Influence of chemical composition on the biochemical methane potential of agro-industrial substrates from Estonia
Batch trials were carried out to evaluate the Biochemical Methane Potential (BMP) of 61 different substrates collected from agricultural farms and industrial sites in Estonia. Tests were performed in 500 mL plasma bottles at 36°C. The highest methane yield from all tested substrates was obtained fro...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/4580
- Acceso en línea:
- http://hdl.handle.net/11407/4580
- Palabra clave:
- Agro-industrial; Biochemical Methane Potential; Biogas; Biomass; Kinetic rate; Wastes
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_cfefce77053ce54572cebfe0de2df4ee |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/4580 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Influence of chemical composition on the biochemical methane potential of agro-industrial substrates from Estonia |
title |
Influence of chemical composition on the biochemical methane potential of agro-industrial substrates from Estonia |
spellingShingle |
Influence of chemical composition on the biochemical methane potential of agro-industrial substrates from Estonia Agro-industrial; Biochemical Methane Potential; Biogas; Biomass; Kinetic rate; Wastes |
title_short |
Influence of chemical composition on the biochemical methane potential of agro-industrial substrates from Estonia |
title_full |
Influence of chemical composition on the biochemical methane potential of agro-industrial substrates from Estonia |
title_fullStr |
Influence of chemical composition on the biochemical methane potential of agro-industrial substrates from Estonia |
title_full_unstemmed |
Influence of chemical composition on the biochemical methane potential of agro-industrial substrates from Estonia |
title_sort |
Influence of chemical composition on the biochemical methane potential of agro-industrial substrates from Estonia |
dc.contributor.affiliation.spa.fl_str_mv |
Universidad de Medellin, Faculty of Engineering, Energy Engineering, Carrera 87 # 30 – 65, P.O. 050026, Medellin, Colombia; Estonian University of Life Sciences, Faculty of Agricultural and Environmental Sciences, Kreutzwaldi 1, Tartu, Estonia; Servicio Nacional de Aprendizaje – SENA, Center for Design and Manufacture of Leather, BIOMATIC Research Group, Calle 63 # 58B – 03, P.O. 055413, Itagüí, Colombia |
dc.subject.keyword.eng.fl_str_mv |
Agro-industrial; Biochemical Methane Potential; Biogas; Biomass; Kinetic rate; Wastes |
topic |
Agro-industrial; Biochemical Methane Potential; Biogas; Biomass; Kinetic rate; Wastes |
description |
Batch trials were carried out to evaluate the Biochemical Methane Potential (BMP) of 61 different substrates collected from agricultural farms and industrial sites in Estonia. Tests were performed in 500 mL plasma bottles at 36°C. The highest methane yield from all tested substrates was obtained from unconsumed dairy products (557 ± 101 L kg-1 VS) while the lowest was obtained from animal slurries (238 L kg-1 VS ± 42). From tested energy crops, foxtail millet achieved the highest methane yield (320 L kg-1 VS). Silages from different crops presented methane yields from 296 ± 31 L CH4 kg-1 VS to 319 ± 19 L CH4 kg-1 VS. The influence of chemical composition and kinetic rate constants (k) on methane potential was analyzed. Anaerobic digestibility of selected agro-industrial substrates was markedly influenced by their organic content, i.e. total proteins and lignin concentrations. Rate constants were found to correlate negatively with hemicellulose, cellulose and lignin (p < 0.05). Results from this study suggest that an appropriate characterization of the chemical composition of the substrates is important not only for predicting BMP and the kinetics rates, but also for identifying possible inhibitors during the anaerobic digestion process. Results on the BMP and national availability of studied substrates indicate that herbal biomass and agro-industrial residues are promising substrates for biogas production in agricultural biogas facilities in Estonia. © 2017, Eesti Pollumajandusulikool. All rights reserved. |
publishDate |
2017 |
dc.date.created.none.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2018-04-13T16:35:48Z |
dc.date.available.none.fl_str_mv |
2018-04-13T16:35:48Z |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
1406894X |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/4580 |
dc.identifier.doi.none.fl_str_mv |
10.15159/AR.17.063 |
identifier_str_mv |
1406894X 10.15159/AR.17.063 |
url |
http://hdl.handle.net/11407/4580 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85034661773&doi=10.15159%2fAR.17.063&partnerID=40&md5=85a9628fa8ce90681dcf9e14f615adcd |
dc.relation.ispartofes.spa.fl_str_mv |
Agronomy Research |
dc.relation.references.spa.fl_str_mv |
Alkanok, G., Demirel, B., Onay, T.T., Determination of biogas generation potential as a renewable energy source from supermarket wastes (2013) Waste Management, 34, pp. 134-140; Amon, T., Amon, B., Kryvoruchko, V., Werner Zollitsch, W., Mayer, K., Gruber, L., Biogas production from maize and dairy cattle manure-Influence of biomass composition on the methane yield (2007) Agriculture. Ecosystems and Environment, 118, pp. 173-182; Antonopoulou, G., Stamatelatou, K., Lyberatos, G., Exploitation of rapeseed and sunflower residues for methane generation through anaerobic digestion: The effect of pretreatment (2010) Chemical Engineering Transactions, 20, pp. 253-258; Astover, A., Roostalu, H., Kukk, L., Muiste, P., Padari, A., Suuster, E., Ostroukhova, A., Potentsiaalne maaressurss bioenergia tootmiseks (Potential land resource for bioenergy production) (2008) Eesti Põllumees, 38, p. 17; Baležentienė, L., Mikulionienė, S., Chemical composition of Galega mixtures silages (2006) Agronomy Research, 4, pp. 483-492; Chen, Y., Cheng, J.J., Creamer, K.S., Inhibition of anaerobic digestion process: A review (2008) Bioresource Technology, 99, pp. 4044-4064; Chynoweth, D.P., Turick, C.E., Owens, J.M., Jerger, D.E., Peck, M.W., Biochemical methane potential of biomass and waste feedstocks (1993) Biomass & Bioenergy, 5, pp. 95-111; Connerty, H.V., Briggs, A.R., Determination of serum calcium by means of ortho-cresolphthalein complexone (1966) American Journal of Clinical Pathology, 45, pp. 290-296; Dinuccio, E., Balsari, P., Gioelli, F., Menardo, S., Evaluation of the biogas productivity potential of some Italian agro-industrial biomasses (2010) Bioresource Technology, 101, pp. 3780-3783; Dubrovskis, V., Plume, I., Kotelenecs, V., Straume, I., Investigation of biogas production from relatively dry biomass (2009) Proceedings 8Th International Scientific Conference on Engineering for Rural Development, Jelgava, LV, pp. 239-242; Frank, S., Bottcher, H., Gusti, M., Havlik, P., Klaassen, G., Kindermann, G., Obersteiner, M., Dynamics of the land use, land use change, and forestry sink in the European Union: The impacts of energy and climate targets for 2030 (2016) Climate Change, 138, pp. 253-266; Gissen, C., Prade, T., Kreuger, E., Nges, I.A., Rosenqvist, H., Svensson, S.E., Lantz, M., Bjornsson, L., Comparing energy crops for biogas production Yields, energy input and costs in cultivation using digestate and mineral fertilization (2014) Biomass & Bioenergy, 64, pp. 199-210; Gunaseelan, V.N., Biomass estimates, characteristics, biochemical methane potential, kinetics and energy flow from Jatropha curcas on dry lands (2009) Biomass & Bioenergy, 33, pp. 589-596; Heaton, F.W., Determination of magnesium by the titan yellow and ammonium phosphate methods (1960) Journal of Clinical Pathology, 13, pp. 358-360; Heiermann, M., Plöchl, M., Linke, B., Schelle, H., Herrmann, C., Biogas crops – Part I: Specifications and suitability of field crops for anaerobic digestion (2009) Agricultural Engineering International: The CIGR Ejournal. Manuscript, 187 (9); Herrmann, C., Idler, C., Heiermann, M., Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics (2016) Bioresource Technology, 206, pp. 23-35; (2001) Determination of Orthophosphate and Total Phosphorus Contents by Flow Analysis (FIA and CFA) – Part 1: Method by Flow Injection Analysis (FIA, , ISO/DIS 15681-1; Janowszky, J., Janowszky, Z., ‘Szarvasi-1’ energygrass (2002) Agricultural Research Development Institute P.U.C, , http://www.energiafu.hu/nemesit_en.html; Jiménez, A.M., Borja, R., Martin, A., A comparative kinetic evaluation of the anaerobic digestion of untreated molasses and molasses previously fermented with Penicillium decumbens in batch reactors (2004) Biochemical Engineering Journal, 18, pp. 121-132; Juknevičius, S., Sabienė, N., The content of mineral elements in some grasses and legumes (2007) Ecologija, 52, pp. 44-52; Kaparaju, P., Luostarinen, S., Kalmari, E., Kalmari, J., Rintala, J., Co-digestion of energy crops and industrial confectionery wastes with cow manure: Batch-scale and farm-scale evaluation (2002) Water Science & Technology, 45, pp. 275-280; Klimiuk, E., Pojój, T., Budzński, W., Dubis, B., Theoritical and observed biogas production from plant biomass of different fibre contents (2010) Bioresource Technology, 101, pp. 9527-9535; Lehtomäki, A., Viinikainen, T.A., Rintala, J.A., Screening boreal energy crops and crop residues for methane biofuel production (2008) Biomass & Bioenergy, 32, pp. 541-550; Luna-Delrisco, M., Normak, A., Orupõld, K., Biochemical methane potential of different organic wastes and energy crops from Estonia (2011) Agronomy Research, 9, pp. 331-342; Mahamat, A.Y., Gourdon, R., Leger, P., Vermande, P., Methane recovery by anaerobic digestion of cellulosic materials available in Sahel (1989) Biological Wastes, 30, pp. 181-197; Merrill, A.L., Watt, B.K., Energy value of foods, basis and derivation. Agriculture Handbook No. 74 (1955) Unites States Department of Agriculture, Washington D.C, p. 105. , pp; Merrill, A.L., Watt, B.K., Energy value of foods: Basis and derivation. Agriculture Handbook No. 74 (1973) United States Department of Agriculture, Washington D.C, p. 105. , pp; Munoz, R., Meier, L., Diaz, I., Jeison, D., A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading (2015) Reviews in Environmental Science and Bio-Technology, 14, pp. 727-759; Mursec, B., Vindis, P., Janzekovic, M., Brus, M., Cus, F., Analysis of different substrates for processing into biogas. Journal of Achievement in Materials and (2009) Manufacturing Engineering, 37, pp. 652-659; Najafpour, G.D., Tajallipour, M., Komeili, M., Mohammadi, M., Kinetic model for an up-flow anaerobic packed bed bioreactor: Dairy wastewater treatment (2009) African Journal of Biotechnology, 8, pp. 3590-3596; Nielfa, A., Cano, R., Perez, A., Fdez-Polanco, M., Co-digestion of municipal sewage sludge and solid waste: Modelling of carbohydrate, lipid and protein content influence (2015) Waste Management and Research, 33, pp. 241-249; Owen, W.F., Stuckey, D.C., Healy, J.B., Young, L.Y., McCarty, P.L., Bioassay for monitoring biochemical methane potential and anaerobic toxicity (1979) Water Research, 13, pp. 485-492; Pakarinen, A., Maijala, P., Stoddard, F.L., Santanen, A., Tuomainen, P., Kymäläinen, M., Viikari, L., Evaluation of annual bioenergy crops in the boreal zone for biogas and ethanol production (2011) Biomass & Bioenergy, 35, pp. 3071-3078; Pecorini, I., Baldi, F., Carnevale, E.A., Corti, A., Biochemical methane potential tests of different autoclaved and microwaved lignocellulosic organic fractions of municipal solid waste (2016) Waste Management, 56, pp. 143-150; Pobeheim, H., Munk, B., Johansson, J., Guebitz, G.M., Influence of trace elements on methane formation from a synthetic model substrate for maize silage (2010) Bioresource Technology, 101, pp. 836-839; Pokój, T., Klimiuk, E., Gusiatin, Z.M., Bulkowska, K., Methane yield of biomass plants estimated on their chemical composition and continuous digestion studies (2010) Proceedings Venice 2010. In: Third International Symposium on Energy from Biomass and Waste, Venice, IT, p. 15; Roostalu, H., Melts, I., Põllumajanduses tekkiva biomassi ressursi hindamine (Assessment of the resource of agricultural biomass) (2008) Eesti Põllumees, 38, p. 18; Sanchez, E., Borja, R., Weiland, P., Travieso, L., Martin, A., Effect of temperature and pH on the kinetics of methane production, organic nitrogen and phosphorus removal in the batch anaerobic digestion process of cattle manure (2000) Bioprocess Engineering, 22, pp. 247-252; Steffen, R., Szolar, O., Braun, R., (1998) Feedstocks for Anaerobic Digestion, p. 29. , Institute of Agrobiotechnology Tulin. University of Agricultural Sciences, Vienna, AT; Thygesen, O., Sommer, S.G., Shin, S.G., Triolo, J.M., Residual biochemical methane potential (BMP) of concentrated digestate from full-scale biogas plants (2014) Fuel, 132, pp. 44-46; Triolo, J.M., Sommer, S.G., Moller, H.B., Weisbjerg, M.R., Jiang, X.Y., Influence of lignin on biochemical methane potential of biomass for biogas production (2011) Current Opinion in Biotechnology, 22, pp. S146-S146; Uusitalo, V., Havukainen, J., Manninen, K., Hohn, J., Lehtonen, E., Rasi, S., Soukka, R., Horttanainen, M., Carbon footprint of selected biomass to biogas production chains and GHG reduction potential in transportation use (2014) Renewable Energy, 66, pp. 90-98; Van Langerak, E.P.A., Gonzales-Gil, G., Van Aelst, A., Van Lier, J.B., Hamelers, H.V.M., Lettinga, G., Effects of high calcium concentrations on the development of methanogenic sludge in upflow anaerobic sludge bed (1998) Water Research, 32, pp. 1255-1263; Van Soest, P.J., Robertson, J.B., Lewis, B.A., Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition (1991) Journal of Dairy Science, 74, pp. 3583-3597; Vedrenne, F., Béline, F., Dabert, P., Bernet, N., The effect of incubation conditions on the laboratory measurement of the methane producing capacity of livestock wastes (2008) Bioresource Technology, 99, pp. 146-155; Yenigün, O., Demirel, B., Ammonia inhibition in anaerobic digestion: A review (2013) Process Biochemistry, 48, pp. 901-911; Yuan, H.P., Zhu, N.W., Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion (2016) Renewable & Sustainable Energy Reviews, 58, pp. 429-438 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
Eesti Pollumajandusulikool |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
dc.source.spa.fl_str_mv |
Scopus |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159243551440896 |
spelling |
2018-04-13T16:35:48Z2018-04-13T16:35:48Z20171406894Xhttp://hdl.handle.net/11407/458010.15159/AR.17.063Batch trials were carried out to evaluate the Biochemical Methane Potential (BMP) of 61 different substrates collected from agricultural farms and industrial sites in Estonia. Tests were performed in 500 mL plasma bottles at 36°C. The highest methane yield from all tested substrates was obtained from unconsumed dairy products (557 ± 101 L kg-1 VS) while the lowest was obtained from animal slurries (238 L kg-1 VS ± 42). From tested energy crops, foxtail millet achieved the highest methane yield (320 L kg-1 VS). Silages from different crops presented methane yields from 296 ± 31 L CH4 kg-1 VS to 319 ± 19 L CH4 kg-1 VS. The influence of chemical composition and kinetic rate constants (k) on methane potential was analyzed. Anaerobic digestibility of selected agro-industrial substrates was markedly influenced by their organic content, i.e. total proteins and lignin concentrations. Rate constants were found to correlate negatively with hemicellulose, cellulose and lignin (p < 0.05). Results from this study suggest that an appropriate characterization of the chemical composition of the substrates is important not only for predicting BMP and the kinetics rates, but also for identifying possible inhibitors during the anaerobic digestion process. Results on the BMP and national availability of studied substrates indicate that herbal biomass and agro-industrial residues are promising substrates for biogas production in agricultural biogas facilities in Estonia. © 2017, Eesti Pollumajandusulikool. All rights reserved.engEesti PollumajandusulikoolFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85034661773&doi=10.15159%2fAR.17.063&partnerID=40&md5=85a9628fa8ce90681dcf9e14f615adcdAgronomy ResearchAlkanok, G., Demirel, B., Onay, T.T., Determination of biogas generation potential as a renewable energy source from supermarket wastes (2013) Waste Management, 34, pp. 134-140; Amon, T., Amon, B., Kryvoruchko, V., Werner Zollitsch, W., Mayer, K., Gruber, L., Biogas production from maize and dairy cattle manure-Influence of biomass composition on the methane yield (2007) Agriculture. Ecosystems and Environment, 118, pp. 173-182; Antonopoulou, G., Stamatelatou, K., Lyberatos, G., Exploitation of rapeseed and sunflower residues for methane generation through anaerobic digestion: The effect of pretreatment (2010) Chemical Engineering Transactions, 20, pp. 253-258; Astover, A., Roostalu, H., Kukk, L., Muiste, P., Padari, A., Suuster, E., Ostroukhova, A., Potentsiaalne maaressurss bioenergia tootmiseks (Potential land resource for bioenergy production) (2008) Eesti Põllumees, 38, p. 17; Baležentienė, L., Mikulionienė, S., Chemical composition of Galega mixtures silages (2006) Agronomy Research, 4, pp. 483-492; Chen, Y., Cheng, J.J., Creamer, K.S., Inhibition of anaerobic digestion process: A review (2008) Bioresource Technology, 99, pp. 4044-4064; Chynoweth, D.P., Turick, C.E., Owens, J.M., Jerger, D.E., Peck, M.W., Biochemical methane potential of biomass and waste feedstocks (1993) Biomass & Bioenergy, 5, pp. 95-111; Connerty, H.V., Briggs, A.R., Determination of serum calcium by means of ortho-cresolphthalein complexone (1966) American Journal of Clinical Pathology, 45, pp. 290-296; Dinuccio, E., Balsari, P., Gioelli, F., Menardo, S., Evaluation of the biogas productivity potential of some Italian agro-industrial biomasses (2010) Bioresource Technology, 101, pp. 3780-3783; Dubrovskis, V., Plume, I., Kotelenecs, V., Straume, I., Investigation of biogas production from relatively dry biomass (2009) Proceedings 8Th International Scientific Conference on Engineering for Rural Development, Jelgava, LV, pp. 239-242; Frank, S., Bottcher, H., Gusti, M., Havlik, P., Klaassen, G., Kindermann, G., Obersteiner, M., Dynamics of the land use, land use change, and forestry sink in the European Union: The impacts of energy and climate targets for 2030 (2016) Climate Change, 138, pp. 253-266; Gissen, C., Prade, T., Kreuger, E., Nges, I.A., Rosenqvist, H., Svensson, S.E., Lantz, M., Bjornsson, L., Comparing energy crops for biogas production Yields, energy input and costs in cultivation using digestate and mineral fertilization (2014) Biomass & Bioenergy, 64, pp. 199-210; Gunaseelan, V.N., Biomass estimates, characteristics, biochemical methane potential, kinetics and energy flow from Jatropha curcas on dry lands (2009) Biomass & Bioenergy, 33, pp. 589-596; Heaton, F.W., Determination of magnesium by the titan yellow and ammonium phosphate methods (1960) Journal of Clinical Pathology, 13, pp. 358-360; Heiermann, M., Plöchl, M., Linke, B., Schelle, H., Herrmann, C., Biogas crops – Part I: Specifications and suitability of field crops for anaerobic digestion (2009) Agricultural Engineering International: The CIGR Ejournal. Manuscript, 187 (9); Herrmann, C., Idler, C., Heiermann, M., Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics (2016) Bioresource Technology, 206, pp. 23-35; (2001) Determination of Orthophosphate and Total Phosphorus Contents by Flow Analysis (FIA and CFA) – Part 1: Method by Flow Injection Analysis (FIA, , ISO/DIS 15681-1; Janowszky, J., Janowszky, Z., ‘Szarvasi-1’ energygrass (2002) Agricultural Research Development Institute P.U.C, , http://www.energiafu.hu/nemesit_en.html; Jiménez, A.M., Borja, R., Martin, A., A comparative kinetic evaluation of the anaerobic digestion of untreated molasses and molasses previously fermented with Penicillium decumbens in batch reactors (2004) Biochemical Engineering Journal, 18, pp. 121-132; Juknevičius, S., Sabienė, N., The content of mineral elements in some grasses and legumes (2007) Ecologija, 52, pp. 44-52; Kaparaju, P., Luostarinen, S., Kalmari, E., Kalmari, J., Rintala, J., Co-digestion of energy crops and industrial confectionery wastes with cow manure: Batch-scale and farm-scale evaluation (2002) Water Science & Technology, 45, pp. 275-280; Klimiuk, E., Pojój, T., Budzński, W., Dubis, B., Theoritical and observed biogas production from plant biomass of different fibre contents (2010) Bioresource Technology, 101, pp. 9527-9535; Lehtomäki, A., Viinikainen, T.A., Rintala, J.A., Screening boreal energy crops and crop residues for methane biofuel production (2008) Biomass & Bioenergy, 32, pp. 541-550; Luna-Delrisco, M., Normak, A., Orupõld, K., Biochemical methane potential of different organic wastes and energy crops from Estonia (2011) Agronomy Research, 9, pp. 331-342; Mahamat, A.Y., Gourdon, R., Leger, P., Vermande, P., Methane recovery by anaerobic digestion of cellulosic materials available in Sahel (1989) Biological Wastes, 30, pp. 181-197; Merrill, A.L., Watt, B.K., Energy value of foods, basis and derivation. Agriculture Handbook No. 74 (1955) Unites States Department of Agriculture, Washington D.C, p. 105. , pp; Merrill, A.L., Watt, B.K., Energy value of foods: Basis and derivation. Agriculture Handbook No. 74 (1973) United States Department of Agriculture, Washington D.C, p. 105. , pp; Munoz, R., Meier, L., Diaz, I., Jeison, D., A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading (2015) Reviews in Environmental Science and Bio-Technology, 14, pp. 727-759; Mursec, B., Vindis, P., Janzekovic, M., Brus, M., Cus, F., Analysis of different substrates for processing into biogas. Journal of Achievement in Materials and (2009) Manufacturing Engineering, 37, pp. 652-659; Najafpour, G.D., Tajallipour, M., Komeili, M., Mohammadi, M., Kinetic model for an up-flow anaerobic packed bed bioreactor: Dairy wastewater treatment (2009) African Journal of Biotechnology, 8, pp. 3590-3596; Nielfa, A., Cano, R., Perez, A., Fdez-Polanco, M., Co-digestion of municipal sewage sludge and solid waste: Modelling of carbohydrate, lipid and protein content influence (2015) Waste Management and Research, 33, pp. 241-249; Owen, W.F., Stuckey, D.C., Healy, J.B., Young, L.Y., McCarty, P.L., Bioassay for monitoring biochemical methane potential and anaerobic toxicity (1979) Water Research, 13, pp. 485-492; Pakarinen, A., Maijala, P., Stoddard, F.L., Santanen, A., Tuomainen, P., Kymäläinen, M., Viikari, L., Evaluation of annual bioenergy crops in the boreal zone for biogas and ethanol production (2011) Biomass & Bioenergy, 35, pp. 3071-3078; Pecorini, I., Baldi, F., Carnevale, E.A., Corti, A., Biochemical methane potential tests of different autoclaved and microwaved lignocellulosic organic fractions of municipal solid waste (2016) Waste Management, 56, pp. 143-150; Pobeheim, H., Munk, B., Johansson, J., Guebitz, G.M., Influence of trace elements on methane formation from a synthetic model substrate for maize silage (2010) Bioresource Technology, 101, pp. 836-839; Pokój, T., Klimiuk, E., Gusiatin, Z.M., Bulkowska, K., Methane yield of biomass plants estimated on their chemical composition and continuous digestion studies (2010) Proceedings Venice 2010. In: Third International Symposium on Energy from Biomass and Waste, Venice, IT, p. 15; Roostalu, H., Melts, I., Põllumajanduses tekkiva biomassi ressursi hindamine (Assessment of the resource of agricultural biomass) (2008) Eesti Põllumees, 38, p. 18; Sanchez, E., Borja, R., Weiland, P., Travieso, L., Martin, A., Effect of temperature and pH on the kinetics of methane production, organic nitrogen and phosphorus removal in the batch anaerobic digestion process of cattle manure (2000) Bioprocess Engineering, 22, pp. 247-252; Steffen, R., Szolar, O., Braun, R., (1998) Feedstocks for Anaerobic Digestion, p. 29. , Institute of Agrobiotechnology Tulin. University of Agricultural Sciences, Vienna, AT; Thygesen, O., Sommer, S.G., Shin, S.G., Triolo, J.M., Residual biochemical methane potential (BMP) of concentrated digestate from full-scale biogas plants (2014) Fuel, 132, pp. 44-46; Triolo, J.M., Sommer, S.G., Moller, H.B., Weisbjerg, M.R., Jiang, X.Y., Influence of lignin on biochemical methane potential of biomass for biogas production (2011) Current Opinion in Biotechnology, 22, pp. S146-S146; Uusitalo, V., Havukainen, J., Manninen, K., Hohn, J., Lehtonen, E., Rasi, S., Soukka, R., Horttanainen, M., Carbon footprint of selected biomass to biogas production chains and GHG reduction potential in transportation use (2014) Renewable Energy, 66, pp. 90-98; Van Langerak, E.P.A., Gonzales-Gil, G., Van Aelst, A., Van Lier, J.B., Hamelers, H.V.M., Lettinga, G., Effects of high calcium concentrations on the development of methanogenic sludge in upflow anaerobic sludge bed (1998) Water Research, 32, pp. 1255-1263; Van Soest, P.J., Robertson, J.B., Lewis, B.A., Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition (1991) Journal of Dairy Science, 74, pp. 3583-3597; Vedrenne, F., Béline, F., Dabert, P., Bernet, N., The effect of incubation conditions on the laboratory measurement of the methane producing capacity of livestock wastes (2008) Bioresource Technology, 99, pp. 146-155; Yenigün, O., Demirel, B., Ammonia inhibition in anaerobic digestion: A review (2013) Process Biochemistry, 48, pp. 901-911; Yuan, H.P., Zhu, N.W., Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion (2016) Renewable & Sustainable Energy Reviews, 58, pp. 429-438ScopusInfluence of chemical composition on the biochemical methane potential of agro-industrial substrates from EstoniaArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Universidad de Medellin, Faculty of Engineering, Energy Engineering, Carrera 87 # 30 – 65, P.O. 050026, Medellin, Colombia; Estonian University of Life Sciences, Faculty of Agricultural and Environmental Sciences, Kreutzwaldi 1, Tartu, Estonia; Servicio Nacional de Aprendizaje – SENA, Center for Design and Manufacture of Leather, BIOMATIC Research Group, Calle 63 # 58B – 03, P.O. 055413, Itagüí, ColombiaLuna-Delrisco M.A., Orupõld K., Diaz-Forero I., González-Palacio M.Luna-Delrisco, M.A., Universidad de Medellin, Faculty of Engineering, Energy Engineering, Carrera 87 # 30 – 65, P.O. 050026, Medellin, Colombia; Orupõld, K., Estonian University of Life Sciences, Faculty of Agricultural and Environmental Sciences, Kreutzwaldi 1, Tartu, Estonia; Diaz-Forero, I., Servicio Nacional de Aprendizaje – SENA, Center for Design and Manufacture of Leather, BIOMATIC Research Group, Calle 63 # 58B – 03, P.O. 055413, Itagüí, Colombia; González-Palacio, M., Universidad de Medellin, Faculty of Engineering, Energy Engineering, Carrera 87 # 30 – 65, P.O. 050026, Medellin, ColombiaAgro-industrial; Biochemical Methane Potential; Biogas; Biomass; Kinetic rate; WastesBatch trials were carried out to evaluate the Biochemical Methane Potential (BMP) of 61 different substrates collected from agricultural farms and industrial sites in Estonia. Tests were performed in 500 mL plasma bottles at 36°C. The highest methane yield from all tested substrates was obtained from unconsumed dairy products (557 ± 101 L kg-1 VS) while the lowest was obtained from animal slurries (238 L kg-1 VS ± 42). From tested energy crops, foxtail millet achieved the highest methane yield (320 L kg-1 VS). Silages from different crops presented methane yields from 296 ± 31 L CH4 kg-1 VS to 319 ± 19 L CH4 kg-1 VS. The influence of chemical composition and kinetic rate constants (k) on methane potential was analyzed. Anaerobic digestibility of selected agro-industrial substrates was markedly influenced by their organic content, i.e. total proteins and lignin concentrations. Rate constants were found to correlate negatively with hemicellulose, cellulose and lignin (p < 0.05). Results from this study suggest that an appropriate characterization of the chemical composition of the substrates is important not only for predicting BMP and the kinetics rates, but also for identifying possible inhibitors during the anaerobic digestion process. Results on the BMP and national availability of studied substrates indicate that herbal biomass and agro-industrial residues are promising substrates for biogas production in agricultural biogas facilities in Estonia. © 2017, Eesti Pollumajandusulikool. All rights reserved.http://purl.org/coar/access_right/c_16ec11407/4580oai:repository.udem.edu.co:11407/45802020-05-27 19:06:52.568Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |