomass Valorization, 11 (1), pp. 343-356Neves, D., Thunman, H., Matos, A., Tarelho, L., Gómez-Barea, A., Characterization and prediction of biomass pyrolysis products (2011) Prog. Energy Combust. Sci., 37 (5), pp. 611-630Galinato, S.P., Yoder, J.K., Granatstein, D., The economic value of biochar in crop production and carbon sequestration (2011) Energy Policy, 39 (10), pp. 6344-6350Inyang, M.I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., Pullammanappallil, P., Cao, X., A review of biochar as a low-cost adsorbent for aqueous heavy metal removal (2016) Crit. Rev. Environ. Sci. Technol., 46 (4), pp. 406-433Chen, T., Zhou, Z., Han, R., Meng, R., Wang, H., Lu, W., Adsorption of cadmium by biochar derived from municipal sewage sludge: Impact factors and adsorption mechanism (2015) Chemosphere, 134, pp. 286-293Harvey, O.R., Herbert, B.E., Rhue, R.D., Kuo, L.-J., Metal Interactions at the Biochar-Water Interface: Energetics and Structure-Sorption Relationships Elucidated by Flow Adsorption Microcalorimetry (2011) Environ. Sci. Technol., 45 (13), pp. 5550-5556Klllç, M., Klrblylk, Ç., Çepelioǧullar, Ö., Pütün, A.E., Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis (2013) Appl. Surf. Sci., 283, pp. 856-862Rees, F., Simonnot, M.O., Morel, J.L., Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase (2014) European Journal of Soil Science, 65 (1), pp. 149-161Houben, D., Evrard, L., Sonnet, P., Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar (2013) Chemosphere, 92 (11), pp. 1450-1457Chi, T., Zuo, J., Liu, F., Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar (2017) Front. Environ. Sci. Eng., 11 (2), p. 15Melia, P.M., Busquets, R., Ray, S., Cundy, A.B., Agricultural wastes from wheat, barley, flax and grape for the efficient removal of Cd from contaminated water (2018) RSC Adv., 8 (70), pp. 40378-40386Wang, R.-Z., Huang, D.-L., Liu, Y.-G., Zhang, C., Lai, C., Zeng, G.-M., Cheng, M., Luo, H., Investigating the adsorption behavior and the relative distribution of Cd2+ sorption mechanisms on biochars by different feedstock (2018) Bioresour. Technol., 261, pp. 265-271Cui, X., Fang, S., Yao, Y., Li, T., Ni, Q., Yang, X., He, Z., Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar (2016) Sci. Total Environ., 562, pp. 517-525Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Ok, Y.S., Biochar as a sorbent for contaminant management in soil and water: A review (2014) Chemosphere, 99, pp. 19-33(2012) Guidelines for a Sustainable Production of Biochar, , European Biochar Foundation (EBC): Arbaz, SwitzerlandHeredia Salgado, M.A., Coba S, J.A., Tarelho, L.A.C., Simultaneous production of biochar and thermal energy using palm oil residual biomass as feedstock in an auto-thermal prototype reactor (2020) J. Cleaner Prod., 266, p. 121804Qi, F., Dong, Z., Lamb, D., Naidu, R., Bolan, N.S., Ok, Y.S., Liu, C., Semple, K.T., Effects of acidic and neutral biochars on properties and cadmium retention of soils (2017) Chemosphere, 180, pp. 564-573Denyes, M.J., Parisien, M.A., Rutter, A., Zeeb, B.A., Physical, chemical and biological characterization of six biochars produced for the remediation of contaminated sites (2014) J. Visualized Exp., (93), p. e52183Santamarina, J.C., Klein, K.A., Wang, Y.H., Prencke, E., Specific surface: determination and relevance (2002) Can. Geotech. J., 39 (1), pp. 233-241Aristizábal, A., Perilla, G., Lara-Borrero, J.A., Diez, R., KrCl and XeCl excilamps and LP-Hg lamp for UV and UV/H2O2 decolourization of dyes in water (2020) Environ. Technol., 41 (2), pp. 238-250Chen, J.P., (2012) Decontamination of Heavy Metals: Processes, Mechanisms, and Applications, , CRC PressBuiles, S., Sandler, S.I., Xiong, R., Isosteric Heats of Gas and Liquid Adsorption (2013) Langmuir, 29, pp. 10416-10422Bonilla-Petriciolet, A., Mendoza-Castillo, D.I., Reynel-Ávila, H.E., (2017) Adsorption Processes for Water Treatment and Purification, , SpringerGao, L.-Y., Deng, J.-H., Huang, G.-F., Li, K., Cai, K.-Z., Liu, Y., Huang, F., Relative distribution of Cd2+ adsorption mechanisms on biochars derived from rice straw and sewage sludge (2019) Bioresour. Technol., 272, pp. 114-122Fan, Z., Zhang, Q., Li, M., Niu, D., Sang, W., Verpoort, F., Investigating the sorption behavior of cadmium from aqueous solution by potassium permanganate-modified biochar: quantify mechanism and evaluate the modification method (2018) Environ. Sci. Pollut. Res., 25 (9), pp. 8330-8339Builes, S., López-Aranguren, P., Fraile, J., Vega, L.F., Domingo, C., Analysis of CO2 Adsorption in Amine-Functionalized Porous Silicas by Molecular Simulations (2015) Energy Fuels, 29 (6), pp. 3855-3862Kim, P., Johnson, A.M., Essington, M.E., Radosevich, M., Kwon, W.-T., Lee, S.-H., Rials, T.G., Labbé, N., Effect of pH on surface characteristics of switchgrass-derived biochars produced by fast pyrolysis (2013) Chemosphere, 90 (10), pp. 2623-2630Essandoh, M., Kunwar, B., Pittman, C.U., Mohan, D., Mlsna, T., Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar (2015) Chem. Eng. J. (Amsterdam, Neth.), 265, pp. 219-227Domingues, R.R., Trugilho, P.F., Silva, C.A., Melo, I.C.N.A.d., Melo, L.C.A., Magriotis, Z.M., Sánchez-Monedero, M.A., Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits (2017) PLoS One, 12 (5), p. 0176884Lehmann, J., Joseph, S., (2015) Biochar for Environmental Management: Science, Technology and Implementation, , RoutledgeTan, Z., Yuan, S., Hong, M., Zhang, L., Huang, Q., Mechanism of negative surface charge formation on biochar and its effect on the fixation of soil Cd (2020) J. Hazard. Mater., 384, p. 121370Hernandez-Soriano, M.C., Kerré, B., Kopittke, P.M., Horemans, B., Smolders, E., Biochar affects carbon composition and stability in soil: a combined spectroscopy-microscopy study (2016) Sci. Rep., 6 (1), p. 25127Gao, X., Peng, Y., Zhou, Y., Adeel, M., Chen, Q., Effects of magnesium ferrite biochar on the cadmium passivation in acidic soil and bioavailability for packoi (Brassica chinensis L.) (2019) J. Environ. Manage., 251, p. 109610Bashir, S., Hussain, Q., Shaaban, M., Hu, H., Efficiency and surface characterization of different plant derived biochar for cadmium (Cd) mobility, bioaccessibility and bioavailability to Chinese cabbage in highly contaminated soil (2018) Chemosphere, 211, pp. 632-639Keiluweit, M., Nico, P.S., Johnson, M.G., Kleber, M., Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar) (2010) Environ. Sci. Technol., 44 (4), pp. 1247-1253Limousin, G., Gaudet, J.-P., Charlet, L., Szenknect, S., Barthes, V., Krimissa, M., Sorption isotherms: A review on physical bases, modeling and measurement (2007) Appl. Geochem., 22 (2), pp. 249-275Cui, X., Hao, H., Zhang, C., He, Z., Yang, X., Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars (2016) Sci. Total Environ., 539, pp. 566-575Xu, Y., Chen, B., Organic carbon and inorganic silicon speciation in rice-bran-derived biochars affect its capacity to adsorb cadmium in solution (2015) J. Soils Sediments, 15 (1), pp. 60-70Smolders, E., Mertens, J., Alloway, B.J., Cadmium (2013) Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability, pp. 283-311. , InSpringer: Dordrecht, The NetherlandsZhang, F., Wang, X., Yin, D., Peng, B., Tan, C., Liu, Y., Tan, X., Wu, S., Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes) (2015) J. Environ. Manage., 153, pp. 68-73Iqbal, M., Saeed, A., Zafar, S.I., FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste (2009) J. Hazard. Mater., 164 (1), pp. 161-171Sewwandi, B.G.N., Vithanage, M., Wijesekara, S.S.R.M.D.H.R., Mowjood, M.I.M., Hamamoto, S., Kawamoto, K., Adsorption of Cd(II) and Pb(II) onto Humic Acid-Treated Coconut (Cocos nucifera) Husk (2014) J. Hazard., Toxic Radioact. Waste, 18 (2), p. 04014001Xu, X., Cao, X., Zhao, L., Wang, H., Yu, H., Gao, B., Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar (2013) Environ. Sci. Pollut. Res., 20 (1), pp. 358-368Doumer, M.E., Rigol, A., Vidal, M., Mangrich, A.S., Removal of Cd, Cu, Pb, and Zn from aqueous solutions by biochars (2016) Environ. Sci. Pollut. Res., 23 (3), pp. 2684-2692Cheng, Q., Huang, Q., Khan, S., Liu, Y., Liao, Z., Li, G., Ok, Y.S., Adsorption of Cd by peanut husks and peanut husk biochar from aqueous solutions (2016) Ecological Engineering, 87, pp. 240-245Lin, Y., Munroe, P., Joseph, S., Henderson, R., Ziolkowski, A., Water extractable organic carbon in untreated and chemical treated biochars (2012) Chemosphere, 87 (2), pp. 151-157Xu, M., Wu, J., Luo, L., Yang, G., Zhang, X., Peng, H., Yu, X., Wang, L., The factors affecting biochar application in restoring heavy metal-polluted soil and its potential applications (2018) Chem. Ecol., 34 (2), pp. 177-197Builes, S., Vega, L.F., Effect of Immobilized Amines on the Sorption Properties of Solid Materials: Impregnation versus Grafting (2013) Langmuir, 29 (1), pp. 199-206El-Sheikh, A.H., Al-Salamin, R.M., Alshamaly, H.S., Tahboub, D.a.M., Al-Degs, Y.S., Fasfous, I.I., Al-Hashimi, N.N., Abdelghani, J.I., Effect of varying deposition conditions of magnetite on sawdust on the physiochemical properties of the prepared composites (2019) J. Environ. Chem. Eng., 7 (6), p. 103497Stavropoulos, G.G., Precursor materials suitability for super activated carbons production (2005) Fuel Process. Technol., 86 (11), pp. 1165-1173Reed, B.E., Matsumoto, M.R., Modeling Cadmium Adsorption by Activated Carbon Using the Langmuir and Freundlich Isotherm Expressions (1993) Sep. Sci. Technol., 28 (1314), pp. 2179-2195Yuan, J.-H., Xu, R.-K., Zhang, H., The forms of alkalis in the biochar produced from crop residues at different temperatures (2011) Bioresour. Technol., 102 (3), pp. 3488-3497Journal of Physical Chemistry CAdsorption of Cadmium Using Biochars Produced from Agro-ResiduesArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1CadmiumPalm oilPositive ionsPyrolysisSorptionCritical factorsDifferent precursorsOperating conditionPhysicochemical characteristicsPyrolysis processSorption behaviorsSorption mechanismSurface functional groupsChemicals removal (water treatment)López, J.E., Environmental Engineering Faculty, Universidad de Medellín, Medellín, 050026, ColombiaBuiles, S., Departamento de Ingeniería de Procesos, Universidad EAFIT, Carrera 49 No. 7 sur-50, Medellín, 050022, ColombiaHeredia Salgado, M.A., Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, 3810-193, PortugalTarelho, L.A.C., Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, 3810-193, PortugalArroyave, C., Environmental Engineering Faculty, Universidad de Medellín, Medellín, 050026, ColombiaAristizábal, A., Departamento de Ingeniería de Procesos, Universidad EAFIT, Carrera 49 No. 7 sur-50, Medellín, 050022, ColombiaChavez, E., Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuadorhttp://purl.org/coar/access_right/c_16ecLópez J.E.Builes S.Heredia Salgado M.A.Tarelho L.A.C.Arroyave C.Aristizábal A.Chavez E.11407/5914oai:repository.udem.edu.co:11407/59142021-02-05 09:57:53.016Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co