A generalized theory for full microtremor horizontal-to-vertical [H/V(z, f)] spectral ratio interpretation in offshore and onshore environments

Advances in the field of seismic interferometry have provided a basic theoretical interpretation to the full spectrum of the microtremor horizontal-to-vertical spectral ratio [H/V(f)]. The interpretation has been applied to ambient seismic noise data recorded both at the surface and at depth. The ne...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5760
Acceso en línea:
http://hdl.handle.net/11407/5760
Palabra clave:
Earthquake hazards
Numerical modelling
Seismic interferometry
Site effects
Theoretical seismology
Wave propagation
Computation theory
Hazards
Interferometry
Marine applications
Matrix algebra
Numerical models
Offshore oil well production
Surficial sediments
Wave propagation
Earthquake hazard
Exploration seismology
Fundamental frequencies
Horizontal-to-vertical spectral ratios
Sedimentary environment
Seismic interferometries
Site effects
Theoretical seismologies
Earthquakes
algorithm
Green function
marine environment
microtremor
numerical model
offshore structure
radar interferometry
seismic hazard
site effect
surficial sediment
theoretical study
wave propagation
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_cfeb704abc5159118058535c3448a3ad
oai_identifier_str oai:repository.udem.edu.co:11407/5760
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv A generalized theory for full microtremor horizontal-to-vertical [H/V(z, f)] spectral ratio interpretation in offshore and onshore environments
title A generalized theory for full microtremor horizontal-to-vertical [H/V(z, f)] spectral ratio interpretation in offshore and onshore environments
spellingShingle A generalized theory for full microtremor horizontal-to-vertical [H/V(z, f)] spectral ratio interpretation in offshore and onshore environments
Earthquake hazards
Numerical modelling
Seismic interferometry
Site effects
Theoretical seismology
Wave propagation
Computation theory
Hazards
Interferometry
Marine applications
Matrix algebra
Numerical models
Offshore oil well production
Surficial sediments
Wave propagation
Earthquake hazard
Exploration seismology
Fundamental frequencies
Horizontal-to-vertical spectral ratios
Sedimentary environment
Seismic interferometries
Site effects
Theoretical seismologies
Earthquakes
algorithm
Green function
marine environment
microtremor
numerical model
offshore structure
radar interferometry
seismic hazard
site effect
surficial sediment
theoretical study
wave propagation
title_short A generalized theory for full microtremor horizontal-to-vertical [H/V(z, f)] spectral ratio interpretation in offshore and onshore environments
title_full A generalized theory for full microtremor horizontal-to-vertical [H/V(z, f)] spectral ratio interpretation in offshore and onshore environments
title_fullStr A generalized theory for full microtremor horizontal-to-vertical [H/V(z, f)] spectral ratio interpretation in offshore and onshore environments
title_full_unstemmed A generalized theory for full microtremor horizontal-to-vertical [H/V(z, f)] spectral ratio interpretation in offshore and onshore environments
title_sort A generalized theory for full microtremor horizontal-to-vertical [H/V(z, f)] spectral ratio interpretation in offshore and onshore environments
dc.subject.none.fl_str_mv Earthquake hazards
Numerical modelling
Seismic interferometry
Site effects
Theoretical seismology
Wave propagation
Computation theory
Hazards
Interferometry
Marine applications
Matrix algebra
Numerical models
Offshore oil well production
Surficial sediments
Wave propagation
Earthquake hazard
Exploration seismology
Fundamental frequencies
Horizontal-to-vertical spectral ratios
Sedimentary environment
Seismic interferometries
Site effects
Theoretical seismologies
Earthquakes
algorithm
Green function
marine environment
microtremor
numerical model
offshore structure
radar interferometry
seismic hazard
site effect
surficial sediment
theoretical study
wave propagation
topic Earthquake hazards
Numerical modelling
Seismic interferometry
Site effects
Theoretical seismology
Wave propagation
Computation theory
Hazards
Interferometry
Marine applications
Matrix algebra
Numerical models
Offshore oil well production
Surficial sediments
Wave propagation
Earthquake hazard
Exploration seismology
Fundamental frequencies
Horizontal-to-vertical spectral ratios
Sedimentary environment
Seismic interferometries
Site effects
Theoretical seismologies
Earthquakes
algorithm
Green function
marine environment
microtremor
numerical model
offshore structure
radar interferometry
seismic hazard
site effect
surficial sediment
theoretical study
wave propagation
description Advances in the field of seismic interferometry have provided a basic theoretical interpretation to the full spectrum of the microtremor horizontal-to-vertical spectral ratio [H/V(f)]. The interpretation has been applied to ambient seismic noise data recorded both at the surface and at depth. The new algorithm, based on the diffuse wavefield assumption, has been used in inversion schemes to estimate seismic wave velocity profiles that are useful input information for engineering and exploration seismology both for earthquake hazard estimation and to characterize surficial sediments. However, until now, the developed algorithms are only suitable for on land environments with no offshore consideration. Here, the microtremor H/V(z, f) modelling is extended for applications to marine sedimentary environments for a 1-D layered medium. The layer propagator matrix formulation is used for the computation of the required Green's functions. Therefore, in the presence of a water layer on top, the propagator matrix for the uppermost layer is defined to account for the properties of the water column. As an application example we analyse eight simple canonical layered earth models. Frequencies ranging from 0.2 to 50 Hz are considered as they cover a broad wavelength interval and aid in practice to investigate subsurface structures in the depth range from a few meters to a few hundreds of meters. Results show a marginal variation of 8 per cent at most for the fundamental frequency when a water layer is present. The water layer leads to variations in H/V peak amplitude of up to 50 per cent atop the solid layers. © The Author(s) 2019.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:53:55Z
dc.date.available.none.fl_str_mv 2020-04-29T14:53:55Z
dc.date.none.fl_str_mv 2019
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 0956540X
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5760
dc.identifier.doi.none.fl_str_mv 10.1093/gji/ggz223
identifier_str_mv 0956540X
10.1093/gji/ggz223
url http://hdl.handle.net/11407/5760
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075640474&doi=10.1093%2fgji%2fggz223&partnerID=40&md5=7ce964f4b24f726f5caec87cc0583a7a
dc.relation.citationvolume.none.fl_str_mv 218
dc.relation.citationissue.none.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv 1276
dc.relation.citationendpage.none.fl_str_mv 1297
dc.relation.references.none.fl_str_mv Abo-Zena, A., Dispersion function computations for unlimited frequency values (1979) Geophys. J. Int., 58 (1), pp. 91-105
Aki, K., Richards, P.G., (2002) Quantitative Seismology, , 2nd edn, University Science Books
Bard, P.-Y., Microtremor measurements: A tool for site effect estimation? State-of-The-art paper (1998) Second International Symposium on the Effects of Surface Geology on Seismic Motion, 3, pp. 1251-1279. , eds Irikura, K., Kudo, K., Okada, H., Satasini, T. & Balkema, in
Bouchon, M., Aki, K., Discrete wave-number representation of seismic-source wave fields (1977) Bull. Seism. Soc. Am., 67 (2), pp. 259-277
Curtis, A., Gerstoft, P., Sato, H., Snieder, R., Wapenaar, K., Seismic interferometry-turning noise into signal (2006) Leading Edge, 25 (9), pp. 1082-1092
Djikpesse, H., Recent advances and trends in subsea technologies and seafloor properties characterization (2013) Leading Edge, 32 (10), pp. 1214-1220
Domínguez, J., Abascal, R., On fundamental solutions for the boundary integral equations method in static and dynamic elasticity (1984) Engi. Anal., 1 (3), pp. 128-134
Dunkin, J.W., Computation ofmodal solutions in layered, elastic media at high frequencies (1965) Bull. Seism. Soc. Am., 55 (2), pp. 335-358
Fäh, D., Kind, F., Giardini, D., Inversion of local S-wave velocity structures from average H/V ratios, and their use for the estimation of site-effects (2003) J. Seismol., 7 (4), pp. 449-467
Gantmacher, F., (1959) The Theory of Matrices, 1. , Chelsea Publishing Company
García-Jerez, A., Piña-Flores, J., Sánchez-Sesma, F.J., Luzón, F., Perton, M., A computer code for forward calculation and inversion of the H/V spectral ratio under the diffuse field assumption (2016) Comput. Geosci., 97, pp. 67-78
García-Jerez, A., Seivane, H., Navarro, M., Martínez-Segura, M., Piña-Flores, J., Joint analysis of rayleigh-wave dispersion curves and diffuse-field HVSR for site characterization: The case of El ejido town (SE Spain) (2019) Soil Dyn. Earthq. Eng., 121, pp. 102-120
Gilbert, F., Backus, G.E., Propagator matrices in elastic wave and vibration problems (1966) Geophysics, 31 (2), pp. 326-332
Gouédard, P., Cross-correlation of random fields: Mathematical approach and applications (2008) Geophys. Prospect, 56 (3), pp. 375-393
Harvey, D.J., Seismogram synthesis using normalmode superposition: The locked mode approximation (1981) Geophys. J. Int., 66 (1), pp. 37-69
Haskell, N.A., The dispersion of surfacewaves onmultilayeredmedia (1953) Bull. Seism. Soc. Am., 43 (1), pp. 17-34
Herrmann, R.B., (2008) Seismic Waves in Layered Media, pp. 1-335. , draft
Hobiger, M., Fäh, D., Michel, C., Burjánek, J., Maranò, S., Pilz, M., Imperatori, W., Bergamo, P., Site characterization in the framework of the renewal of the swiss strang motion network (SSMNet) (2016) 5th IASPEI/IAEE International Symposium: Effects of Surface Geology on Seismic Motion, , Taipei, Taiwan, August 15-17, 2016
Huerta-Lopez, C., Pulliam, J., Nakamura, Y., In situ evaluation of shear-wave velocities in seafloor sediments with a broadband oceanbottom seismograph (2003) Bull. Seism. Soc. Am., 93 (1), pp. 139-151
Kennett, B.L.N., Kerry, N.J., Seismic waves in a stratified half space (1979) Geophys. J. R. Astr. Soc., 57 (3), pp. 557-583
Knopoff, L., A matrix method for elastic wave problems (1964) Bull. Seism. Soc. Am., 54 (1), pp. 431-438
Lachet, C., Bard, P.-Y., Numerical and theoretical investigations on the possibilities and limitations of Nakamura's technique (1994) J. Phys. Earth, 42 (5), pp. 377-397
Lobkis, O.I., Weaver, R.L., On the emergence of the Green's function in the correlations of a diffuse field (2001) J. Acoust. Soc. Am., 110 (6), pp. 3011-3017
Lontsi, A.M., (2016) 1D Shallow Sedimentary Subsurface Imaging Using Ambient Noise and Active Seismic Data, , Doctoral thesis, Universität Potsdam
Lontsi, A.M., Sánchez-Sesma, F.J., Molina-Villegas, J.C., Ohrnberger, M., Krüger, F., Full microtremor H/V(z, f) inversion for shallow subsurface characterization (2015) Geophys. J. Int., 202 (1), pp. 298-312
Lontsi, A.M., Ohrnberger, M., Krüger, F., Sánchez-Sesma, F.J., Combining surface wave phase velocity dispersion curves and full microtremor horizontal-to-vertical spectral ratio for subsurface sedimentary site characterization (2016) Interpretation, 4 (4)
Müller, G., The reflectivity method: A tutorial (1985) J. Geophys., 58, pp. 153-174
Muyzert, E., Seabed property estimation from ambient-noise recordings: Part 2-scholte-wave spectral-ratio inversion (2007) Geophysics, 72 (4), pp. U47-U53
Nakamura, Y., A method for dynamic characteristics estimations of subsurface using microtremors on the ground surface (1989) Q. Rep. RTRI, 30, pp. 25-33
Overduin, P.P., Haberland, C., Ryberg, T., Kneier, F., Jacobi, T., Grigoriev, M.N., Ohrnberger, M., Submarine permafrost depth from ambient seismic noise (2015) Geophys. Res. Lett., 42 (18), pp. 7581-7588
Paul, A., Campillo, M., Margerin, L., Larose, E., Derode, A., Empirical synthesis of time-asymmetrical green functions from the correlation of coda waves (2005) J. Geophys. Res., 110 (B8)
Perton, M., Sánchez-Sesma, F.J., Rodríguez-Castellanos, A., Campillo, M., Weaver, R.L., Two perspectives on equipartition in diffuse elastic fields in three dimensions (2009) J. Acoust. Soc. Am., 126 (3), pp. 1125-1130
Piña-Flores, J., Perton, M., García-Jerez, A., Carmona, E., Luzón, F., Molina-Villegas, J.C., Sánchez-Sesma, F.J., The inversion of spectral ratio H/V in a layered system using the diffuse field assumption (DFA) (2017) Geophys. J. Int., 208 (1), pp. 577-588
Sánchez-Sesma, F.J., Campillo, M., Retrieval of the Green's function from cross correlation: The canonical elastic problem (2006) Bull. Seism. Soc. Am., 96 (3), pp. 1182-1191
Sánchez-Sesma, F.J., Pérez-Ruiz, J.A., Luzón, F., Campillo, M., Rodríguez-Castellanos, A., Diffuse fields in dynamic elasticity (2008) Wave Motion, 45, pp. 641-654
Sánchez-Sesma, F.J., A theory for microtremor H/V spectral ratio: Application for a layered medium (2011) Geophys. J. Int., 186 (1), pp. 221-225
Sánchez-Sesma, F.J., Victoria-Tobon, E., Carbajal-Romero, M., Rodríguez-Sánchez, J.E., Rodríguez-Castellanos, A., Energy equipartition in theoretical and recovered seismograms (2018) J. Appl. Geophys., 150, pp. 153-159
Scherbaum, F., Hinzen, K.-G., Ohrnberger, M., Determination of shallow shear wave velocity profiles in the cologne, Germany area using ambient vibrations (2003) Geophys. J. Int., 152 (3), pp. 597-612
Sens-Schönfelder, C., Wegler, U., Passive image interferometry and seasonal variations of seismic velocities at merapi volcano, Indonesia (2006) Geophys. Res. Lett., 33 (21)
Shapiro, N.M., Campillo, M., Emergence of broadband rayleigh waves from correlations of the ambient seismic noise (2004) Geophys. Res. Lett., 31 (7)
Snieder, R., Wapenaar, K., Wegler, U., Unified Green's function retrieval by cross-correlation
connection with energy principles (2007) Phys. Rev. E, 75, p. 036103
Snieder, R., Sánchez-Sesma, F.J., Wapenaar, K., Field fluctuations, imaging with backscattered waves, a generalized energy theorem, and the optical theorem (2009) SIAM J. Imaging Sci., 2 (2), pp. 763-776
Spica, Z.J., Perton, M., Nakata, N., Liu, X., Beroza, G.C., Site characterization at groningen gas field area through joint surface-borehole H/V analysis (2018) Geophys. J. Int., 212 (1), pp. 412-421
Stephen, R.A., The seafloor borehole array seismic system (SEABASS) and VLF ambient noise (1994) Mar. Geophys. Res., 16 (4), pp. 243-286
Thomson, W.T., Transmission of elastic waves through a stratified solid medium (1950) J. Appl. Phys., 21 (2), pp. 89-93
Tuan, T.T., Vinh, P.C., Ohrnberger, M., Malischewsky, P., Aoudia, A., An improved formula of fundamental resonance frequency of a layered half-space model used in H/V ratio technique (2016) Pure Appl. Geophys., 173 (8), pp. 2803-2812
Van Manen, D.-J., Curtis, A., Robertsson, J.O., Interferometric modeling of wave propagation in inhomogeneous elastic media using time reversal and reciprocity (2006) Geophysics, 71 (4), pp. SI47-SI60
Wang, R., Asimple orthonorma lizationmethod for stable and efficient computation of Green's functions (1999) Bull. Seism. Soc. Am., 89 (3), pp. 733-741
Wapenaar, K., Fokkema, J., Green's function representations for seismic interferometry (2006) Geophysics, 71 (4), pp. SI33-SI46
Weaver, R.L., Diffuse elastic waves at a free surface (1985) J. Acoust. Soc. Am., 78, pp. 131-136
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Oxford University Press
dc.publisher.program.none.fl_str_mv Ingeniería Civil
dc.publisher.faculty.none.fl_str_mv Facultad de Ingenierías
publisher.none.fl_str_mv Oxford University Press
dc.source.none.fl_str_mv Geophysical Journal International
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159202911780864
spelling 20192020-04-29T14:53:55Z2020-04-29T14:53:55Z0956540Xhttp://hdl.handle.net/11407/576010.1093/gji/ggz223Advances in the field of seismic interferometry have provided a basic theoretical interpretation to the full spectrum of the microtremor horizontal-to-vertical spectral ratio [H/V(f)]. The interpretation has been applied to ambient seismic noise data recorded both at the surface and at depth. The new algorithm, based on the diffuse wavefield assumption, has been used in inversion schemes to estimate seismic wave velocity profiles that are useful input information for engineering and exploration seismology both for earthquake hazard estimation and to characterize surficial sediments. However, until now, the developed algorithms are only suitable for on land environments with no offshore consideration. Here, the microtremor H/V(z, f) modelling is extended for applications to marine sedimentary environments for a 1-D layered medium. The layer propagator matrix formulation is used for the computation of the required Green's functions. Therefore, in the presence of a water layer on top, the propagator matrix for the uppermost layer is defined to account for the properties of the water column. As an application example we analyse eight simple canonical layered earth models. Frequencies ranging from 0.2 to 50 Hz are considered as they cover a broad wavelength interval and aid in practice to investigate subsurface structures in the depth range from a few meters to a few hundreds of meters. Results show a marginal variation of 8 per cent at most for the fundamental frequency when a water layer is present. The water layer leads to variations in H/V peak amplitude of up to 50 per cent atop the solid layers. © The Author(s) 2019.engOxford University PressIngeniería CivilFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075640474&doi=10.1093%2fgji%2fggz223&partnerID=40&md5=7ce964f4b24f726f5caec87cc0583a7a218212761297Abo-Zena, A., Dispersion function computations for unlimited frequency values (1979) Geophys. J. Int., 58 (1), pp. 91-105Aki, K., Richards, P.G., (2002) Quantitative Seismology, , 2nd edn, University Science BooksBard, P.-Y., Microtremor measurements: A tool for site effect estimation? State-of-The-art paper (1998) Second International Symposium on the Effects of Surface Geology on Seismic Motion, 3, pp. 1251-1279. , eds Irikura, K., Kudo, K., Okada, H., Satasini, T. & Balkema, inBouchon, M., Aki, K., Discrete wave-number representation of seismic-source wave fields (1977) Bull. Seism. Soc. Am., 67 (2), pp. 259-277Curtis, A., Gerstoft, P., Sato, H., Snieder, R., Wapenaar, K., Seismic interferometry-turning noise into signal (2006) Leading Edge, 25 (9), pp. 1082-1092Djikpesse, H., Recent advances and trends in subsea technologies and seafloor properties characterization (2013) Leading Edge, 32 (10), pp. 1214-1220Domínguez, J., Abascal, R., On fundamental solutions for the boundary integral equations method in static and dynamic elasticity (1984) Engi. Anal., 1 (3), pp. 128-134Dunkin, J.W., Computation ofmodal solutions in layered, elastic media at high frequencies (1965) Bull. Seism. Soc. Am., 55 (2), pp. 335-358Fäh, D., Kind, F., Giardini, D., Inversion of local S-wave velocity structures from average H/V ratios, and their use for the estimation of site-effects (2003) J. Seismol., 7 (4), pp. 449-467Gantmacher, F., (1959) The Theory of Matrices, 1. , Chelsea Publishing CompanyGarcía-Jerez, A., Piña-Flores, J., Sánchez-Sesma, F.J., Luzón, F., Perton, M., A computer code for forward calculation and inversion of the H/V spectral ratio under the diffuse field assumption (2016) Comput. Geosci., 97, pp. 67-78García-Jerez, A., Seivane, H., Navarro, M., Martínez-Segura, M., Piña-Flores, J., Joint analysis of rayleigh-wave dispersion curves and diffuse-field HVSR for site characterization: The case of El ejido town (SE Spain) (2019) Soil Dyn. Earthq. Eng., 121, pp. 102-120Gilbert, F., Backus, G.E., Propagator matrices in elastic wave and vibration problems (1966) Geophysics, 31 (2), pp. 326-332Gouédard, P., Cross-correlation of random fields: Mathematical approach and applications (2008) Geophys. Prospect, 56 (3), pp. 375-393Harvey, D.J., Seismogram synthesis using normalmode superposition: The locked mode approximation (1981) Geophys. J. Int., 66 (1), pp. 37-69Haskell, N.A., The dispersion of surfacewaves onmultilayeredmedia (1953) Bull. Seism. Soc. Am., 43 (1), pp. 17-34Herrmann, R.B., (2008) Seismic Waves in Layered Media, pp. 1-335. , draftHobiger, M., Fäh, D., Michel, C., Burjánek, J., Maranò, S., Pilz, M., Imperatori, W., Bergamo, P., Site characterization in the framework of the renewal of the swiss strang motion network (SSMNet) (2016) 5th IASPEI/IAEE International Symposium: Effects of Surface Geology on Seismic Motion, , Taipei, Taiwan, August 15-17, 2016Huerta-Lopez, C., Pulliam, J., Nakamura, Y., In situ evaluation of shear-wave velocities in seafloor sediments with a broadband oceanbottom seismograph (2003) Bull. Seism. Soc. Am., 93 (1), pp. 139-151Kennett, B.L.N., Kerry, N.J., Seismic waves in a stratified half space (1979) Geophys. J. R. Astr. Soc., 57 (3), pp. 557-583Knopoff, L., A matrix method for elastic wave problems (1964) Bull. Seism. Soc. Am., 54 (1), pp. 431-438Lachet, C., Bard, P.-Y., Numerical and theoretical investigations on the possibilities and limitations of Nakamura's technique (1994) J. Phys. Earth, 42 (5), pp. 377-397Lobkis, O.I., Weaver, R.L., On the emergence of the Green's function in the correlations of a diffuse field (2001) J. Acoust. Soc. Am., 110 (6), pp. 3011-3017Lontsi, A.M., (2016) 1D Shallow Sedimentary Subsurface Imaging Using Ambient Noise and Active Seismic Data, , Doctoral thesis, Universität PotsdamLontsi, A.M., Sánchez-Sesma, F.J., Molina-Villegas, J.C., Ohrnberger, M., Krüger, F., Full microtremor H/V(z, f) inversion for shallow subsurface characterization (2015) Geophys. J. Int., 202 (1), pp. 298-312Lontsi, A.M., Ohrnberger, M., Krüger, F., Sánchez-Sesma, F.J., Combining surface wave phase velocity dispersion curves and full microtremor horizontal-to-vertical spectral ratio for subsurface sedimentary site characterization (2016) Interpretation, 4 (4)Müller, G., The reflectivity method: A tutorial (1985) J. Geophys., 58, pp. 153-174Muyzert, E., Seabed property estimation from ambient-noise recordings: Part 2-scholte-wave spectral-ratio inversion (2007) Geophysics, 72 (4), pp. U47-U53Nakamura, Y., A method for dynamic characteristics estimations of subsurface using microtremors on the ground surface (1989) Q. Rep. RTRI, 30, pp. 25-33Overduin, P.P., Haberland, C., Ryberg, T., Kneier, F., Jacobi, T., Grigoriev, M.N., Ohrnberger, M., Submarine permafrost depth from ambient seismic noise (2015) Geophys. Res. Lett., 42 (18), pp. 7581-7588Paul, A., Campillo, M., Margerin, L., Larose, E., Derode, A., Empirical synthesis of time-asymmetrical green functions from the correlation of coda waves (2005) J. Geophys. Res., 110 (B8)Perton, M., Sánchez-Sesma, F.J., Rodríguez-Castellanos, A., Campillo, M., Weaver, R.L., Two perspectives on equipartition in diffuse elastic fields in three dimensions (2009) J. Acoust. Soc. Am., 126 (3), pp. 1125-1130Piña-Flores, J., Perton, M., García-Jerez, A., Carmona, E., Luzón, F., Molina-Villegas, J.C., Sánchez-Sesma, F.J., The inversion of spectral ratio H/V in a layered system using the diffuse field assumption (DFA) (2017) Geophys. J. Int., 208 (1), pp. 577-588Sánchez-Sesma, F.J., Campillo, M., Retrieval of the Green's function from cross correlation: The canonical elastic problem (2006) Bull. Seism. Soc. Am., 96 (3), pp. 1182-1191Sánchez-Sesma, F.J., Pérez-Ruiz, J.A., Luzón, F., Campillo, M., Rodríguez-Castellanos, A., Diffuse fields in dynamic elasticity (2008) Wave Motion, 45, pp. 641-654Sánchez-Sesma, F.J., A theory for microtremor H/V spectral ratio: Application for a layered medium (2011) Geophys. J. Int., 186 (1), pp. 221-225Sánchez-Sesma, F.J., Victoria-Tobon, E., Carbajal-Romero, M., Rodríguez-Sánchez, J.E., Rodríguez-Castellanos, A., Energy equipartition in theoretical and recovered seismograms (2018) J. Appl. Geophys., 150, pp. 153-159Scherbaum, F., Hinzen, K.-G., Ohrnberger, M., Determination of shallow shear wave velocity profiles in the cologne, Germany area using ambient vibrations (2003) Geophys. J. Int., 152 (3), pp. 597-612Sens-Schönfelder, C., Wegler, U., Passive image interferometry and seasonal variations of seismic velocities at merapi volcano, Indonesia (2006) Geophys. Res. Lett., 33 (21)Shapiro, N.M., Campillo, M., Emergence of broadband rayleigh waves from correlations of the ambient seismic noise (2004) Geophys. Res. Lett., 31 (7)Snieder, R., Wapenaar, K., Wegler, U., Unified Green's function retrieval by cross-correlationconnection with energy principles (2007) Phys. Rev. E, 75, p. 036103Snieder, R., Sánchez-Sesma, F.J., Wapenaar, K., Field fluctuations, imaging with backscattered waves, a generalized energy theorem, and the optical theorem (2009) SIAM J. Imaging Sci., 2 (2), pp. 763-776Spica, Z.J., Perton, M., Nakata, N., Liu, X., Beroza, G.C., Site characterization at groningen gas field area through joint surface-borehole H/V analysis (2018) Geophys. J. Int., 212 (1), pp. 412-421Stephen, R.A., The seafloor borehole array seismic system (SEABASS) and VLF ambient noise (1994) Mar. Geophys. Res., 16 (4), pp. 243-286Thomson, W.T., Transmission of elastic waves through a stratified solid medium (1950) J. Appl. Phys., 21 (2), pp. 89-93Tuan, T.T., Vinh, P.C., Ohrnberger, M., Malischewsky, P., Aoudia, A., An improved formula of fundamental resonance frequency of a layered half-space model used in H/V ratio technique (2016) Pure Appl. Geophys., 173 (8), pp. 2803-2812Van Manen, D.-J., Curtis, A., Robertsson, J.O., Interferometric modeling of wave propagation in inhomogeneous elastic media using time reversal and reciprocity (2006) Geophysics, 71 (4), pp. SI47-SI60Wang, R., Asimple orthonorma lizationmethod for stable and efficient computation of Green's functions (1999) Bull. Seism. Soc. Am., 89 (3), pp. 733-741Wapenaar, K., Fokkema, J., Green's function representations for seismic interferometry (2006) Geophysics, 71 (4), pp. SI33-SI46Weaver, R.L., Diffuse elastic waves at a free surface (1985) J. Acoust. Soc. Am., 78, pp. 131-136Geophysical Journal InternationalEarthquake hazardsNumerical modellingSeismic interferometrySite effectsTheoretical seismologyWave propagationComputation theoryHazardsInterferometryMarine applicationsMatrix algebraNumerical modelsOffshore oil well productionSurficial sedimentsWave propagationEarthquake hazardExploration seismologyFundamental frequenciesHorizontal-to-vertical spectral ratiosSedimentary environmentSeismic interferometriesSite effectsTheoretical seismologiesEarthquakesalgorithmGreen functionmarine environmentmicrotremornumerical modeloffshore structureradar interferometryseismic hazardsite effectsurficial sedimenttheoretical studywave propagationA generalized theory for full microtremor horizontal-to-vertical [H/V(z, f)] spectral ratio interpretation in offshore and onshore environmentsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Lontsi, A.M., Swiss Seismological Service, ETH Zürich, Zurich, 8092, Switzerland; García-Jerez, A., Departamento de Química y Física, Universidad de Almeria, Almeria, 04120, Spain, Instituto Andaluz de Geofísica, Universidad de Granada, Granada, 18071, Spain; Molina-Villegas, J.C., Facultad de Ingenierías, Universidad de Medellín, Carrera 87 No 30-65, Medellín, Colombia, Departamento de Ingeniería Civil, Facultad de Minas, Universidad Nacional de Colombia - Sede Medellín, Carrera 80 No 65-223, Medellín, Colombia; Sánchez-Sesma, F.J., Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Cd Universitaria, Coyoacán, Cdmx, 04510, Mexico; Molkenthin, C., Institute of Mathematics, University of Potsdam, Potsdam, 14476, Germany; Ohrnberger, M., Institute of Earth and Environmental Science, University of Potsdam, Potsdam, 14476, Germany; Krüger, F., Institute of Earth and Environmental Science, University of Potsdam, Potsdam, 14476, Germany; Wang, R., GFZ German Research Centre for Geosciences, Potsdam, 14473, Germany; Fäh, D., Swiss Seismological Service, ETH Zürich, Zurich, 8092, Switzerlandhttp://purl.org/coar/access_right/c_16ecLontsi A.M.García-Jerez A.Molina-Villegas J.C.Sánchez-Sesma F.J.Molkenthin C.Ohrnberger M.Krüger F.Wang R.Fäh D.11407/5760oai:repository.udem.edu.co:11407/57602020-05-27 18:19:19.727Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co