A generalized theory for full microtremor horizontal-to-vertical [H/V(z, f)] spectral ratio interpretation in offshore and onshore environments
Advances in the field of seismic interferometry have provided a basic theoretical interpretation to the full spectrum of the microtremor horizontal-to-vertical spectral ratio [H/V(f)]. The interpretation has been applied to ambient seismic noise data recorded both at the surface and at depth. The ne...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5760
- Acceso en línea:
- http://hdl.handle.net/11407/5760
- Palabra clave:
- Earthquake hazards
Numerical modelling
Seismic interferometry
Site effects
Theoretical seismology
Wave propagation
Computation theory
Hazards
Interferometry
Marine applications
Matrix algebra
Numerical models
Offshore oil well production
Surficial sediments
Wave propagation
Earthquake hazard
Exploration seismology
Fundamental frequencies
Horizontal-to-vertical spectral ratios
Sedimentary environment
Seismic interferometries
Site effects
Theoretical seismologies
Earthquakes
algorithm
Green function
marine environment
microtremor
numerical model
offshore structure
radar interferometry
seismic hazard
site effect
surficial sediment
theoretical study
wave propagation
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_cfeb704abc5159118058535c3448a3ad |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5760 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
A generalized theory for full microtremor horizontal-to-vertical [H/V(z, f)] spectral ratio interpretation in offshore and onshore environments |
title |
A generalized theory for full microtremor horizontal-to-vertical [H/V(z, f)] spectral ratio interpretation in offshore and onshore environments |
spellingShingle |
A generalized theory for full microtremor horizontal-to-vertical [H/V(z, f)] spectral ratio interpretation in offshore and onshore environments Earthquake hazards Numerical modelling Seismic interferometry Site effects Theoretical seismology Wave propagation Computation theory Hazards Interferometry Marine applications Matrix algebra Numerical models Offshore oil well production Surficial sediments Wave propagation Earthquake hazard Exploration seismology Fundamental frequencies Horizontal-to-vertical spectral ratios Sedimentary environment Seismic interferometries Site effects Theoretical seismologies Earthquakes algorithm Green function marine environment microtremor numerical model offshore structure radar interferometry seismic hazard site effect surficial sediment theoretical study wave propagation |
title_short |
A generalized theory for full microtremor horizontal-to-vertical [H/V(z, f)] spectral ratio interpretation in offshore and onshore environments |
title_full |
A generalized theory for full microtremor horizontal-to-vertical [H/V(z, f)] spectral ratio interpretation in offshore and onshore environments |
title_fullStr |
A generalized theory for full microtremor horizontal-to-vertical [H/V(z, f)] spectral ratio interpretation in offshore and onshore environments |
title_full_unstemmed |
A generalized theory for full microtremor horizontal-to-vertical [H/V(z, f)] spectral ratio interpretation in offshore and onshore environments |
title_sort |
A generalized theory for full microtremor horizontal-to-vertical [H/V(z, f)] spectral ratio interpretation in offshore and onshore environments |
dc.subject.none.fl_str_mv |
Earthquake hazards Numerical modelling Seismic interferometry Site effects Theoretical seismology Wave propagation Computation theory Hazards Interferometry Marine applications Matrix algebra Numerical models Offshore oil well production Surficial sediments Wave propagation Earthquake hazard Exploration seismology Fundamental frequencies Horizontal-to-vertical spectral ratios Sedimentary environment Seismic interferometries Site effects Theoretical seismologies Earthquakes algorithm Green function marine environment microtremor numerical model offshore structure radar interferometry seismic hazard site effect surficial sediment theoretical study wave propagation |
topic |
Earthquake hazards Numerical modelling Seismic interferometry Site effects Theoretical seismology Wave propagation Computation theory Hazards Interferometry Marine applications Matrix algebra Numerical models Offshore oil well production Surficial sediments Wave propagation Earthquake hazard Exploration seismology Fundamental frequencies Horizontal-to-vertical spectral ratios Sedimentary environment Seismic interferometries Site effects Theoretical seismologies Earthquakes algorithm Green function marine environment microtremor numerical model offshore structure radar interferometry seismic hazard site effect surficial sediment theoretical study wave propagation |
description |
Advances in the field of seismic interferometry have provided a basic theoretical interpretation to the full spectrum of the microtremor horizontal-to-vertical spectral ratio [H/V(f)]. The interpretation has been applied to ambient seismic noise data recorded both at the surface and at depth. The new algorithm, based on the diffuse wavefield assumption, has been used in inversion schemes to estimate seismic wave velocity profiles that are useful input information for engineering and exploration seismology both for earthquake hazard estimation and to characterize surficial sediments. However, until now, the developed algorithms are only suitable for on land environments with no offshore consideration. Here, the microtremor H/V(z, f) modelling is extended for applications to marine sedimentary environments for a 1-D layered medium. The layer propagator matrix formulation is used for the computation of the required Green's functions. Therefore, in the presence of a water layer on top, the propagator matrix for the uppermost layer is defined to account for the properties of the water column. As an application example we analyse eight simple canonical layered earth models. Frequencies ranging from 0.2 to 50 Hz are considered as they cover a broad wavelength interval and aid in practice to investigate subsurface structures in the depth range from a few meters to a few hundreds of meters. Results show a marginal variation of 8 per cent at most for the fundamental frequency when a water layer is present. The water layer leads to variations in H/V peak amplitude of up to 50 per cent atop the solid layers. © The Author(s) 2019. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-04-29T14:53:55Z |
dc.date.available.none.fl_str_mv |
2020-04-29T14:53:55Z |
dc.date.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
0956540X |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5760 |
dc.identifier.doi.none.fl_str_mv |
10.1093/gji/ggz223 |
identifier_str_mv |
0956540X 10.1093/gji/ggz223 |
url |
http://hdl.handle.net/11407/5760 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075640474&doi=10.1093%2fgji%2fggz223&partnerID=40&md5=7ce964f4b24f726f5caec87cc0583a7a |
dc.relation.citationvolume.none.fl_str_mv |
218 |
dc.relation.citationissue.none.fl_str_mv |
2 |
dc.relation.citationstartpage.none.fl_str_mv |
1276 |
dc.relation.citationendpage.none.fl_str_mv |
1297 |
dc.relation.references.none.fl_str_mv |
Abo-Zena, A., Dispersion function computations for unlimited frequency values (1979) Geophys. J. Int., 58 (1), pp. 91-105 Aki, K., Richards, P.G., (2002) Quantitative Seismology, , 2nd edn, University Science Books Bard, P.-Y., Microtremor measurements: A tool for site effect estimation? State-of-The-art paper (1998) Second International Symposium on the Effects of Surface Geology on Seismic Motion, 3, pp. 1251-1279. , eds Irikura, K., Kudo, K., Okada, H., Satasini, T. & Balkema, in Bouchon, M., Aki, K., Discrete wave-number representation of seismic-source wave fields (1977) Bull. Seism. Soc. Am., 67 (2), pp. 259-277 Curtis, A., Gerstoft, P., Sato, H., Snieder, R., Wapenaar, K., Seismic interferometry-turning noise into signal (2006) Leading Edge, 25 (9), pp. 1082-1092 Djikpesse, H., Recent advances and trends in subsea technologies and seafloor properties characterization (2013) Leading Edge, 32 (10), pp. 1214-1220 Domínguez, J., Abascal, R., On fundamental solutions for the boundary integral equations method in static and dynamic elasticity (1984) Engi. Anal., 1 (3), pp. 128-134 Dunkin, J.W., Computation ofmodal solutions in layered, elastic media at high frequencies (1965) Bull. Seism. Soc. Am., 55 (2), pp. 335-358 Fäh, D., Kind, F., Giardini, D., Inversion of local S-wave velocity structures from average H/V ratios, and their use for the estimation of site-effects (2003) J. Seismol., 7 (4), pp. 449-467 Gantmacher, F., (1959) The Theory of Matrices, 1. , Chelsea Publishing Company García-Jerez, A., Piña-Flores, J., Sánchez-Sesma, F.J., Luzón, F., Perton, M., A computer code for forward calculation and inversion of the H/V spectral ratio under the diffuse field assumption (2016) Comput. Geosci., 97, pp. 67-78 García-Jerez, A., Seivane, H., Navarro, M., Martínez-Segura, M., Piña-Flores, J., Joint analysis of rayleigh-wave dispersion curves and diffuse-field HVSR for site characterization: The case of El ejido town (SE Spain) (2019) Soil Dyn. Earthq. Eng., 121, pp. 102-120 Gilbert, F., Backus, G.E., Propagator matrices in elastic wave and vibration problems (1966) Geophysics, 31 (2), pp. 326-332 Gouédard, P., Cross-correlation of random fields: Mathematical approach and applications (2008) Geophys. Prospect, 56 (3), pp. 375-393 Harvey, D.J., Seismogram synthesis using normalmode superposition: The locked mode approximation (1981) Geophys. J. Int., 66 (1), pp. 37-69 Haskell, N.A., The dispersion of surfacewaves onmultilayeredmedia (1953) Bull. Seism. Soc. Am., 43 (1), pp. 17-34 Herrmann, R.B., (2008) Seismic Waves in Layered Media, pp. 1-335. , draft Hobiger, M., Fäh, D., Michel, C., Burjánek, J., Maranò, S., Pilz, M., Imperatori, W., Bergamo, P., Site characterization in the framework of the renewal of the swiss strang motion network (SSMNet) (2016) 5th IASPEI/IAEE International Symposium: Effects of Surface Geology on Seismic Motion, , Taipei, Taiwan, August 15-17, 2016 Huerta-Lopez, C., Pulliam, J., Nakamura, Y., In situ evaluation of shear-wave velocities in seafloor sediments with a broadband oceanbottom seismograph (2003) Bull. Seism. Soc. Am., 93 (1), pp. 139-151 Kennett, B.L.N., Kerry, N.J., Seismic waves in a stratified half space (1979) Geophys. J. R. Astr. Soc., 57 (3), pp. 557-583 Knopoff, L., A matrix method for elastic wave problems (1964) Bull. Seism. Soc. Am., 54 (1), pp. 431-438 Lachet, C., Bard, P.-Y., Numerical and theoretical investigations on the possibilities and limitations of Nakamura's technique (1994) J. Phys. Earth, 42 (5), pp. 377-397 Lobkis, O.I., Weaver, R.L., On the emergence of the Green's function in the correlations of a diffuse field (2001) J. Acoust. Soc. Am., 110 (6), pp. 3011-3017 Lontsi, A.M., (2016) 1D Shallow Sedimentary Subsurface Imaging Using Ambient Noise and Active Seismic Data, , Doctoral thesis, Universität Potsdam Lontsi, A.M., Sánchez-Sesma, F.J., Molina-Villegas, J.C., Ohrnberger, M., Krüger, F., Full microtremor H/V(z, f) inversion for shallow subsurface characterization (2015) Geophys. J. Int., 202 (1), pp. 298-312 Lontsi, A.M., Ohrnberger, M., Krüger, F., Sánchez-Sesma, F.J., Combining surface wave phase velocity dispersion curves and full microtremor horizontal-to-vertical spectral ratio for subsurface sedimentary site characterization (2016) Interpretation, 4 (4) Müller, G., The reflectivity method: A tutorial (1985) J. Geophys., 58, pp. 153-174 Muyzert, E., Seabed property estimation from ambient-noise recordings: Part 2-scholte-wave spectral-ratio inversion (2007) Geophysics, 72 (4), pp. U47-U53 Nakamura, Y., A method for dynamic characteristics estimations of subsurface using microtremors on the ground surface (1989) Q. Rep. RTRI, 30, pp. 25-33 Overduin, P.P., Haberland, C., Ryberg, T., Kneier, F., Jacobi, T., Grigoriev, M.N., Ohrnberger, M., Submarine permafrost depth from ambient seismic noise (2015) Geophys. Res. Lett., 42 (18), pp. 7581-7588 Paul, A., Campillo, M., Margerin, L., Larose, E., Derode, A., Empirical synthesis of time-asymmetrical green functions from the correlation of coda waves (2005) J. Geophys. Res., 110 (B8) Perton, M., Sánchez-Sesma, F.J., Rodríguez-Castellanos, A., Campillo, M., Weaver, R.L., Two perspectives on equipartition in diffuse elastic fields in three dimensions (2009) J. Acoust. Soc. Am., 126 (3), pp. 1125-1130 Piña-Flores, J., Perton, M., García-Jerez, A., Carmona, E., Luzón, F., Molina-Villegas, J.C., Sánchez-Sesma, F.J., The inversion of spectral ratio H/V in a layered system using the diffuse field assumption (DFA) (2017) Geophys. J. Int., 208 (1), pp. 577-588 Sánchez-Sesma, F.J., Campillo, M., Retrieval of the Green's function from cross correlation: The canonical elastic problem (2006) Bull. Seism. Soc. Am., 96 (3), pp. 1182-1191 Sánchez-Sesma, F.J., Pérez-Ruiz, J.A., Luzón, F., Campillo, M., Rodríguez-Castellanos, A., Diffuse fields in dynamic elasticity (2008) Wave Motion, 45, pp. 641-654 Sánchez-Sesma, F.J., A theory for microtremor H/V spectral ratio: Application for a layered medium (2011) Geophys. J. Int., 186 (1), pp. 221-225 Sánchez-Sesma, F.J., Victoria-Tobon, E., Carbajal-Romero, M., Rodríguez-Sánchez, J.E., Rodríguez-Castellanos, A., Energy equipartition in theoretical and recovered seismograms (2018) J. Appl. Geophys., 150, pp. 153-159 Scherbaum, F., Hinzen, K.-G., Ohrnberger, M., Determination of shallow shear wave velocity profiles in the cologne, Germany area using ambient vibrations (2003) Geophys. J. Int., 152 (3), pp. 597-612 Sens-Schönfelder, C., Wegler, U., Passive image interferometry and seasonal variations of seismic velocities at merapi volcano, Indonesia (2006) Geophys. Res. Lett., 33 (21) Shapiro, N.M., Campillo, M., Emergence of broadband rayleigh waves from correlations of the ambient seismic noise (2004) Geophys. Res. Lett., 31 (7) Snieder, R., Wapenaar, K., Wegler, U., Unified Green's function retrieval by cross-correlation connection with energy principles (2007) Phys. Rev. E, 75, p. 036103 Snieder, R., Sánchez-Sesma, F.J., Wapenaar, K., Field fluctuations, imaging with backscattered waves, a generalized energy theorem, and the optical theorem (2009) SIAM J. Imaging Sci., 2 (2), pp. 763-776 Spica, Z.J., Perton, M., Nakata, N., Liu, X., Beroza, G.C., Site characterization at groningen gas field area through joint surface-borehole H/V analysis (2018) Geophys. J. Int., 212 (1), pp. 412-421 Stephen, R.A., The seafloor borehole array seismic system (SEABASS) and VLF ambient noise (1994) Mar. Geophys. Res., 16 (4), pp. 243-286 Thomson, W.T., Transmission of elastic waves through a stratified solid medium (1950) J. Appl. Phys., 21 (2), pp. 89-93 Tuan, T.T., Vinh, P.C., Ohrnberger, M., Malischewsky, P., Aoudia, A., An improved formula of fundamental resonance frequency of a layered half-space model used in H/V ratio technique (2016) Pure Appl. Geophys., 173 (8), pp. 2803-2812 Van Manen, D.-J., Curtis, A., Robertsson, J.O., Interferometric modeling of wave propagation in inhomogeneous elastic media using time reversal and reciprocity (2006) Geophysics, 71 (4), pp. SI47-SI60 Wang, R., Asimple orthonorma lizationmethod for stable and efficient computation of Green's functions (1999) Bull. Seism. Soc. Am., 89 (3), pp. 733-741 Wapenaar, K., Fokkema, J., Green's function representations for seismic interferometry (2006) Geophysics, 71 (4), pp. SI33-SI46 Weaver, R.L., Diffuse elastic waves at a free surface (1985) J. Acoust. Soc. Am., 78, pp. 131-136 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Oxford University Press |
dc.publisher.program.none.fl_str_mv |
Ingeniería Civil |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingenierías |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
Geophysical Journal International |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159202911780864 |
spelling |
20192020-04-29T14:53:55Z2020-04-29T14:53:55Z0956540Xhttp://hdl.handle.net/11407/576010.1093/gji/ggz223Advances in the field of seismic interferometry have provided a basic theoretical interpretation to the full spectrum of the microtremor horizontal-to-vertical spectral ratio [H/V(f)]. The interpretation has been applied to ambient seismic noise data recorded both at the surface and at depth. The new algorithm, based on the diffuse wavefield assumption, has been used in inversion schemes to estimate seismic wave velocity profiles that are useful input information for engineering and exploration seismology both for earthquake hazard estimation and to characterize surficial sediments. However, until now, the developed algorithms are only suitable for on land environments with no offshore consideration. Here, the microtremor H/V(z, f) modelling is extended for applications to marine sedimentary environments for a 1-D layered medium. The layer propagator matrix formulation is used for the computation of the required Green's functions. Therefore, in the presence of a water layer on top, the propagator matrix for the uppermost layer is defined to account for the properties of the water column. As an application example we analyse eight simple canonical layered earth models. Frequencies ranging from 0.2 to 50 Hz are considered as they cover a broad wavelength interval and aid in practice to investigate subsurface structures in the depth range from a few meters to a few hundreds of meters. Results show a marginal variation of 8 per cent at most for the fundamental frequency when a water layer is present. The water layer leads to variations in H/V peak amplitude of up to 50 per cent atop the solid layers. © The Author(s) 2019.engOxford University PressIngeniería CivilFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075640474&doi=10.1093%2fgji%2fggz223&partnerID=40&md5=7ce964f4b24f726f5caec87cc0583a7a218212761297Abo-Zena, A., Dispersion function computations for unlimited frequency values (1979) Geophys. J. Int., 58 (1), pp. 91-105Aki, K., Richards, P.G., (2002) Quantitative Seismology, , 2nd edn, University Science BooksBard, P.-Y., Microtremor measurements: A tool for site effect estimation? State-of-The-art paper (1998) Second International Symposium on the Effects of Surface Geology on Seismic Motion, 3, pp. 1251-1279. , eds Irikura, K., Kudo, K., Okada, H., Satasini, T. & Balkema, inBouchon, M., Aki, K., Discrete wave-number representation of seismic-source wave fields (1977) Bull. Seism. Soc. Am., 67 (2), pp. 259-277Curtis, A., Gerstoft, P., Sato, H., Snieder, R., Wapenaar, K., Seismic interferometry-turning noise into signal (2006) Leading Edge, 25 (9), pp. 1082-1092Djikpesse, H., Recent advances and trends in subsea technologies and seafloor properties characterization (2013) Leading Edge, 32 (10), pp. 1214-1220Domínguez, J., Abascal, R., On fundamental solutions for the boundary integral equations method in static and dynamic elasticity (1984) Engi. Anal., 1 (3), pp. 128-134Dunkin, J.W., Computation ofmodal solutions in layered, elastic media at high frequencies (1965) Bull. Seism. Soc. Am., 55 (2), pp. 335-358Fäh, D., Kind, F., Giardini, D., Inversion of local S-wave velocity structures from average H/V ratios, and their use for the estimation of site-effects (2003) J. Seismol., 7 (4), pp. 449-467Gantmacher, F., (1959) The Theory of Matrices, 1. , Chelsea Publishing CompanyGarcía-Jerez, A., Piña-Flores, J., Sánchez-Sesma, F.J., Luzón, F., Perton, M., A computer code for forward calculation and inversion of the H/V spectral ratio under the diffuse field assumption (2016) Comput. Geosci., 97, pp. 67-78García-Jerez, A., Seivane, H., Navarro, M., Martínez-Segura, M., Piña-Flores, J., Joint analysis of rayleigh-wave dispersion curves and diffuse-field HVSR for site characterization: The case of El ejido town (SE Spain) (2019) Soil Dyn. Earthq. Eng., 121, pp. 102-120Gilbert, F., Backus, G.E., Propagator matrices in elastic wave and vibration problems (1966) Geophysics, 31 (2), pp. 326-332Gouédard, P., Cross-correlation of random fields: Mathematical approach and applications (2008) Geophys. Prospect, 56 (3), pp. 375-393Harvey, D.J., Seismogram synthesis using normalmode superposition: The locked mode approximation (1981) Geophys. J. Int., 66 (1), pp. 37-69Haskell, N.A., The dispersion of surfacewaves onmultilayeredmedia (1953) Bull. Seism. Soc. Am., 43 (1), pp. 17-34Herrmann, R.B., (2008) Seismic Waves in Layered Media, pp. 1-335. , draftHobiger, M., Fäh, D., Michel, C., Burjánek, J., Maranò, S., Pilz, M., Imperatori, W., Bergamo, P., Site characterization in the framework of the renewal of the swiss strang motion network (SSMNet) (2016) 5th IASPEI/IAEE International Symposium: Effects of Surface Geology on Seismic Motion, , Taipei, Taiwan, August 15-17, 2016Huerta-Lopez, C., Pulliam, J., Nakamura, Y., In situ evaluation of shear-wave velocities in seafloor sediments with a broadband oceanbottom seismograph (2003) Bull. Seism. Soc. Am., 93 (1), pp. 139-151Kennett, B.L.N., Kerry, N.J., Seismic waves in a stratified half space (1979) Geophys. J. R. Astr. Soc., 57 (3), pp. 557-583Knopoff, L., A matrix method for elastic wave problems (1964) Bull. Seism. Soc. Am., 54 (1), pp. 431-438Lachet, C., Bard, P.-Y., Numerical and theoretical investigations on the possibilities and limitations of Nakamura's technique (1994) J. Phys. Earth, 42 (5), pp. 377-397Lobkis, O.I., Weaver, R.L., On the emergence of the Green's function in the correlations of a diffuse field (2001) J. Acoust. Soc. Am., 110 (6), pp. 3011-3017Lontsi, A.M., (2016) 1D Shallow Sedimentary Subsurface Imaging Using Ambient Noise and Active Seismic Data, , Doctoral thesis, Universität PotsdamLontsi, A.M., Sánchez-Sesma, F.J., Molina-Villegas, J.C., Ohrnberger, M., Krüger, F., Full microtremor H/V(z, f) inversion for shallow subsurface characterization (2015) Geophys. J. Int., 202 (1), pp. 298-312Lontsi, A.M., Ohrnberger, M., Krüger, F., Sánchez-Sesma, F.J., Combining surface wave phase velocity dispersion curves and full microtremor horizontal-to-vertical spectral ratio for subsurface sedimentary site characterization (2016) Interpretation, 4 (4)Müller, G., The reflectivity method: A tutorial (1985) J. Geophys., 58, pp. 153-174Muyzert, E., Seabed property estimation from ambient-noise recordings: Part 2-scholte-wave spectral-ratio inversion (2007) Geophysics, 72 (4), pp. U47-U53Nakamura, Y., A method for dynamic characteristics estimations of subsurface using microtremors on the ground surface (1989) Q. Rep. RTRI, 30, pp. 25-33Overduin, P.P., Haberland, C., Ryberg, T., Kneier, F., Jacobi, T., Grigoriev, M.N., Ohrnberger, M., Submarine permafrost depth from ambient seismic noise (2015) Geophys. Res. Lett., 42 (18), pp. 7581-7588Paul, A., Campillo, M., Margerin, L., Larose, E., Derode, A., Empirical synthesis of time-asymmetrical green functions from the correlation of coda waves (2005) J. Geophys. Res., 110 (B8)Perton, M., Sánchez-Sesma, F.J., Rodríguez-Castellanos, A., Campillo, M., Weaver, R.L., Two perspectives on equipartition in diffuse elastic fields in three dimensions (2009) J. Acoust. Soc. Am., 126 (3), pp. 1125-1130Piña-Flores, J., Perton, M., García-Jerez, A., Carmona, E., Luzón, F., Molina-Villegas, J.C., Sánchez-Sesma, F.J., The inversion of spectral ratio H/V in a layered system using the diffuse field assumption (DFA) (2017) Geophys. J. Int., 208 (1), pp. 577-588Sánchez-Sesma, F.J., Campillo, M., Retrieval of the Green's function from cross correlation: The canonical elastic problem (2006) Bull. Seism. Soc. Am., 96 (3), pp. 1182-1191Sánchez-Sesma, F.J., Pérez-Ruiz, J.A., Luzón, F., Campillo, M., Rodríguez-Castellanos, A., Diffuse fields in dynamic elasticity (2008) Wave Motion, 45, pp. 641-654Sánchez-Sesma, F.J., A theory for microtremor H/V spectral ratio: Application for a layered medium (2011) Geophys. J. Int., 186 (1), pp. 221-225Sánchez-Sesma, F.J., Victoria-Tobon, E., Carbajal-Romero, M., Rodríguez-Sánchez, J.E., Rodríguez-Castellanos, A., Energy equipartition in theoretical and recovered seismograms (2018) J. Appl. Geophys., 150, pp. 153-159Scherbaum, F., Hinzen, K.-G., Ohrnberger, M., Determination of shallow shear wave velocity profiles in the cologne, Germany area using ambient vibrations (2003) Geophys. J. Int., 152 (3), pp. 597-612Sens-Schönfelder, C., Wegler, U., Passive image interferometry and seasonal variations of seismic velocities at merapi volcano, Indonesia (2006) Geophys. Res. Lett., 33 (21)Shapiro, N.M., Campillo, M., Emergence of broadband rayleigh waves from correlations of the ambient seismic noise (2004) Geophys. Res. Lett., 31 (7)Snieder, R., Wapenaar, K., Wegler, U., Unified Green's function retrieval by cross-correlationconnection with energy principles (2007) Phys. Rev. E, 75, p. 036103Snieder, R., Sánchez-Sesma, F.J., Wapenaar, K., Field fluctuations, imaging with backscattered waves, a generalized energy theorem, and the optical theorem (2009) SIAM J. Imaging Sci., 2 (2), pp. 763-776Spica, Z.J., Perton, M., Nakata, N., Liu, X., Beroza, G.C., Site characterization at groningen gas field area through joint surface-borehole H/V analysis (2018) Geophys. J. Int., 212 (1), pp. 412-421Stephen, R.A., The seafloor borehole array seismic system (SEABASS) and VLF ambient noise (1994) Mar. Geophys. Res., 16 (4), pp. 243-286Thomson, W.T., Transmission of elastic waves through a stratified solid medium (1950) J. Appl. Phys., 21 (2), pp. 89-93Tuan, T.T., Vinh, P.C., Ohrnberger, M., Malischewsky, P., Aoudia, A., An improved formula of fundamental resonance frequency of a layered half-space model used in H/V ratio technique (2016) Pure Appl. Geophys., 173 (8), pp. 2803-2812Van Manen, D.-J., Curtis, A., Robertsson, J.O., Interferometric modeling of wave propagation in inhomogeneous elastic media using time reversal and reciprocity (2006) Geophysics, 71 (4), pp. SI47-SI60Wang, R., Asimple orthonorma lizationmethod for stable and efficient computation of Green's functions (1999) Bull. Seism. Soc. Am., 89 (3), pp. 733-741Wapenaar, K., Fokkema, J., Green's function representations for seismic interferometry (2006) Geophysics, 71 (4), pp. SI33-SI46Weaver, R.L., Diffuse elastic waves at a free surface (1985) J. Acoust. Soc. Am., 78, pp. 131-136Geophysical Journal InternationalEarthquake hazardsNumerical modellingSeismic interferometrySite effectsTheoretical seismologyWave propagationComputation theoryHazardsInterferometryMarine applicationsMatrix algebraNumerical modelsOffshore oil well productionSurficial sedimentsWave propagationEarthquake hazardExploration seismologyFundamental frequenciesHorizontal-to-vertical spectral ratiosSedimentary environmentSeismic interferometriesSite effectsTheoretical seismologiesEarthquakesalgorithmGreen functionmarine environmentmicrotremornumerical modeloffshore structureradar interferometryseismic hazardsite effectsurficial sedimenttheoretical studywave propagationA generalized theory for full microtremor horizontal-to-vertical [H/V(z, f)] spectral ratio interpretation in offshore and onshore environmentsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Lontsi, A.M., Swiss Seismological Service, ETH Zürich, Zurich, 8092, Switzerland; García-Jerez, A., Departamento de Química y Física, Universidad de Almeria, Almeria, 04120, Spain, Instituto Andaluz de Geofísica, Universidad de Granada, Granada, 18071, Spain; Molina-Villegas, J.C., Facultad de Ingenierías, Universidad de Medellín, Carrera 87 No 30-65, Medellín, Colombia, Departamento de Ingeniería Civil, Facultad de Minas, Universidad Nacional de Colombia - Sede Medellín, Carrera 80 No 65-223, Medellín, Colombia; Sánchez-Sesma, F.J., Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Cd Universitaria, Coyoacán, Cdmx, 04510, Mexico; Molkenthin, C., Institute of Mathematics, University of Potsdam, Potsdam, 14476, Germany; Ohrnberger, M., Institute of Earth and Environmental Science, University of Potsdam, Potsdam, 14476, Germany; Krüger, F., Institute of Earth and Environmental Science, University of Potsdam, Potsdam, 14476, Germany; Wang, R., GFZ German Research Centre for Geosciences, Potsdam, 14473, Germany; Fäh, D., Swiss Seismological Service, ETH Zürich, Zurich, 8092, Switzerlandhttp://purl.org/coar/access_right/c_16ecLontsi A.M.García-Jerez A.Molina-Villegas J.C.Sánchez-Sesma F.J.Molkenthin C.Ohrnberger M.Krüger F.Wang R.Fäh D.11407/5760oai:repository.udem.edu.co:11407/57602020-05-27 18:19:19.727Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |