Adsorption of Cadmium Using Biochars Produced from Agro-Residues
Biochars have been shown as promising materials for cadmium remediation. However, the different precursors and the pyrolysis process operating conditions can yield very different surface functional groups, and as a result, different cadmium sorption mechanisms can be observed in biochars. Herein we...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5914
- Acceso en línea:
- http://hdl.handle.net/11407/5914
- Palabra clave:
- Cadmium
Palm oil
Positive ions
Pyrolysis
Sorption
Critical factors
Different precursors
Operating condition
Physicochemical characteristics
Pyrolysis process
Sorption behaviors
Sorption mechanism
Surface functional groups
Chemicals removal (water treatment)
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_d7b00edc448917af42e0ffc83be7f806 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5914 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Adsorption of Cadmium Using Biochars Produced from Agro-Residues |
title |
Adsorption of Cadmium Using Biochars Produced from Agro-Residues |
spellingShingle |
Adsorption of Cadmium Using Biochars Produced from Agro-Residues Cadmium Palm oil Positive ions Pyrolysis Sorption Critical factors Different precursors Operating condition Physicochemical characteristics Pyrolysis process Sorption behaviors Sorption mechanism Surface functional groups Chemicals removal (water treatment) |
title_short |
Adsorption of Cadmium Using Biochars Produced from Agro-Residues |
title_full |
Adsorption of Cadmium Using Biochars Produced from Agro-Residues |
title_fullStr |
Adsorption of Cadmium Using Biochars Produced from Agro-Residues |
title_full_unstemmed |
Adsorption of Cadmium Using Biochars Produced from Agro-Residues |
title_sort |
Adsorption of Cadmium Using Biochars Produced from Agro-Residues |
dc.subject.keyword.eng.fl_str_mv |
Cadmium Palm oil Positive ions Pyrolysis Sorption Critical factors Different precursors Operating condition Physicochemical characteristics Pyrolysis process Sorption behaviors Sorption mechanism Surface functional groups Chemicals removal (water treatment) |
topic |
Cadmium Palm oil Positive ions Pyrolysis Sorption Critical factors Different precursors Operating condition Physicochemical characteristics Pyrolysis process Sorption behaviors Sorption mechanism Surface functional groups Chemicals removal (water treatment) |
description |
Biochars have been shown as promising materials for cadmium remediation. However, the different precursors and the pyrolysis process operating conditions can yield very different surface functional groups, and as a result, different cadmium sorption mechanisms can be observed in biochars. Herein we present the results of cadmium sorption on biochars produced from the pyrolysis of different agro-residues, namely, coffee husk, quinoa straw, and oil palm kernel shell. The adsorption isotherms were used to determine the influence of the biochar's physicochemical characteristics to their sorption behavior. The biochars prepared from quinoa residues showed much higher cadmium uptakes than the other biochars. The concentration of base cations was found to be a critical factor for cadmium sorption. Although the quinoa biochars presented large uptakes, it was found that base cations were supported on the biochars and could be removed by leaching. Results from this study suggest that concentration of base cations on biochars could be used as predictors of the biochar capabilities for the removal of cadmium in aqueous solution. Copyright © 2020 American Chemical Society. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:57:52Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:57:52Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
19327447 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5914 |
dc.identifier.doi.none.fl_str_mv |
10.1021/acs.jpcc.0c02216 |
identifier_str_mv |
19327447 10.1021/acs.jpcc.0c02216 |
url |
http://hdl.handle.net/11407/5914 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089280277&doi=10.1021%2facs.jpcc.0c02216&partnerID=40&md5=1b13fd14cc8f7905158d219f8eea8c05 |
dc.relation.citationvolume.none.fl_str_mv |
124 |
dc.relation.citationissue.none.fl_str_mv |
27 |
dc.relation.citationstartpage.none.fl_str_mv |
14592 |
dc.relation.citationendpage.none.fl_str_mv |
14602 |
dc.relation.references.none.fl_str_mv |
Shahid, M., Dumat, C., Khalid, S., Niazi, N.K., Antunes, P.M.C., de Voogt, P., Cadmium Bioavailability, Uptake, Toxicity and Detoxification in Soil-Plant System (2017) Reviews of Environmental Contamination and Toxicology, 241, pp. 73-137. , In Springer International Publishing: Cham, Switzerland, Vol Ali, A., Ahmed, A., Gad, A., Chemical and microstructural analyses for heavy metals removal from water media by ceramic membrane filtration (2017) Water Sci. Technol., 75 (2), pp. 439-450 Cardoso, S.P., Azenha, I.S., Lin, Z., Portugal, I., Rodrigues, A.E., Silva, C.M., Experimental measurement and modeling of ion exchange equilibrium and kinetics of cadmium (II) solutions over microporous stannosilicate AV-6 (2016) Chem. Eng. J. (Amsterdam, Neth.), 295, pp. 139-151 Bhadrinarayana, N.S., Basha, C.A., Anantharaman, N., Electrochemical Oxidation of Cyanide and Simultaneous Cathodic Removal of Cadmium Present in the Plating Rinse Water (2007) Ind. Eng. Chem. Res., 46 (20), pp. 6417-6424 Kim, H.S., Seo, B.-H., Kuppusamy, S., Lee, Y.B., Lee, J.-H., Yang, J.-E., Owens, G., Kim, K.-R., A DOC coagulant, gypsum treatment can simultaneously reduce As, Cd and Pb uptake by medicinal plants grown in contaminated soil (2018) Ecotoxicol. Environ. Saf., 148, pp. 615-619 Bailey, S.E., Olin, T.J., Bricka, R.M., Adrian, D.D., A review of potentially low-cost sorbents for heavy metals (1999) Water Res., 33 (11), pp. 2469-2479 Boudrahem, F., Soualah, A., Aissani-Benissad, F., Pb(II) and Cd(II) Removal from Aqueous Solutions Using Activated Carbon Developed from Coffee Residue Activated with Phosphoric Acid and Zinc Chloride (2011) J. Chem. Eng. Data, 56 (5), pp. 1946-1955 Božić, D., Stanković, V., Gorgievski, M., Bogdanović, G., Kovačević, R., Adsorption of heavy metal ions by sawdust of deciduous trees (2009) J. Hazard. Mater., 171 (13), pp. 684-692 Nayak, A., Bhushan, B., Gupta, V., Sharma, P., Chemically activated carbon from lignocellulosic wastes for heavy metal wastewater remediation: Effect of activation conditions (2017) J. Colloid Interface Sci., 493, pp. 228-240 Aguayo-Villarreal, I.A., Bonilla-Petriciolet, A., Muñiz-Valencia, R., Preparation of activated carbons from pecan nutshell and their application in the antagonistic adsorption of heavy metal ions (2017) J. Mol. Liq., 230, pp. 686-695 Rashidi, N.A., Yusup, S., A review on recent technological advancement in the activated carbon production from oil palm wastes (2017) Chem. Eng. J. (Amsterdam, Neth.), 314, pp. 277-290 Fiol, N., Villaescusa, I., Martínez, M., Miralles, N., Poch, J., Serarols, J., Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste (2006) Sep. Purif. Technol., 50 (1), pp. 132-140 Akhtar, A., Krepl, V., Ivanova, T., A Combined Overview of Combustion, Pyrolysis, and Gasification of Biomass (2018) Energy Fuels, 32 (7), pp. 7294-7318 Salgado, M.A.H., Tarelho, L.A.C., Matos, A., Robaina, M., Narváez, R., Peralta, M.E., Thermoeconomic analysis of integrated production of biochar and process heat from quinoa and lupin residual biomass (2018) Energy Policy, 114, pp. 332-341 Salgado, M.A.H., Tarelho, L.A., Matos, A., Analysis of Combined Biochar and Torrefied Biomass Fuel Production as Alternative for Residual Biomass Valorization Generated in Small-Scale Palm Oil Mills (2020) Waste Biomass Valorization, 11 (1), pp. 343-356 Neves, D., Thunman, H., Matos, A., Tarelho, L., Gómez-Barea, A., Characterization and prediction of biomass pyrolysis products (2011) Prog. Energy Combust. Sci., 37 (5), pp. 611-630 Galinato, S.P., Yoder, J.K., Granatstein, D., The economic value of biochar in crop production and carbon sequestration (2011) Energy Policy, 39 (10), pp. 6344-6350 Inyang, M.I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., Pullammanappallil, P., Cao, X., A review of biochar as a low-cost adsorbent for aqueous heavy metal removal (2016) Crit. Rev. Environ. Sci. Technol., 46 (4), pp. 406-433 Chen, T., Zhou, Z., Han, R., Meng, R., Wang, H., Lu, W., Adsorption of cadmium by biochar derived from municipal sewage sludge: Impact factors and adsorption mechanism (2015) Chemosphere, 134, pp. 286-293 Harvey, O.R., Herbert, B.E., Rhue, R.D., Kuo, L.-J., Metal Interactions at the Biochar-Water Interface: Energetics and Structure-Sorption Relationships Elucidated by Flow Adsorption Microcalorimetry (2011) Environ. Sci. Technol., 45 (13), pp. 5550-5556 Klllç, M., Klrblylk, Ç., Çepelioǧullar, Ö., Pütün, A.E., Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis (2013) Appl. Surf. Sci., 283, pp. 856-862 Rees, F., Simonnot, M.O., Morel, J.L., Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase (2014) European Journal of Soil Science, 65 (1), pp. 149-161 Houben, D., Evrard, L., Sonnet, P., Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar (2013) Chemosphere, 92 (11), pp. 1450-1457 Chi, T., Zuo, J., Liu, F., Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar (2017) Front. Environ. Sci. Eng., 11 (2), p. 15 Melia, P.M., Busquets, R., Ray, S., Cundy, A.B., Agricultural wastes from wheat, barley, flax and grape for the efficient removal of Cd from contaminated water (2018) RSC Adv., 8 (70), pp. 40378-40386 Wang, R.-Z., Huang, D.-L., Liu, Y.-G., Zhang, C., Lai, C., Zeng, G.-M., Cheng, M., Luo, H., Investigating the adsorption behavior and the relative distribution of Cd2+ sorption mechanisms on biochars by different feedstock (2018) Bioresour. Technol., 261, pp. 265-271 Cui, X., Fang, S., Yao, Y., Li, T., Ni, Q., Yang, X., He, Z., Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar (2016) Sci. Total Environ., 562, pp. 517-525 Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Ok, Y.S., Biochar as a sorbent for contaminant management in soil and water: A review (2014) Chemosphere, 99, pp. 19-33 (2012) Guidelines for a Sustainable Production of Biochar, , European Biochar Foundation (EBC): Arbaz, Switzerland Heredia Salgado, M.A., Coba S, J.A., Tarelho, L.A.C., Simultaneous production of biochar and thermal energy using palm oil residual biomass as feedstock in an auto-thermal prototype reactor (2020) J. Cleaner Prod., 266, p. 121804 Qi, F., Dong, Z., Lamb, D., Naidu, R., Bolan, N.S., Ok, Y.S., Liu, C., Semple, K.T., Effects of acidic and neutral biochars on properties and cadmium retention of soils (2017) Chemosphere, 180, pp. 564-573 Denyes, M.J., Parisien, M.A., Rutter, A., Zeeb, B.A., Physical, chemical and biological characterization of six biochars produced for the remediation of contaminated sites (2014) J. Visualized Exp., (93), p. e52183 Santamarina, J.C., Klein, K.A., Wang, Y.H., Prencke, E., Specific surface: determination and relevance (2002) Can. Geotech. J., 39 (1), pp. 233-241 Aristizábal, A., Perilla, G., Lara-Borrero, J.A., Diez, R., KrCl and XeCl excilamps and LP-Hg lamp for UV and UV/H2O2 decolourization of dyes in water (2020) Environ. Technol., 41 (2), pp. 238-250 Chen, J.P., (2012) Decontamination of Heavy Metals: Processes, Mechanisms, and Applications, , CRC Press Builes, S., Sandler, S.I., Xiong, R., Isosteric Heats of Gas and Liquid Adsorption (2013) Langmuir, 29, pp. 10416-10422 Bonilla-Petriciolet, A., Mendoza-Castillo, D.I., Reynel-Ávila, H.E., (2017) Adsorption Processes for Water Treatment and Purification, , Springer Gao, L.-Y., Deng, J.-H., Huang, G.-F., Li, K., Cai, K.-Z., Liu, Y., Huang, F., Relative distribution of Cd2+ adsorption mechanisms on biochars derived from rice straw and sewage sludge (2019) Bioresour. Technol., 272, pp. 114-122 Fan, Z., Zhang, Q., Li, M., Niu, D., Sang, W., Verpoort, F., Investigating the sorption behavior of cadmium from aqueous solution by potassium permanganate-modified biochar: quantify mechanism and evaluate the modification method (2018) Environ. Sci. Pollut. Res., 25 (9), pp. 8330-8339 Builes, S., López-Aranguren, P., Fraile, J., Vega, L.F., Domingo, C., Analysis of CO2 Adsorption in Amine-Functionalized Porous Silicas by Molecular Simulations (2015) Energy Fuels, 29 (6), pp. 3855-3862 Kim, P., Johnson, A.M., Essington, M.E., Radosevich, M., Kwon, W.-T., Lee, S.-H., Rials, T.G., Labbé, N., Effect of pH on surface characteristics of switchgrass-derived biochars produced by fast pyrolysis (2013) Chemosphere, 90 (10), pp. 2623-2630 Essandoh, M., Kunwar, B., Pittman, C.U., Mohan, D., Mlsna, T., Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar (2015) Chem. Eng. J. (Amsterdam, Neth.), 265, pp. 219-227 Domingues, R.R., Trugilho, P.F., Silva, C.A., Melo, I.C.N.A.d., Melo, L.C.A., Magriotis, Z.M., Sánchez-Monedero, M.A., Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits (2017) PLoS One, 12 (5), p. 0176884 Lehmann, J., Joseph, S., (2015) Biochar for Environmental Management: Science, Technology and Implementation, , Routledge Tan, Z., Yuan, S., Hong, M., Zhang, L., Huang, Q., Mechanism of negative surface charge formation on biochar and its effect on the fixation of soil Cd (2020) J. Hazard. Mater., 384, p. 121370 Hernandez-Soriano, M.C., Kerré, B., Kopittke, P.M., Horemans, B., Smolders, E., Biochar affects carbon composition and stability in soil: a combined spectroscopy-microscopy study (2016) Sci. Rep., 6 (1), p. 25127 Gao, X., Peng, Y., Zhou, Y., Adeel, M., Chen, Q., Effects of magnesium ferrite biochar on the cadmium passivation in acidic soil and bioavailability for packoi (Brassica chinensis L.) (2019) J. Environ. Manage., 251, p. 109610 Bashir, S., Hussain, Q., Shaaban, M., Hu, H., Efficiency and surface characterization of different plant derived biochar for cadmium (Cd) mobility, bioaccessibility and bioavailability to Chinese cabbage in highly contaminated soil (2018) Chemosphere, 211, pp. 632-639 Keiluweit, M., Nico, P.S., Johnson, M.G., Kleber, M., Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar) (2010) Environ. Sci. Technol., 44 (4), pp. 1247-1253 Limousin, G., Gaudet, J.-P., Charlet, L., Szenknect, S., Barthes, V., Krimissa, M., Sorption isotherms: A review on physical bases, modeling and measurement (2007) Appl. Geochem., 22 (2), pp. 249-275 Cui, X., Hao, H., Zhang, C., He, Z., Yang, X., Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars (2016) Sci. Total Environ., 539, pp. 566-575 Xu, Y., Chen, B., Organic carbon and inorganic silicon speciation in rice-bran-derived biochars affect its capacity to adsorb cadmium in solution (2015) J. Soils Sediments, 15 (1), pp. 60-70 Smolders, E., Mertens, J., Alloway, B.J., Cadmium (2013) Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability, pp. 283-311. , In Springer: Dordrecht, The Netherlands Zhang, F., Wang, X., Yin, D., Peng, B., Tan, C., Liu, Y., Tan, X., Wu, S., Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes) (2015) J. Environ. Manage., 153, pp. 68-73 Iqbal, M., Saeed, A., Zafar, S.I., FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste (2009) J. Hazard. Mater., 164 (1), pp. 161-171 Sewwandi, B.G.N., Vithanage, M., Wijesekara, S.S.R.M.D.H.R., Mowjood, M.I.M., Hamamoto, S., Kawamoto, K., Adsorption of Cd(II) and Pb(II) onto Humic Acid-Treated Coconut (Cocos nucifera) Husk (2014) J. Hazard., Toxic Radioact. Waste, 18 (2), p. 04014001 Xu, X., Cao, X., Zhao, L., Wang, H., Yu, H., Gao, B., Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar (2013) Environ. Sci. Pollut. Res., 20 (1), pp. 358-368 Doumer, M.E., Rigol, A., Vidal, M., Mangrich, A.S., Removal of Cd, Cu, Pb, and Zn from aqueous solutions by biochars (2016) Environ. Sci. Pollut. Res., 23 (3), pp. 2684-2692 Cheng, Q., Huang, Q., Khan, S., Liu, Y., Liao, Z., Li, G., Ok, Y.S., Adsorption of Cd by peanut husks and peanut husk biochar from aqueous solutions (2016) Ecological Engineering, 87, pp. 240-245 Lin, Y., Munroe, P., Joseph, S., Henderson, R., Ziolkowski, A., Water extractable organic carbon in untreated and chemical treated biochars (2012) Chemosphere, 87 (2), pp. 151-157 Xu, M., Wu, J., Luo, L., Yang, G., Zhang, X., Peng, H., Yu, X., Wang, L., The factors affecting biochar application in restoring heavy metal-polluted soil and its potential applications (2018) Chem. Ecol., 34 (2), pp. 177-197 Builes, S., Vega, L.F., Effect of Immobilized Amines on the Sorption Properties of Solid Materials: Impregnation versus Grafting (2013) Langmuir, 29 (1), pp. 199-206 El-Sheikh, A.H., Al-Salamin, R.M., Alshamaly, H.S., Tahboub, D.a.M., Al-Degs, Y.S., Fasfous, I.I., Al-Hashimi, N.N., Abdelghani, J.I., Effect of varying deposition conditions of magnetite on sawdust on the physiochemical properties of the prepared composites (2019) J. Environ. Chem. Eng., 7 (6), p. 103497 Stavropoulos, G.G., Precursor materials suitability for super activated carbons production (2005) Fuel Process. Technol., 86 (11), pp. 1165-1173 Reed, B.E., Matsumoto, M.R., Modeling Cadmium Adsorption by Activated Carbon Using the Langmuir and Freundlich Isotherm Expressions (1993) Sep. Sci. Technol., 28 (1314), pp. 2179-2195 Yuan, J.-H., Xu, R.-K., Zhang, H., The forms of alkalis in the biochar produced from crop residues at different temperatures (2011) Bioresour. Technol., 102 (3), pp. 3488-3497 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
American Chemical Society |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Ambiental |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
Journal of Physical Chemistry C |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159206011371520 |
spelling |
20202021-02-05T14:57:52Z2021-02-05T14:57:52Z19327447http://hdl.handle.net/11407/591410.1021/acs.jpcc.0c02216Biochars have been shown as promising materials for cadmium remediation. However, the different precursors and the pyrolysis process operating conditions can yield very different surface functional groups, and as a result, different cadmium sorption mechanisms can be observed in biochars. Herein we present the results of cadmium sorption on biochars produced from the pyrolysis of different agro-residues, namely, coffee husk, quinoa straw, and oil palm kernel shell. The adsorption isotherms were used to determine the influence of the biochar's physicochemical characteristics to their sorption behavior. The biochars prepared from quinoa residues showed much higher cadmium uptakes than the other biochars. The concentration of base cations was found to be a critical factor for cadmium sorption. Although the quinoa biochars presented large uptakes, it was found that base cations were supported on the biochars and could be removed by leaching. Results from this study suggest that concentration of base cations on biochars could be used as predictors of the biochar capabilities for the removal of cadmium in aqueous solution. Copyright © 2020 American Chemical Society.engAmerican Chemical SocietyIngeniería AmbientalFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85089280277&doi=10.1021%2facs.jpcc.0c02216&partnerID=40&md5=1b13fd14cc8f7905158d219f8eea8c05124271459214602Shahid, M., Dumat, C., Khalid, S., Niazi, N.K., Antunes, P.M.C., de Voogt, P., Cadmium Bioavailability, Uptake, Toxicity and Detoxification in Soil-Plant System (2017) Reviews of Environmental Contamination and Toxicology, 241, pp. 73-137. , InSpringer International Publishing: Cham, Switzerland, VolAli, A., Ahmed, A., Gad, A., Chemical and microstructural analyses for heavy metals removal from water media by ceramic membrane filtration (2017) Water Sci. Technol., 75 (2), pp. 439-450Cardoso, S.P., Azenha, I.S., Lin, Z., Portugal, I., Rodrigues, A.E., Silva, C.M., Experimental measurement and modeling of ion exchange equilibrium and kinetics of cadmium (II) solutions over microporous stannosilicate AV-6 (2016) Chem. Eng. J. (Amsterdam, Neth.), 295, pp. 139-151Bhadrinarayana, N.S., Basha, C.A., Anantharaman, N., Electrochemical Oxidation of Cyanide and Simultaneous Cathodic Removal of Cadmium Present in the Plating Rinse Water (2007) Ind. Eng. Chem. Res., 46 (20), pp. 6417-6424Kim, H.S., Seo, B.-H., Kuppusamy, S., Lee, Y.B., Lee, J.-H., Yang, J.-E., Owens, G., Kim, K.-R., A DOC coagulant, gypsum treatment can simultaneously reduce As, Cd and Pb uptake by medicinal plants grown in contaminated soil (2018) Ecotoxicol. Environ. Saf., 148, pp. 615-619Bailey, S.E., Olin, T.J., Bricka, R.M., Adrian, D.D., A review of potentially low-cost sorbents for heavy metals (1999) Water Res., 33 (11), pp. 2469-2479Boudrahem, F., Soualah, A., Aissani-Benissad, F., Pb(II) and Cd(II) Removal from Aqueous Solutions Using Activated Carbon Developed from Coffee Residue Activated with Phosphoric Acid and Zinc Chloride (2011) J. Chem. Eng. Data, 56 (5), pp. 1946-1955Božić, D., Stanković, V., Gorgievski, M., Bogdanović, G., Kovačević, R., Adsorption of heavy metal ions by sawdust of deciduous trees (2009) J. Hazard. Mater., 171 (13), pp. 684-692Nayak, A., Bhushan, B., Gupta, V., Sharma, P., Chemically activated carbon from lignocellulosic wastes for heavy metal wastewater remediation: Effect of activation conditions (2017) J. Colloid Interface Sci., 493, pp. 228-240Aguayo-Villarreal, I.A., Bonilla-Petriciolet, A., Muñiz-Valencia, R., Preparation of activated carbons from pecan nutshell and their application in the antagonistic adsorption of heavy metal ions (2017) J. Mol. Liq., 230, pp. 686-695Rashidi, N.A., Yusup, S., A review on recent technological advancement in the activated carbon production from oil palm wastes (2017) Chem. Eng. J. (Amsterdam, Neth.), 314, pp. 277-290Fiol, N., Villaescusa, I., Martínez, M., Miralles, N., Poch, J., Serarols, J., Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste (2006) Sep. Purif. Technol., 50 (1), pp. 132-140Akhtar, A., Krepl, V., Ivanova, T., A Combined Overview of Combustion, Pyrolysis, and Gasification of Biomass (2018) Energy Fuels, 32 (7), pp. 7294-7318Salgado, M.A.H., Tarelho, L.A.C., Matos, A., Robaina, M., Narváez, R., Peralta, M.E., Thermoeconomic analysis of integrated production of biochar and process heat from quinoa and lupin residual biomass (2018) Energy Policy, 114, pp. 332-341Salgado, M.A.H., Tarelho, L.A., Matos, A., Analysis of Combined Biochar and Torrefied Biomass Fuel Production as Alternative for Residual Biomass Valorization Generated in Small-Scale Palm Oil Mills (2020) Waste Biomass Valorization, 11 (1), pp. 343-356Neves, D., Thunman, H., Matos, A., Tarelho, L., Gómez-Barea, A., Characterization and prediction of biomass pyrolysis products (2011) Prog. Energy Combust. Sci., 37 (5), pp. 611-630Galinato, S.P., Yoder, J.K., Granatstein, D., The economic value of biochar in crop production and carbon sequestration (2011) Energy Policy, 39 (10), pp. 6344-6350Inyang, M.I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., Pullammanappallil, P., Cao, X., A review of biochar as a low-cost adsorbent for aqueous heavy metal removal (2016) Crit. Rev. Environ. Sci. Technol., 46 (4), pp. 406-433Chen, T., Zhou, Z., Han, R., Meng, R., Wang, H., Lu, W., Adsorption of cadmium by biochar derived from municipal sewage sludge: Impact factors and adsorption mechanism (2015) Chemosphere, 134, pp. 286-293Harvey, O.R., Herbert, B.E., Rhue, R.D., Kuo, L.-J., Metal Interactions at the Biochar-Water Interface: Energetics and Structure-Sorption Relationships Elucidated by Flow Adsorption Microcalorimetry (2011) Environ. Sci. Technol., 45 (13), pp. 5550-5556Klllç, M., Klrblylk, Ç., Çepelioǧullar, Ö., Pütün, A.E., Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis (2013) Appl. Surf. Sci., 283, pp. 856-862Rees, F., Simonnot, M.O., Morel, J.L., Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase (2014) European Journal of Soil Science, 65 (1), pp. 149-161Houben, D., Evrard, L., Sonnet, P., Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar (2013) Chemosphere, 92 (11), pp. 1450-1457Chi, T., Zuo, J., Liu, F., Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar (2017) Front. Environ. Sci. Eng., 11 (2), p. 15Melia, P.M., Busquets, R., Ray, S., Cundy, A.B., Agricultural wastes from wheat, barley, flax and grape for the efficient removal of Cd from contaminated water (2018) RSC Adv., 8 (70), pp. 40378-40386Wang, R.-Z., Huang, D.-L., Liu, Y.-G., Zhang, C., Lai, C., Zeng, G.-M., Cheng, M., Luo, H., Investigating the adsorption behavior and the relative distribution of Cd2+ sorption mechanisms on biochars by different feedstock (2018) Bioresour. Technol., 261, pp. 265-271Cui, X., Fang, S., Yao, Y., Li, T., Ni, Q., Yang, X., He, Z., Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar (2016) Sci. Total Environ., 562, pp. 517-525Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Ok, Y.S., Biochar as a sorbent for contaminant management in soil and water: A review (2014) Chemosphere, 99, pp. 19-33(2012) Guidelines for a Sustainable Production of Biochar, , European Biochar Foundation (EBC): Arbaz, SwitzerlandHeredia Salgado, M.A., Coba S, J.A., Tarelho, L.A.C., Simultaneous production of biochar and thermal energy using palm oil residual biomass as feedstock in an auto-thermal prototype reactor (2020) J. Cleaner Prod., 266, p. 121804Qi, F., Dong, Z., Lamb, D., Naidu, R., Bolan, N.S., Ok, Y.S., Liu, C., Semple, K.T., Effects of acidic and neutral biochars on properties and cadmium retention of soils (2017) Chemosphere, 180, pp. 564-573Denyes, M.J., Parisien, M.A., Rutter, A., Zeeb, B.A., Physical, chemical and biological characterization of six biochars produced for the remediation of contaminated sites (2014) J. Visualized Exp., (93), p. e52183Santamarina, J.C., Klein, K.A., Wang, Y.H., Prencke, E., Specific surface: determination and relevance (2002) Can. Geotech. J., 39 (1), pp. 233-241Aristizábal, A., Perilla, G., Lara-Borrero, J.A., Diez, R., KrCl and XeCl excilamps and LP-Hg lamp for UV and UV/H2O2 decolourization of dyes in water (2020) Environ. Technol., 41 (2), pp. 238-250Chen, J.P., (2012) Decontamination of Heavy Metals: Processes, Mechanisms, and Applications, , CRC PressBuiles, S., Sandler, S.I., Xiong, R., Isosteric Heats of Gas and Liquid Adsorption (2013) Langmuir, 29, pp. 10416-10422Bonilla-Petriciolet, A., Mendoza-Castillo, D.I., Reynel-Ávila, H.E., (2017) Adsorption Processes for Water Treatment and Purification, , SpringerGao, L.-Y., Deng, J.-H., Huang, G.-F., Li, K., Cai, K.-Z., Liu, Y., Huang, F., Relative distribution of Cd2+ adsorption mechanisms on biochars derived from rice straw and sewage sludge (2019) Bioresour. Technol., 272, pp. 114-122Fan, Z., Zhang, Q., Li, M., Niu, D., Sang, W., Verpoort, F., Investigating the sorption behavior of cadmium from aqueous solution by potassium permanganate-modified biochar: quantify mechanism and evaluate the modification method (2018) Environ. Sci. Pollut. Res., 25 (9), pp. 8330-8339Builes, S., López-Aranguren, P., Fraile, J., Vega, L.F., Domingo, C., Analysis of CO2 Adsorption in Amine-Functionalized Porous Silicas by Molecular Simulations (2015) Energy Fuels, 29 (6), pp. 3855-3862Kim, P., Johnson, A.M., Essington, M.E., Radosevich, M., Kwon, W.-T., Lee, S.-H., Rials, T.G., Labbé, N., Effect of pH on surface characteristics of switchgrass-derived biochars produced by fast pyrolysis (2013) Chemosphere, 90 (10), pp. 2623-2630Essandoh, M., Kunwar, B., Pittman, C.U., Mohan, D., Mlsna, T., Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar (2015) Chem. Eng. J. (Amsterdam, Neth.), 265, pp. 219-227Domingues, R.R., Trugilho, P.F., Silva, C.A., Melo, I.C.N.A.d., Melo, L.C.A., Magriotis, Z.M., Sánchez-Monedero, M.A., Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits (2017) PLoS One, 12 (5), p. 0176884Lehmann, J., Joseph, S., (2015) Biochar for Environmental Management: Science, Technology and Implementation, , RoutledgeTan, Z., Yuan, S., Hong, M., Zhang, L., Huang, Q., Mechanism of negative surface charge formation on biochar and its effect on the fixation of soil Cd (2020) J. Hazard. Mater., 384, p. 121370Hernandez-Soriano, M.C., Kerré, B., Kopittke, P.M., Horemans, B., Smolders, E., Biochar affects carbon composition and stability in soil: a combined spectroscopy-microscopy study (2016) Sci. Rep., 6 (1), p. 25127Gao, X., Peng, Y., Zhou, Y., Adeel, M., Chen, Q., Effects of magnesium ferrite biochar on the cadmium passivation in acidic soil and bioavailability for packoi (Brassica chinensis L.) (2019) J. Environ. Manage., 251, p. 109610Bashir, S., Hussain, Q., Shaaban, M., Hu, H., Efficiency and surface characterization of different plant derived biochar for cadmium (Cd) mobility, bioaccessibility and bioavailability to Chinese cabbage in highly contaminated soil (2018) Chemosphere, 211, pp. 632-639Keiluweit, M., Nico, P.S., Johnson, M.G., Kleber, M., Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar) (2010) Environ. Sci. Technol., 44 (4), pp. 1247-1253Limousin, G., Gaudet, J.-P., Charlet, L., Szenknect, S., Barthes, V., Krimissa, M., Sorption isotherms: A review on physical bases, modeling and measurement (2007) Appl. Geochem., 22 (2), pp. 249-275Cui, X., Hao, H., Zhang, C., He, Z., Yang, X., Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars (2016) Sci. Total Environ., 539, pp. 566-575Xu, Y., Chen, B., Organic carbon and inorganic silicon speciation in rice-bran-derived biochars affect its capacity to adsorb cadmium in solution (2015) J. Soils Sediments, 15 (1), pp. 60-70Smolders, E., Mertens, J., Alloway, B.J., Cadmium (2013) Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability, pp. 283-311. , InSpringer: Dordrecht, The NetherlandsZhang, F., Wang, X., Yin, D., Peng, B., Tan, C., Liu, Y., Tan, X., Wu, S., Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes) (2015) J. Environ. Manage., 153, pp. 68-73Iqbal, M., Saeed, A., Zafar, S.I., FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste (2009) J. Hazard. Mater., 164 (1), pp. 161-171Sewwandi, B.G.N., Vithanage, M., Wijesekara, S.S.R.M.D.H.R., Mowjood, M.I.M., Hamamoto, S., Kawamoto, K., Adsorption of Cd(II) and Pb(II) onto Humic Acid-Treated Coconut (Cocos nucifera) Husk (2014) J. Hazard., Toxic Radioact. Waste, 18 (2), p. 04014001Xu, X., Cao, X., Zhao, L., Wang, H., Yu, H., Gao, B., Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar (2013) Environ. Sci. Pollut. Res., 20 (1), pp. 358-368Doumer, M.E., Rigol, A., Vidal, M., Mangrich, A.S., Removal of Cd, Cu, Pb, and Zn from aqueous solutions by biochars (2016) Environ. Sci. Pollut. Res., 23 (3), pp. 2684-2692Cheng, Q., Huang, Q., Khan, S., Liu, Y., Liao, Z., Li, G., Ok, Y.S., Adsorption of Cd by peanut husks and peanut husk biochar from aqueous solutions (2016) Ecological Engineering, 87, pp. 240-245Lin, Y., Munroe, P., Joseph, S., Henderson, R., Ziolkowski, A., Water extractable organic carbon in untreated and chemical treated biochars (2012) Chemosphere, 87 (2), pp. 151-157Xu, M., Wu, J., Luo, L., Yang, G., Zhang, X., Peng, H., Yu, X., Wang, L., The factors affecting biochar application in restoring heavy metal-polluted soil and its potential applications (2018) Chem. Ecol., 34 (2), pp. 177-197Builes, S., Vega, L.F., Effect of Immobilized Amines on the Sorption Properties of Solid Materials: Impregnation versus Grafting (2013) Langmuir, 29 (1), pp. 199-206El-Sheikh, A.H., Al-Salamin, R.M., Alshamaly, H.S., Tahboub, D.a.M., Al-Degs, Y.S., Fasfous, I.I., Al-Hashimi, N.N., Abdelghani, J.I., Effect of varying deposition conditions of magnetite on sawdust on the physiochemical properties of the prepared composites (2019) J. Environ. Chem. Eng., 7 (6), p. 103497Stavropoulos, G.G., Precursor materials suitability for super activated carbons production (2005) Fuel Process. Technol., 86 (11), pp. 1165-1173Reed, B.E., Matsumoto, M.R., Modeling Cadmium Adsorption by Activated Carbon Using the Langmuir and Freundlich Isotherm Expressions (1993) Sep. Sci. Technol., 28 (1314), pp. 2179-2195Yuan, J.-H., Xu, R.-K., Zhang, H., The forms of alkalis in the biochar produced from crop residues at different temperatures (2011) Bioresour. Technol., 102 (3), pp. 3488-3497Journal of Physical Chemistry CAdsorption of Cadmium Using Biochars Produced from Agro-ResiduesArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1CadmiumPalm oilPositive ionsPyrolysisSorptionCritical factorsDifferent precursorsOperating conditionPhysicochemical characteristicsPyrolysis processSorption behaviorsSorption mechanismSurface functional groupsChemicals removal (water treatment)López, J.E., Environmental Engineering Faculty, Universidad de Medellín, Medellín, 050026, ColombiaBuiles, S., Departamento de Ingeniería de Procesos, Universidad EAFIT, Carrera 49 No. 7 sur-50, Medellín, 050022, ColombiaHeredia Salgado, M.A., Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, 3810-193, PortugalTarelho, L.A.C., Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, 3810-193, PortugalArroyave, C., Environmental Engineering Faculty, Universidad de Medellín, Medellín, 050026, ColombiaAristizábal, A., Departamento de Ingeniería de Procesos, Universidad EAFIT, Carrera 49 No. 7 sur-50, Medellín, 050022, ColombiaChavez, E., Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuadorhttp://purl.org/coar/access_right/c_16ecLópez J.E.Builes S.Heredia Salgado M.A.Tarelho L.A.C.Arroyave C.Aristizábal A.Chavez E.11407/5914oai:repository.udem.edu.co:11407/59142021-02-05 09:57:53.016Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |