Aspergillus tubingensis and Talaromyces islandicus Solubilize Rock Phosphate Under Saline and Fungicide Stress and Improve Zea mays Growth and Phosphorus Nutrition
The purpose of this study was to evaluate the capability of Aspergillus tubingensis and Talaromyces islandicus to solubilize inorganic phosphorus sources, their activity under abiotic stress, and the enhancement of P availability in soils and plant growth. The P-solubilizing capability and acidifica...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5919
- Acceso en línea:
- http://hdl.handle.net/11407/5919
- Palabra clave:
- Abiotic stress
Biofertilization
Low molecular weight organic acid
Plant growth
Sustainable agriculture
Tricalcium phosphate
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_d460c50652560cc6b123b7196d45d787 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5919 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Aspergillus tubingensis and Talaromyces islandicus Solubilize Rock Phosphate Under Saline and Fungicide Stress and Improve Zea mays Growth and Phosphorus Nutrition |
title |
Aspergillus tubingensis and Talaromyces islandicus Solubilize Rock Phosphate Under Saline and Fungicide Stress and Improve Zea mays Growth and Phosphorus Nutrition |
spellingShingle |
Aspergillus tubingensis and Talaromyces islandicus Solubilize Rock Phosphate Under Saline and Fungicide Stress and Improve Zea mays Growth and Phosphorus Nutrition Abiotic stress Biofertilization Low molecular weight organic acid Plant growth Sustainable agriculture Tricalcium phosphate |
title_short |
Aspergillus tubingensis and Talaromyces islandicus Solubilize Rock Phosphate Under Saline and Fungicide Stress and Improve Zea mays Growth and Phosphorus Nutrition |
title_full |
Aspergillus tubingensis and Talaromyces islandicus Solubilize Rock Phosphate Under Saline and Fungicide Stress and Improve Zea mays Growth and Phosphorus Nutrition |
title_fullStr |
Aspergillus tubingensis and Talaromyces islandicus Solubilize Rock Phosphate Under Saline and Fungicide Stress and Improve Zea mays Growth and Phosphorus Nutrition |
title_full_unstemmed |
Aspergillus tubingensis and Talaromyces islandicus Solubilize Rock Phosphate Under Saline and Fungicide Stress and Improve Zea mays Growth and Phosphorus Nutrition |
title_sort |
Aspergillus tubingensis and Talaromyces islandicus Solubilize Rock Phosphate Under Saline and Fungicide Stress and Improve Zea mays Growth and Phosphorus Nutrition |
dc.subject.spa.fl_str_mv |
Abiotic stress Biofertilization Low molecular weight organic acid Plant growth Sustainable agriculture Tricalcium phosphate |
topic |
Abiotic stress Biofertilization Low molecular weight organic acid Plant growth Sustainable agriculture Tricalcium phosphate |
description |
The purpose of this study was to evaluate the capability of Aspergillus tubingensis and Talaromyces islandicus to solubilize inorganic phosphorus sources, their activity under abiotic stress, and the enhancement of P availability in soils and plant growth. The P-solubilizing capability and acidification mechanism of the strains were assessed in vitro using tricalcium phosphate and rock phosphate. Independent assays were conducted with rock phosphate under NaCl and fungicides carbendazim, chlorothalonil, and propamocarb hydrochloride using a factorial design. Thereafter, the effects of fungal inoculations in rock phosphate–amended soil and P nutrition of Zea mays were assessed in a greenhouse experiment. Both fungi solubilized P in vitro via acidification through the exudation of acetic, citric, lactic, malic, quinic, and succinic acids. The P-solubilizing efficiency of A. tubingensis was maintained above 97.5% under 0.5 to 3.0% NaCl, up to 28.7% in the treatment with carbendazim, up to 5.3% with chlorothalonil, and above 96.5% with propamocarb hydrochloride; while T. islandicus efficiency decreased to 45.2% in a NaCl concentration-dependent trend, and maintained it above 80% in the fungicide treatments. The inoculation with A. tubingensis increased the available P in the amended soil by up to 65% after 30 days and resulted in 87% higher foliar P content, 111% greater plant height, and 25% greater dry weight of maize shoots. Similarly, T. islandicus contributed to these parameters in 55, 67, 90, and 17%, respectively. These findings suggest their potential as qualified phosphorus solubilizing microorganisms to develop novel and sustainable approaches for P fertilization in agriculture. © 2020, Sociedad Chilena de la Ciencia del Suelo. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:57:54Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:57:54Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
7189508 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5919 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s42729-020-00315-w |
identifier_str_mv |
7189508 10.1007/s42729-020-00315-w |
url |
http://hdl.handle.net/11407/5919 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089372439&doi=10.1007%2fs42729-020-00315-w&partnerID=40&md5=084b0980065c5322586562a1353fa532 |
dc.relation.references.none.fl_str_mv |
Amann, A., Zoboli, O., Krampe, J., Rechberger, H., Zessner, M., Egle, L., Environmental impacts of phosphorus recovery from municipal wastewater (2018) Resour Conserv Recycl, 130, pp. 127-139 Babu, A.G., Reddy, M.S., Dual inoculation of arbuscular mycorrhizal and phosphate solubilizing fungi contributes in sustainable maintenance of plant health in fly ash ponds (2011) Water Air Soil Pollut, 219, pp. 3-10. , COI: 1:CAS:528:DC%2BC3MXntVSks7s%3D Barra, P.J., Viscardi, S., Jorquera, M.A., Duran, P.A., Valentine, A.J., Mora, M.L., Understanding the strategies to overcome phosphorus–deficiency and aluminum–toxicity by ryegrass endophytic and rhizosphere phosphobacteria (2018) Front Microbiol, 9. , https://doi.org/10.3389/fmicb.2018.01155 Barra, P.J., Pontigo, S., Delgado, M., Parra-Almuna, L., Duran, P., Valentine, A.J., Jorquera, M.A., Mora, M.L., Phosphobacteria inoculation enhances the benefit of P–fertilization on Lolium perenne in soils contrasting in P–availability (2019) Soil Biol Biochem, 136, p. 107516 Bashan, Y., Kamnev, A.A., De-Bashan, L.E., Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure (2013) Biol Fertil Soils, 49, pp. 465-479 Boroumand, N., Behbahani, M., Dini, G., Combined effects of phosphate solubilizing bacteria and nanosilica on the growth of land cress plant (2020) J Soil Sci Plant Nutr, 20, pp. 232-243 Chen, Y.P., Rekha, P.D., Arun, A.B., Shen, F.T., Lai, W.A., Young, C.C., Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities (2006) Appl Soil Ecol, 34, pp. 33-41 Chuang, C.C., Kuo, Y.L., Chao, C.C., Chao, W.L., Solubilization of inorganic phosphates and plant growth promotion by Aspergillus niger (2007) Biol Fertil Soils, 43, pp. 575-584 Collavino, M.M., Sansberro, P.A., Mroginski, L.A., Aguilar, O.M., Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth (2010) Biol Fertil Soils, 46, pp. 727-738 Condron, L.M., Spears, B.M., Haygarth, P.M., Turner, B.L., Richardson, A.E., Role of legacy phosphorus in improving global phosphorus-use efficiency (2013) Environ Dev, 8, pp. 147-148 de Oliveira Mendes, G., Moreira de Freitas, A.L., Liparini Pereira, O., Ribeiro da Silva, I., Bojkov Vassilev, N., Dutra Costa, M., Mechanisms of phosphate solubilization by fungal isolates when exposed to different P sources (2014) Ann Microbiol, 64, pp. 239-249 Gaind, S., Phosphate dissolving fungi: mechanism and application in alleviation of salt stress in wheat (2016) Microbiol Res, 193, pp. 94-102. , COI: 1:CAS:528:DC%2BC28Xhs1Siu73P Gunde-Cimerman, N., Ramos, J., Plemenitaš, A., Halotolerant and halophilic fungi (2009) Mycol Res, 113, pp. 1231-1241 Hawkins, A.R., Lamb, H.K., Moore, J.D., Charles, I.G., Roberts, C.F., The pre-chorismate (shikimate) and quinate pathways in filamentous fungi: theoretical and practical aspects (1993) Microbiology, 139 (12), pp. 2891-2899. , COI: 1:CAS:528:DyaK2cXht12is74%3D Hayes, B.M.E., Anderson, M.A., Traven, A., van der Weerden, N.L., Bleackley, M.R., Activation of stress signalling pathways enhances tolerance of fungi to chemical fungicides and antifungal proteins (2014) Cell Mol Life Sci, 71, pp. 2651-2666 Herrera, H., Palma, G., Almonacid, L., Campos, R., Fuentes, A., Garcia-Romera, I., Arriagada, C., Improving soil simazine dissipation through an organic amendment inoculated with Trametes versicolor (2019) J Soil Sci Plant Nutr, 19, pp. 262-269 Jain, R., Saxena, J., Sharma, V., The ability of two fungi to dissolve hardly soluble phosphates in solution (2017) Mycology, 8, pp. 104-110 Jiang, H., Qi, P., Wang, T., Wang, M., Chen, M., Chen, N., Pan, L., Chi, X., Isolation and characterization of halotolerant phosphate-solubilizing microorganisms from saline soils (2018) 3 Biotech, 8, p. 461 Kang, S.M., Radhakrishnan, R., You, Y.H., Joo, G.J., Lee, I.J., Lee, K.E., Kim, J.H., Phosphate solubilizing Bacillus megaterium MJ1212 regulates endogenous plant carbohydrates and amino acids contents to promote mustard plant growth (2014) Indian J Microbiol, 54, pp. 427-433. , COI: 1:CAS:528:DC%2BC2cXpsVantLs%3D Kanse, O.S., Whitelaw-Weckert, M., Kadam, T.A., Bhosale, H.J., Phosphate solubilization by stress-tolerant soil fungus Talaromyces funiculosus SLS8 isolated from the Neem rhizosphere (2015) Ann Microbiol, 65, pp. 85-93. , COI: 1:CAS:528:DC%2BC2MXjsVajsLY%3D Khan, A., Jilani, G., Zhang, D., Akbar, S., Malik, K.M., Rukh, S., Mujtaba, G., Acidithiobacillus thiooxidans IW16 and sulfur synergistically with struvite aggrandize the phosphorus bioavailability to wheat in alkaline soil (2020) J Soil Sci Plant Nutr, 20, pp. 95-104 Lewis, K.A., Tzilivakis, J., Warner, D.J., Green, A., An international database for pesticide risk assessments and management (2016) Https://Sitem.Herts.Ac.Uk/Aeru/Ppdb/En/Index.Htm. Hum Ecol Risk Assess, 22, pp. 1050-1064. , https://doi.org/10.1080/10807039.2015.1133242 Li, Z., Bai, T., Dai, L., Wang, F., Tao, J., Meng, S., Hu, S., A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger (2016) Sci Rep, 6, p. 25313. , COI: 1:CAS:528:DC%2BC28XmvFegsL4%3D Liu, F.P., Liu, H.Q., Zhou, H.L., Dong, Z.G., Bai, X.H., Bai, P., Qiao, J.J., Isolation and characterization of phosphate-solubilizing bacteria from betel nut (Areca catechu) and their effects on plant growth and phosphorus mobilization in tropical soils (2014) Biol Fertil Soils, 50, pp. 927-937. , COI: 1:CAS:528:DC%2BC2cXht1CltLjN Lobo, C.B., Juárez Tomás, M.S., Viruel, E., Ferrero, M.A., Lucca, M.E., Development of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologies (2019) Microbiol Res, 219, pp. 12-25. , COI: 1:CAS:528:DC%2BC1cXitFOisL7P Mendes, G.O., Dias, C.S., Silva, I.R., Júnior, J.I.R., Pereira, O.L., Costa, M.D., Fungal rock phosphate solubilization using sugarcane bagasse (2013) World J Microbiol Biotechnol, 29, pp. 43-50 Mora, M.L., Demanet, R., Acuña, J.J., Viscardi, S., Jorquera, M., Rengel, Z., Durán, P., Aluminum-tolerant bacteria improve the plant growth and phosphorus content in ryegrass grown in a volcanic soil amended with cattle dung manure (2017) Appl Soil Ecol, 115, pp. 19-26 Murphy, J., Riley, J., A modified single solution method for the determination of phosphate in natural waters (1962) Anal Chim Acta, 27, pp. 31-36. , COI: 1:CAS:528:DyaF38XksVyntr8%3D Musarrat, J., Khan, M.S., Factors affecting phosphate-solubilizing activity of microbes: current status (2014) Phosphate solubilizing microorganisms, pp. 63-85. , Khan MS, Zaidi A, Musarrat J, (eds), Cham Springer International Publishing, New York Osorio, N.W., Habte, M., Phosphate desorption from the surface of soil mineral particles by a phosphate-solubilizing fungus (2013) Biol Fertil Soils, 49, pp. 481-486. , COI: 1:CAS:528:DC%2BC3sXmvFSqtr8%3D Pansu, M., Gautheyrou, J., (2006) Handbook of soil analysis, , Springer Berlin Heidelberg, Berlin, Heidelberg Plassard, C., Fransson, P., Regulation of low-molecular weight organic acid production in fungi (2009) Fungal Biol Rev, 23, pp. 30-39 Prabhu, N., Borkar, S., Garg, S., Phosphate solubilization by microorganisms (2019) Advances in Biological Science Research, pp. 161-176. , https://doi.org/10.1016/B978-0-12-817497-5.00011-2, Elsevier Samaddar, S., Chatterjee, P., Truu, J., Anandham, R., Kim, S., Sa, T., Long-term phosphorus limitation changes the bacterial community structure and functioning in paddy soils (2019) Appl Soil Ecol, 134, pp. 111-115 Santander, C., Sanhueza, M., Olave, J., Borie, F., Valentine, A., Cornejo, P., Arbuscular mycorrhizal colonization promotes the tolerance to salt stress in lettuce plants through an efficient modification of ionic balance (2019) J Soil Sci Plant Nutr, 19, pp. 321-331 Shekhar Nautiyal, C., An efficient microbiological growth medium for screening phosphate solubilizing microorganisms (1999) FEMS Microbiol Lett, 170, pp. 265-270 Singh, H., Reddy, M.S., Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils (2011) Eur J Soil Biol, 47, pp. 30-34. , COI: 1:CAS:528:DC%2BC3MXms1Cj Srinivasan, R., Yandigeri, M.S., Kashyap, S., Alagawadi, A.R., Effect of salt on survival and P-solubilization potential of phosphate solubilizing microorganisms from salt affected soils (2012) Saudi J Biol Sci, 19, pp. 427-434 Sudhakara Reddy, S., Kumar, S., Babita, K., Reddy, M.S., Biosolubilization of poorly soluble rock phosphates by Aspergillus tubingensis and Aspergillus niger (2002) Bioresour Technol, 84 (2), pp. 187-189 Tandon, A., Fatima, T., Shukla, D., Tripathi, P., Srivastava, S., Singh, P.C., Phosphate solubilization by Trichoderma koningiopsis (NBRI-PR5) under abiotic stress conditions (2019) J King Saud Univ Sci, , https://doi.org/10.1016//j.jksus.2019.02.001 Tortella, G.R., Rubilar, O., Cea, M., Rodríguez-Rodríguez, C., Seguel, A., Parada, J., Sorption parameters of carbendazim and iprodione in the presence of copper nanoparticles in two different soils (2019) J Soil Sci Plant Nutr, 19, pp. 469-476 Vassilev, N., Vassileva, M., Biotechnological solubilization of rock phosphate on media containing agro-industrial wastes (2003) Appl Biochem Biotechnol, 61, pp. 435-440. , COI: 1:CAS:528:DC%2BD3sXjvFCltrY%3D Vazquez, P., Holguin, G., Puente, M.E., Lopez-Cortes, A., Bashan, Y., Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon (2000) Biol Fertil Soils, 30, pp. 460-468 Vyas, P., Rahi, P., Chauhan, A., Gulati, A., Phosphate solubilization potential and stress tolerance of Eupenicillium parvum from tea soil (2007) Mycol Res, 111, pp. 931-938 Wahid, O.A.A., Mehana, T.A., Impact of phosphate-solubilizing fungi on the yield and phosphorus-uptake by wheat and faba bean plants (2000) Microbiol Res, 155, pp. 221-227. , COI: 1:CAS:528:DC%2BD3cXot1ansbY%3D Wakelin, S.A., Warren, R.A., Harvey, P.R., Ryder, M.H., Osmond, G., Phosphate solubilization by Penicillium spp. closely associated with wheat roots (2004) Biol Fertil Soils, 40, pp. 36-43. , COI: 1:CAS:528:DC%2BD2cXksFGhsr4%3D Wang, H.Y., Liu, S., Zhai, L.M., Zhang, J.Z., Ren, T.Z., Fan, B.Q., Liu, H.B., Preparation and utilization of phosphate biofertilizers using agricultural waste (2015) J Integr Agric, 14, pp. 158-167. , COI: 1:CAS:528:DC%2BC2MXksF2gsLk%3D Wu, J., Zhang, A., Li, G., Wei, Y., He, S., Lin, Z., Wang, Q., Effect of different components of single superphosphate on organic matter degradation and maturity during pig manure composting (2019) Sci Total Environ, 646, pp. 587-594. , COI: 1:CAS:528:DC%2BC1cXhsVWhsL3O Xiao, C.-Q., Chi, R.-A., Huang, X.-H., Zhang, W.-X., Qiu, G.-Z., Wang, D.-Z., Optimization for rock phosphate solubilization by phosphate-solubilizing fungi isolated from phosphate mines (2008) Ecol Eng, 33 (2), pp. 187-193 Xiao, C., Zhang, H., Fang, Y., Chi, R., Evaluation for rock phosphate solubilization in fermentation and soil–plant system using a stress-tolerant phosphate-solubilizing Aspergillus niger WHAK1 (2013) Appl Biochem Biotechnol, 169, pp. 123-133. , COI: 1:CAS:528:DC%2BC3sXhsVKlur4%3D Zhu, J., Li, M., Whelan, M., Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review (2018) Sci Total Environ, 612, pp. 522-537. , COI: 1:CAS:528:DC%2BC2sXhsVansb7I |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Springer |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Ambiental |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
Journal of Soil Science and Plant Nutrition |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159100898967552 |
spelling |
20202021-02-05T14:57:54Z2021-02-05T14:57:54Z7189508http://hdl.handle.net/11407/591910.1007/s42729-020-00315-wThe purpose of this study was to evaluate the capability of Aspergillus tubingensis and Talaromyces islandicus to solubilize inorganic phosphorus sources, their activity under abiotic stress, and the enhancement of P availability in soils and plant growth. The P-solubilizing capability and acidification mechanism of the strains were assessed in vitro using tricalcium phosphate and rock phosphate. Independent assays were conducted with rock phosphate under NaCl and fungicides carbendazim, chlorothalonil, and propamocarb hydrochloride using a factorial design. Thereafter, the effects of fungal inoculations in rock phosphate–amended soil and P nutrition of Zea mays were assessed in a greenhouse experiment. Both fungi solubilized P in vitro via acidification through the exudation of acetic, citric, lactic, malic, quinic, and succinic acids. The P-solubilizing efficiency of A. tubingensis was maintained above 97.5% under 0.5 to 3.0% NaCl, up to 28.7% in the treatment with carbendazim, up to 5.3% with chlorothalonil, and above 96.5% with propamocarb hydrochloride; while T. islandicus efficiency decreased to 45.2% in a NaCl concentration-dependent trend, and maintained it above 80% in the fungicide treatments. The inoculation with A. tubingensis increased the available P in the amended soil by up to 65% after 30 days and resulted in 87% higher foliar P content, 111% greater plant height, and 25% greater dry weight of maize shoots. Similarly, T. islandicus contributed to these parameters in 55, 67, 90, and 17%, respectively. These findings suggest their potential as qualified phosphorus solubilizing microorganisms to develop novel and sustainable approaches for P fertilization in agriculture. © 2020, Sociedad Chilena de la Ciencia del Suelo.engSpringerIngeniería AmbientalFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85089372439&doi=10.1007%2fs42729-020-00315-w&partnerID=40&md5=084b0980065c5322586562a1353fa532Amann, A., Zoboli, O., Krampe, J., Rechberger, H., Zessner, M., Egle, L., Environmental impacts of phosphorus recovery from municipal wastewater (2018) Resour Conserv Recycl, 130, pp. 127-139Babu, A.G., Reddy, M.S., Dual inoculation of arbuscular mycorrhizal and phosphate solubilizing fungi contributes in sustainable maintenance of plant health in fly ash ponds (2011) Water Air Soil Pollut, 219, pp. 3-10. , COI: 1:CAS:528:DC%2BC3MXntVSks7s%3DBarra, P.J., Viscardi, S., Jorquera, M.A., Duran, P.A., Valentine, A.J., Mora, M.L., Understanding the strategies to overcome phosphorus–deficiency and aluminum–toxicity by ryegrass endophytic and rhizosphere phosphobacteria (2018) Front Microbiol, 9. , https://doi.org/10.3389/fmicb.2018.01155Barra, P.J., Pontigo, S., Delgado, M., Parra-Almuna, L., Duran, P., Valentine, A.J., Jorquera, M.A., Mora, M.L., Phosphobacteria inoculation enhances the benefit of P–fertilization on Lolium perenne in soils contrasting in P–availability (2019) Soil Biol Biochem, 136, p. 107516Bashan, Y., Kamnev, A.A., De-Bashan, L.E., Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure (2013) Biol Fertil Soils, 49, pp. 465-479Boroumand, N., Behbahani, M., Dini, G., Combined effects of phosphate solubilizing bacteria and nanosilica on the growth of land cress plant (2020) J Soil Sci Plant Nutr, 20, pp. 232-243Chen, Y.P., Rekha, P.D., Arun, A.B., Shen, F.T., Lai, W.A., Young, C.C., Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities (2006) Appl Soil Ecol, 34, pp. 33-41Chuang, C.C., Kuo, Y.L., Chao, C.C., Chao, W.L., Solubilization of inorganic phosphates and plant growth promotion by Aspergillus niger (2007) Biol Fertil Soils, 43, pp. 575-584Collavino, M.M., Sansberro, P.A., Mroginski, L.A., Aguilar, O.M., Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth (2010) Biol Fertil Soils, 46, pp. 727-738Condron, L.M., Spears, B.M., Haygarth, P.M., Turner, B.L., Richardson, A.E., Role of legacy phosphorus in improving global phosphorus-use efficiency (2013) Environ Dev, 8, pp. 147-148de Oliveira Mendes, G., Moreira de Freitas, A.L., Liparini Pereira, O., Ribeiro da Silva, I., Bojkov Vassilev, N., Dutra Costa, M., Mechanisms of phosphate solubilization by fungal isolates when exposed to different P sources (2014) Ann Microbiol, 64, pp. 239-249Gaind, S., Phosphate dissolving fungi: mechanism and application in alleviation of salt stress in wheat (2016) Microbiol Res, 193, pp. 94-102. , COI: 1:CAS:528:DC%2BC28Xhs1Siu73PGunde-Cimerman, N., Ramos, J., Plemenitaš, A., Halotolerant and halophilic fungi (2009) Mycol Res, 113, pp. 1231-1241Hawkins, A.R., Lamb, H.K., Moore, J.D., Charles, I.G., Roberts, C.F., The pre-chorismate (shikimate) and quinate pathways in filamentous fungi: theoretical and practical aspects (1993) Microbiology, 139 (12), pp. 2891-2899. , COI: 1:CAS:528:DyaK2cXht12is74%3DHayes, B.M.E., Anderson, M.A., Traven, A., van der Weerden, N.L., Bleackley, M.R., Activation of stress signalling pathways enhances tolerance of fungi to chemical fungicides and antifungal proteins (2014) Cell Mol Life Sci, 71, pp. 2651-2666Herrera, H., Palma, G., Almonacid, L., Campos, R., Fuentes, A., Garcia-Romera, I., Arriagada, C., Improving soil simazine dissipation through an organic amendment inoculated with Trametes versicolor (2019) J Soil Sci Plant Nutr, 19, pp. 262-269Jain, R., Saxena, J., Sharma, V., The ability of two fungi to dissolve hardly soluble phosphates in solution (2017) Mycology, 8, pp. 104-110Jiang, H., Qi, P., Wang, T., Wang, M., Chen, M., Chen, N., Pan, L., Chi, X., Isolation and characterization of halotolerant phosphate-solubilizing microorganisms from saline soils (2018) 3 Biotech, 8, p. 461Kang, S.M., Radhakrishnan, R., You, Y.H., Joo, G.J., Lee, I.J., Lee, K.E., Kim, J.H., Phosphate solubilizing Bacillus megaterium MJ1212 regulates endogenous plant carbohydrates and amino acids contents to promote mustard plant growth (2014) Indian J Microbiol, 54, pp. 427-433. , COI: 1:CAS:528:DC%2BC2cXpsVantLs%3DKanse, O.S., Whitelaw-Weckert, M., Kadam, T.A., Bhosale, H.J., Phosphate solubilization by stress-tolerant soil fungus Talaromyces funiculosus SLS8 isolated from the Neem rhizosphere (2015) Ann Microbiol, 65, pp. 85-93. , COI: 1:CAS:528:DC%2BC2MXjsVajsLY%3DKhan, A., Jilani, G., Zhang, D., Akbar, S., Malik, K.M., Rukh, S., Mujtaba, G., Acidithiobacillus thiooxidans IW16 and sulfur synergistically with struvite aggrandize the phosphorus bioavailability to wheat in alkaline soil (2020) J Soil Sci Plant Nutr, 20, pp. 95-104Lewis, K.A., Tzilivakis, J., Warner, D.J., Green, A., An international database for pesticide risk assessments and management (2016) Https://Sitem.Herts.Ac.Uk/Aeru/Ppdb/En/Index.Htm. Hum Ecol Risk Assess, 22, pp. 1050-1064. , https://doi.org/10.1080/10807039.2015.1133242Li, Z., Bai, T., Dai, L., Wang, F., Tao, J., Meng, S., Hu, S., A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger (2016) Sci Rep, 6, p. 25313. , COI: 1:CAS:528:DC%2BC28XmvFegsL4%3DLiu, F.P., Liu, H.Q., Zhou, H.L., Dong, Z.G., Bai, X.H., Bai, P., Qiao, J.J., Isolation and characterization of phosphate-solubilizing bacteria from betel nut (Areca catechu) and their effects on plant growth and phosphorus mobilization in tropical soils (2014) Biol Fertil Soils, 50, pp. 927-937. , COI: 1:CAS:528:DC%2BC2cXht1CltLjNLobo, C.B., Juárez Tomás, M.S., Viruel, E., Ferrero, M.A., Lucca, M.E., Development of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologies (2019) Microbiol Res, 219, pp. 12-25. , COI: 1:CAS:528:DC%2BC1cXitFOisL7PMendes, G.O., Dias, C.S., Silva, I.R., Júnior, J.I.R., Pereira, O.L., Costa, M.D., Fungal rock phosphate solubilization using sugarcane bagasse (2013) World J Microbiol Biotechnol, 29, pp. 43-50Mora, M.L., Demanet, R., Acuña, J.J., Viscardi, S., Jorquera, M., Rengel, Z., Durán, P., Aluminum-tolerant bacteria improve the plant growth and phosphorus content in ryegrass grown in a volcanic soil amended with cattle dung manure (2017) Appl Soil Ecol, 115, pp. 19-26Murphy, J., Riley, J., A modified single solution method for the determination of phosphate in natural waters (1962) Anal Chim Acta, 27, pp. 31-36. , COI: 1:CAS:528:DyaF38XksVyntr8%3DMusarrat, J., Khan, M.S., Factors affecting phosphate-solubilizing activity of microbes: current status (2014) Phosphate solubilizing microorganisms, pp. 63-85. , Khan MS, Zaidi A, Musarrat J, (eds), Cham Springer International Publishing, New YorkOsorio, N.W., Habte, M., Phosphate desorption from the surface of soil mineral particles by a phosphate-solubilizing fungus (2013) Biol Fertil Soils, 49, pp. 481-486. , COI: 1:CAS:528:DC%2BC3sXmvFSqtr8%3DPansu, M., Gautheyrou, J., (2006) Handbook of soil analysis, , Springer Berlin Heidelberg, Berlin, HeidelbergPlassard, C., Fransson, P., Regulation of low-molecular weight organic acid production in fungi (2009) Fungal Biol Rev, 23, pp. 30-39Prabhu, N., Borkar, S., Garg, S., Phosphate solubilization by microorganisms (2019) Advances in Biological Science Research, pp. 161-176. , https://doi.org/10.1016/B978-0-12-817497-5.00011-2, ElsevierSamaddar, S., Chatterjee, P., Truu, J., Anandham, R., Kim, S., Sa, T., Long-term phosphorus limitation changes the bacterial community structure and functioning in paddy soils (2019) Appl Soil Ecol, 134, pp. 111-115Santander, C., Sanhueza, M., Olave, J., Borie, F., Valentine, A., Cornejo, P., Arbuscular mycorrhizal colonization promotes the tolerance to salt stress in lettuce plants through an efficient modification of ionic balance (2019) J Soil Sci Plant Nutr, 19, pp. 321-331Shekhar Nautiyal, C., An efficient microbiological growth medium for screening phosphate solubilizing microorganisms (1999) FEMS Microbiol Lett, 170, pp. 265-270Singh, H., Reddy, M.S., Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils (2011) Eur J Soil Biol, 47, pp. 30-34. , COI: 1:CAS:528:DC%2BC3MXms1CjSrinivasan, R., Yandigeri, M.S., Kashyap, S., Alagawadi, A.R., Effect of salt on survival and P-solubilization potential of phosphate solubilizing microorganisms from salt affected soils (2012) Saudi J Biol Sci, 19, pp. 427-434Sudhakara Reddy, S., Kumar, S., Babita, K., Reddy, M.S., Biosolubilization of poorly soluble rock phosphates by Aspergillus tubingensis and Aspergillus niger (2002) Bioresour Technol, 84 (2), pp. 187-189Tandon, A., Fatima, T., Shukla, D., Tripathi, P., Srivastava, S., Singh, P.C., Phosphate solubilization by Trichoderma koningiopsis (NBRI-PR5) under abiotic stress conditions (2019) J King Saud Univ Sci, , https://doi.org/10.1016//j.jksus.2019.02.001Tortella, G.R., Rubilar, O., Cea, M., Rodríguez-Rodríguez, C., Seguel, A., Parada, J., Sorption parameters of carbendazim and iprodione in the presence of copper nanoparticles in two different soils (2019) J Soil Sci Plant Nutr, 19, pp. 469-476Vassilev, N., Vassileva, M., Biotechnological solubilization of rock phosphate on media containing agro-industrial wastes (2003) Appl Biochem Biotechnol, 61, pp. 435-440. , COI: 1:CAS:528:DC%2BD3sXjvFCltrY%3DVazquez, P., Holguin, G., Puente, M.E., Lopez-Cortes, A., Bashan, Y., Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon (2000) Biol Fertil Soils, 30, pp. 460-468Vyas, P., Rahi, P., Chauhan, A., Gulati, A., Phosphate solubilization potential and stress tolerance of Eupenicillium parvum from tea soil (2007) Mycol Res, 111, pp. 931-938Wahid, O.A.A., Mehana, T.A., Impact of phosphate-solubilizing fungi on the yield and phosphorus-uptake by wheat and faba bean plants (2000) Microbiol Res, 155, pp. 221-227. , COI: 1:CAS:528:DC%2BD3cXot1ansbY%3DWakelin, S.A., Warren, R.A., Harvey, P.R., Ryder, M.H., Osmond, G., Phosphate solubilization by Penicillium spp. closely associated with wheat roots (2004) Biol Fertil Soils, 40, pp. 36-43. , COI: 1:CAS:528:DC%2BD2cXksFGhsr4%3DWang, H.Y., Liu, S., Zhai, L.M., Zhang, J.Z., Ren, T.Z., Fan, B.Q., Liu, H.B., Preparation and utilization of phosphate biofertilizers using agricultural waste (2015) J Integr Agric, 14, pp. 158-167. , COI: 1:CAS:528:DC%2BC2MXksF2gsLk%3DWu, J., Zhang, A., Li, G., Wei, Y., He, S., Lin, Z., Wang, Q., Effect of different components of single superphosphate on organic matter degradation and maturity during pig manure composting (2019) Sci Total Environ, 646, pp. 587-594. , COI: 1:CAS:528:DC%2BC1cXhsVWhsL3OXiao, C.-Q., Chi, R.-A., Huang, X.-H., Zhang, W.-X., Qiu, G.-Z., Wang, D.-Z., Optimization for rock phosphate solubilization by phosphate-solubilizing fungi isolated from phosphate mines (2008) Ecol Eng, 33 (2), pp. 187-193Xiao, C., Zhang, H., Fang, Y., Chi, R., Evaluation for rock phosphate solubilization in fermentation and soil–plant system using a stress-tolerant phosphate-solubilizing Aspergillus niger WHAK1 (2013) Appl Biochem Biotechnol, 169, pp. 123-133. , COI: 1:CAS:528:DC%2BC3sXhsVKlur4%3DZhu, J., Li, M., Whelan, M., Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review (2018) Sci Total Environ, 612, pp. 522-537. , COI: 1:CAS:528:DC%2BC2sXhsVansb7IJournal of Soil Science and Plant NutritionAbiotic stressBiofertilizationLow molecular weight organic acidPlant growthSustainable agricultureTricalcium phosphateAspergillus tubingensis and Talaromyces islandicus Solubilize Rock Phosphate Under Saline and Fungicide Stress and Improve Zea mays Growth and Phosphorus NutritionArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1López, J.E., School of Engineering, Universidad de Medellín, Carrera 87 N° 30–65, Medellín, 050026, ColombiaGallego, J.L., School of Engineering, Universidad de Medellín, Carrera 87 N° 30–65, Medellín, 050026, ColombiaVargas-Ruiz, A., School of Engineering, Universidad de Medellín, Carrera 87 N° 30–65, Medellín, 050026, ColombiaPeña-Mosquera, A.L., School of Engineering, Universidad de Medellín, Carrera 87 N° 30–65, Medellín, 050026, ColombiaZapata-Zapata, A.D., School of Chemistry, Department of Sciences, Universidad Nacional de Colombia Sede Medellín, Calle 59 A N° 63-20, Medellín, 050034, ColombiaLópez-Sánchez, I.J., School of Engineering, Universidad de Medellín, Carrera 87 N° 30–65, Medellín, 050026, ColombiaBotero-Botero, L.R., School of Engineering, Universidad de Medellín, Carrera 87 N° 30–65, Medellín, 050026, Colombiahttp://purl.org/coar/access_right/c_16ecLópez J.E.Gallego J.L.Vargas-Ruiz A.Peña-Mosquera A.L.Zapata-Zapata A.D.López-Sánchez I.J.Botero-Botero L.R.11407/5919oai:repository.udem.edu.co:11407/59192021-02-05 09:57:54.835Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |